
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2006-26

2006-01-01

The Remote-Clique Problem Revisited The Remote-Clique Problem Revisited

Benjamin E. Birnbaum

Given a positive integer k and a complete graph with non-negative edge weights that satisfy the

triangle inequality, the remote-clique problem is to find a subset of k vertices having a

maximum-weight induced subgraph. A greedy algorithm for the problem has been shown to

have an approximation ratio of 4, but this analysis was not shown to be tight. In this thesis, we

present an algorithm called d-Greedy Augment that generalizes this greedy algorithm (they are

equivalent when d = 1). We use the technique of factor-revealing linear programs to prove that d-

Greedy Augment, which has a running time... Read complete abstract on page 2. Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Birnbaum, Benjamin E., "The Remote-Clique Problem Revisited" Report Number: WUCSE-2006-26 (2006).
All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/175

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Washington University St. Louis: Open Scholarship

https://core.ac.uk/display/233234616?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F175&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F175&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F175&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F175&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F175&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F175&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F175&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/175?utm_source=openscholarship.wustl.edu%2Fcse_research%2F175&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/175

The Remote-Clique Problem Revisited The Remote-Clique Problem Revisited

Benjamin E. Birnbaum

Complete Abstract: Complete Abstract:

Given a positive integer k and a complete graph with non-negative edge weights that satisfy the triangle
inequality, the remote-clique problem is to find a subset of k vertices having a maximum-weight induced
subgraph. A greedy algorithm for the problem has been shown to have an approximation ratio of 4, but
this analysis was not shown to be tight. In this thesis, we present an algorithm called d-Greedy Augment
that generalizes this greedy algorithm (they are equivalent when d = 1). We use the technique of factor-
revealing linear programs to prove that d-Greedy Augment, which has a running time of O(kdnd), achieves
an approximation ratio of (2k ? 2)/(k + d ? 2). Thus, when d = 1, d-Greedy Augment achieves an
approximation ratio of 2 and runs in time O(kn), making it the fastest known 2-approximation for the
remote-clique problem. Beyond proving this worst-case result, we also examine the behavior of d-Greedy
Augment in practice. First, we provide some theoretical results regarding the expected case performance
of d-Greedy Augment on random graphs, and second, we describe data from some experiments that test
the performance of d-Greedy Augment and related heuristics.

https://openscholarship.wustl.edu/cse_research/175?utm_source=openscholarship.wustl.edu%2Fcse_research%2F175&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/175?utm_source=openscholarship.wustl.edu%2Fcse_research%2F175&utm_medium=PDF&utm_campaign=PDFCoverPages

Department of Computer Science & Engineering

2006-26

The Remote-Clique Problem Revisited

Authors: Benjamin E. Birnbaum

Corresponding Author: kjg@cse.wustl.edu

Abstract: Given a positive integer k and a complete graph with non-negative edge weights that satisfy the
triangle inequality, the remote-clique problem is to find a subset of k vertices having a maximum-weight induced
subgraph. A greedy algorithm for the problem has been shown to have an approximation ratio of 4, but this
analysis was not shown to be tight. In this thesis, we present an algorithm called d-Greedy Augment that
generalizes this greedy algorithm (they are equivalent when d = 1). We use the technique of factor-revealing
linear programs to prove that d-Greedy Augment, which has a running time of O(kdnd), achieves an
approximation ratio of (2k ? 2)/(k + d ? 2). Thus, when d = 1, d-Greedy Augment achieves an approximation
ratio of 2 and runs in time O(kn), making it the fastest known 2-approximation for the remote-clique problem.
Beyond proving this worst-case result, we also examine the behavior of d-Greedy Augment in practice. First, we
provide some theoretical results regarding the expected case performance of d-Greedy Augment on random
graphs, and second, we describe data from some experiments that test the performance of d-Greedy Augment
and related heuristics.

Type of Report: Other

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160

The Remote-Clique Problem Revisited

Undergraduate Honors Thesis

Benjamin E. Birnbaum

Advisors:
Jonathan S. Turner
Kenneth J. Goldman

May, 2006

Department of Computer Science and Engineering
School of Engineering and Applied Science

Washington University in St. Louis

ABSTRACT

Given a positive integer k and a complete graph with non-negative edge weights that satisfy
the triangle inequality, the remote-clique problem is to find a subset of k vertices having a
maximum-weight induced subgraph. A greedy algorithm for the problem has been shown to
have an approximation ratio of 4, but this analysis was not shown to be tight. In this thesis,
we present an algorithm called d-Greedy Augment that generalizes this greedy algorithm
(they are equivalent when d = 1). We use the technique of factor-revealing linear programs
to prove that d-Greedy Augment, which has a running time of O(kdnd), achieves an
approximation ratio of (2k − 2)/(k + d − 2). Thus, when d = 1, d-Greedy Augment
achieves an approximation ratio of 2 and runs in time O(kn), making it the fastest known 2-
approximation for the remote-clique problem. Beyond proving this worst-case result, we also
examine the behavior of d-Greedy Augment in practice. First, we provide some theoretical
results regarding the expected case performance of d-Greedy Augment on random graphs,
and second, we describe data from some experiments that test the performance of d-Greedy
Augment and related heuristics.

ACKNOWLEDGEMENTS

I wish to thank both of my advisors, Jon Turner and Ken Goldman, for many hours of
helpful guidance and support. This work was supported in part by the National Science
Foundation under CISE Educational Innovation grant 0305954.

1. INTRODUCTION

As computing system reliability becomes increasingly important, techniques are being de-
veloped to ensure that essential services can survive in spite of a limited number of arbitrary
faults, including communication failures, crash failures, software errors, and malicious at-
tacks. These techniques fundamentally require replication of data and processing so that
when failures occur, other replicas can continue to correctly execute operations to comple-
tion. As an example, the CLBFT algorithm [2], uses a group of 3f + 1 replicated data
servers to guarantee correct performance when up to f of the replica servers exhibit faulty
behavior. However, such algorithms are only beneficial if the faults are independent. Oth-
erwise, a single failure type (such as a power outage affecting all servers in a region) could
induce faults in multiple server replicas, exceeding the fault-tolerance bound f . Therefore,
provided that all replicas implement the same specification, it is desirable that servers of
a given replica group are as diverse as possible with repsect to properties such as system
architecture, software, physical location, and the network administrator. Motivated by such
concerns, we investigate the problem of choosing a set of 3f + 1 replicas from a large group
of potential servers when it is important to choose a set of replicas that are as diverse as
possible.

We can model this situation as a graph problem. For each potential server, create a vector
of attributes representing its properties (architecture, software, location, etc.) and define
the distance between two servers to be the Hamming distance between the vectors (i.e.
the number of times corresponding attributes differ.) For each server, create a vertex in a
complete graph. Set the edge weight between two vertices to be the distance between their
corresponding servers. Finding a subset of servers that is most diverse now becomes the
problem of finding a subset of 3f + 1 vertices having an induced subgraph with maximum
average edge weight (or equivalently maximum total edge weight).

This example provides one of several motivations for a general class of graph problems called
dispersion problems, which involve finding subsets of vertices that are in some way as distant
from each other as possible. (See [3] for other motivating examples.) Maximizing the average
weight of the induced subgraph is the measure of dispersion addressed here, but it is possible
to measure dispersion in a number of other ways, including the minimum weight edge and
the minimum weight spanning tree of the induced subgraph. As in [3], we call the problem
of maximizing the average weight the remote-clique problem, but it has also been called
maxisum dispersion [7] and max-avg facility dispersion [11].

We define the problem more formally as follows. Let G = (V, E) be a complete graph with

the weight for edge (v1, v2) ∈ E given by w(v1, v2). (Define w(v, v) = 0 for all v ∈ V .)
The edge weights are nonnegative and satisfy the triangle inequality: for all v1, v2, v3 ∈ V ,
w(v1, v2) + w(v2, v3) ≥ w(v1, v3).

1 For a given integer parameter k, such that 1 ≤ k ≤ |V |,
the remote-clique problem is to find a subset V ′ ⊆ V such that |V ′| = k and the average
edge weight in V ′, 2/(k(k − 1)) ·

∑
{v1,v2}∈E : v1,v2∈V ′ w(v1, v2), is maximized. This problem

can be shown to be NP-hard by an easy reduction from Clique.

It has been shown that a simple greedy algorithm with running time O(n2) achieves an
approximation ratio of 4 (i.e., it always finds a solution that has an average edge weight no
less than 1

4
times optimal) [11]. An example is provided in which the optimal solution weighs

twice as much as the algorithm’s solution, but the question of whether a tighter bound for
the algorithm can be proved remained open. In another paper, it is proved that a more
complicated algorithm with running time O(n2 + k2 log k) achieves an approximation ratio
of 2 [5]. However, a tight approximation ratio for the simple greedy algorithm has never
been proved.

In this thesis, we provide an algorithm parameterized by an integer d called d-Greedy
Augment. When d = 1, the algorithm is nearly the same as the algorithm analyzed in
[11], and when d = k, the algorithm amounts to examining all subsets of k vertices and
choosing the one with maximum edge weight. (Clearly, this will return an optimal solution,
but it does not run in polynomal time if k is not a constant.) We will show that d-Greedy
Augment has an approximation ratio of (2k − 2)/(k + d − 2) and has a running time of
O(kdnd). Therefore if d = 1, our algorithm guarantees an approximation ratio of 2 and has a
running time of O(kn). This algorithm, then, is the fastest known (and easiest to implement)
2-approximation for the remote-clique problem. Our proof of the approximation ratio, which
uses the technique of factor-revealing linear programs [6, 9], also answers an open question
from [11] by showing that the greedy algorithm does indeed obtain an approximation ratio
of 2.

We also provide some results regarding the expected characteristics of remote-clique problem
instances and the performance of d-Greedy Augment. For these probabilistic analyses, we
make the simplifying assumption that the graph is unweighted (or equivalently is weighted in
which the edge weight is always 0 or 1). In this context, the remote-clique problem becomes
the problem of finding a group of k vertices that has maximum average degree. An algorithm
achieving an approximation ratio slightly better than O(n1/3) is provided in [4], in which
the problem was called the Dense k-Subgraph Problem. No matching hardness results exist
for this problem, but it is conjectured that there is some universal constant ε such that it
is NP-hard to approximate the problem to within a factor of O(nε). To the best of our
knowledge, however, there has not been an investigation into the average case performance
of algorithms for this problem.

Beyond these theoretical results, we also analyze the performance of d-Greedy Augment
and related heuristics experimentally. We provide evidence showing that d-Greedy Aug-

1 It can easily be shown that the Hamming distance defined earlier does indeed satisfy the triangle
inequality.

5

ment seems to perform much better in practice than its worst-case analysis might suggest.
We also show that a simple modification of d-Greedy Augment called All-Greedy
Augment seems to perform even better.

This thesis is organized as follows. The remainder of this section establishes some notation
and combinatorial identities that will be used later in the thesis. Section 2 proves the
approximation ratio of (2k − 2)/(k + d − 2) for d-Greedy Augment and shows that this
ratio is a tight bound on the worst case performance of the algorithm. In Section 3, we
establish some results regarding the expected behavior of d-Greedy Augment on random
graph instances. In Section 4, we report the results from our experiments comparing the
performance of d-Greedy Augment and related heuristics on randomly generated problem
instances. We conclude in Section 5.

1.1 Notation

We define the following notation that will be used throughout this thesis:

• For any natural number n, let [n] = {1, . . . , n}.

• For any integers n and j such that n ≥ 1 and j ≤ n, let(
n

j

)
=

{
n!

j!(n−j)!
if j ≥ 0

0 otherwise

There will be several times in this thesis when we will write
(

n
j

)
when j could be less

than 0, so it is important to keep in mind the full definition of
(

n
j

)
.

• For any set S and nonnegative integer j, let
(

S
j

)
= {S ′ ⊆ S : |S ′| = j}. If j ≤ 0 or

j > |S|, then
(

S
j

)
= ∅.

1.2 Combinatorial Identities

In this section, we state two combinatorial identities that will be used later in this thesis.
First, the following fact about summations will be used a number of times in Section 2.

Lemma 1. Let n be a positive integer and let i and j be two nonnegative integers such that
j ≤ i ≤ n. Then if f is some fuction defined on the domain

(
[n]
j

)
, the following identity

holds. ∑
I∈([n]

i)

∑
J∈(I

j)

f(J) =

(
n− j

i− j

) ∑
J∈([n]

j)

f(J)

6

Proof. To prove this, we count the number of times that a given J ∈
(
[n]
j

)
appears in the

summation on the left. Each J appears once for each I ∈
(
[n]
i

)
containing J . The number of

such sets I is
(

n−j
i−j

)
, since for a given J , we can choose i− j elements from the n− j elements

in [n]− J to form such an I.

The following fact will also be used in Section 2.

Lemma 2. For all integers j, d, and s, such that 0 ≤ j ≤ d ≤ s,(
s

d

)(
d

j

)
=

(
s

j

)(
s− j

d− j

)
Proof. By definition, we have(

s

d

)(
d

j

)
=

s!

d!(s− d)!

d!

j!(d− j)!
=

s!

j!(d− j)!(s− d)!

and (
s

j

)(
s− j

d− j

)
=

s!

j!(s− j)!

(s− j)!

(d− j)!(s− d)!
=

s!

j!(d− j)!(s− d)!

Hence (
s

d

)(
d

j

)
=

(
s

j

)(
s− j

d− j

)

7

2. WORST-CASE ANALYSIS OF d-GREEDY AUGMENT

In this section, we describe d-Greedy Augment and analyze its running time and worst-
case performance. d-Greedy Augment maintains a set of vertices T that starts empty. At
each step in the algorithm, it augments T with the set of d vertices that will add the most
weight to T . When |T | = k, d-Greedy Augment returns the set T . (Throughout this
paper, we assume for simplicity that d divides k evenly.) To be more precise, we define the
following notation. For any subset of vertices V ′ ⊆ V that is disjoint from T , let

augT (V ′) =
∑
v′∈V ′

∑
v∈T

w(v′, v) +
∑

{v′1,v′2}∈(V ′
2)

w(v′1, v
′
2)

In other words, augT (V ′) is the amount of edge weight that the vertices in V ′ add to T if T
is augmented by V ′. At each step in the algorithm, d-Greedy Augment chooses a set of
d vertices V ′ that maximizes augT (V ′) and adds them to T . For the first step, this means
that d-Greedy Augment chooses a group of d vertices with the heaviest edge weights.1

An implementation of d-Greedy Augment is listed below as Algorithm 1. The running
time is dominated by the outer while loop, which runs k/d times. Each iteration of the while
loop has O(nd) iterations through the subsets V ′, and each of these iterations takes O(d2)
time to compute the sum to add to aug(V ′). Therefore, the overall running time of this
algorithm is O(kdnd).

Because the running time of d-Greedy Augment is exponential in d, it only runs in
polynomial time for constant values of d. Furthermore, the remote-clique problem is only
NP-hard for non-constant values of k (since otherwise we could just examine every subset of
k vertices and choose the maximum weight subset). Therefore, increasing the value of d does
not affect the approximation ratio asymptotically. However, we include the analysis for all
values of d both for completeness and because it could have some practical benefit for small
values of k. For example, if k = 4, then the naive exact algorithm would take quartic time,
whereas if we were willing to spend quadratic time, we could run d-Greedy Augment for
d = 2 to guarantee finding a solution at least 2

3
the value of the optimal solution.

To prove our approximation ratio of (2k − 2)/(k + d − 2), we use the technique of factor-
revealing linear programs [6, 9], which is a simple generalization of a method often used to

1 Note that if d = 1, then during the first step augT (V ′) = 0 for all V ′ ⊆ V such that |V ′| = d. Thus
for d = 1, d-Greedy Augment just starts with an arbitrary vertex. This is in fact the only difference
between d-Greedy Augment for d = 1 and the algorithm analyzed in [11]; the algorithm in [11]
initializes T to two vertices that are endpoints of a maximum weight edge.

Algorithm 1 d-Greedy Augment

for all V ′ ⊆ V such that |V ′| = d do
aug(V ′)←

∑
{v′1,v′2}∈(V ′

2) w(v′1, v
′
2)

end for
T ← ∅
while |T | < k do

MaxWeight← −∞
for all V ′ ⊆ V − T such that |V ′| = d do

if aug(V ′) > MaxWeight then
MaxWeightSet← V ′

MaxWeight← aug(V ′)
end if

end for
T ← T ∪MaxWeightSet
for all V ′ ⊆ V − T such that |V ′| = d do

aug(V ′)← aug(V ′) +
∑

v∈MaxWeightSet

∑
v′∈V ′ w(v, v′)

end for
end while
return T

provide bounds for approximation algorithms. Consider a maximization (resp., minimiza-
tion) problem P . A typical analysis of an approximation algorithm ALG for P proceeds
by using the behavior of ALG and the structure of P to generate a number of inequalities.
These inequalities are then combined to provide a bound on the value of the solution ob-
tained by ALG to that of an optimal solution. Often, this can be done algebraically, but not
always. A more general way of obtaining a bound is to view the process as an optimization
problem Q in its own right, in which an adversary tries to minimize (resp., maximize) the
value of ALG’s solution to P subject to the constraints given by the generated inequalities.
The optimal solution to Q is then a bound on the performance of ALG. If Q can be formu-
lated as a linear program, then this is a factor-revealing LP, which can then be solved using
duality. The simplicity of this technique makes it applicable to many problems, but in most
cases it does not seem to be the easiest way to provide a bound. However, there are some
algorithms, including the one in [6] and the greedy algorithm examined here, in which it is
the only known technique to provide a tight bound.

Before we begin with the proof that d-Greedy Augment obtains an approximation ratio
of (2k− 2)/(k + d− 2), we observe with the following theorem that we cannot hope to prove
a better approximation ratio for this algorithm.

Theorem 3. There exist infinitely many remote-clique problem instances in which the ratio
of the average edge weight in an optimal solution to the average edge weight in the solution
returned by d-Greedy Augment is (2k − 2)/(k + d− 2).

9

Fig. 2.1: An example (for k = 12 and d = 4) showing that the approximation ratio of (2k−2)/(k +
d − 2) is a tight bound on the worst-case performance of d-Greedy Augment. Edges
that are contained within the same circle have weight 2, and all other edges have weight
1.

Proof. Consider the following problem instance (G = (V, E), k), in which |V | = 2k and V
is partitioned into k/d subsets of d vertices called V1, . . . , Vk/d and one group of k vertices
called O. The edge weights are determined as follows:

w(v1, v2) =

{
2 if v1, v2 ∈ Vi for some i or v1, v2 ∈ O
1 otherwise

This construction is illustrated in Figure 2.1. It is clear that the edges in this problem
instance satisfy the triangle inequality, since every edge has weight either 1 or 2. Also, it
is clear that d-Greedy Augment could (if ties were broken badly) return the solution
T =

⋃
i Vi, whereas the optimal solution is O. If this happens, then the total edge weight in

T is
k

d

(
d

2

)
· 2 +

((
k

2

)
− k

d

(
d

2

))
· 1 =

1

2
k(k + d− 2)

and since the total edge weight in O is 2
(

k
2

)
, the ratio of the performance of an optimal

algorithm to d-Greedy Augment is (2k− 2)/(k + d− 2). To see that there are an infinite
number of such graphs, note that without affecting the relative performance of d-Greedy
Augment, we can add arbitrarly many vertices to this construction in which every edge
incident to these new vertices has weight 1.

We now continue with a proof of our approximation ratio. For an instance of the remote-
clique problem, let OPT be the average edge weight in an optimal solution. To prove that
d-Greedy Augment achieves an approximation ratio of (2k− 2)/(k +d− 2), we will prove
that at each augmenting step, there exists a group of d vertices V ′ in which augT (V ′) is
sufficiently high.

Lemma 4. Before each augmenting step in the algorithm, there exists a group of d vertices
V ′ ⊆ V such that V ′ is disjoint from T and augT (V ′) ≥ 1

2
d(|T |+ d− 1)OPT .

10

Proof. We defer the proof of the lemma when |T | > 0 to the remainder of this section. When
|T | = 0, then the statement of the lemma is that there exists at least one group of vertices
V ′ ⊆ V of size d and total weight at least

(
d
2

)
OPT . Let S be the set vertices in an optimal

solution. We prove that such a group of vertices V ′ must be found as a subset of S. By the
optimality of S, ∑

{v1,v2}∈(S
2)

w(v1, v2) =

(
k

2

)
OPT =

(
k
d

)(
d
2

)(
k−2
d−2

) OPT

where the second equality follows by Lemma 2. Thus,(
k − 2

d− 2

) ∑
{v1,v2}∈(S

2)

w(v1, v2) =

(
k

d

)(
d

2

)
OPT

But by Lemma 1, we have∑
V ′∈(S

d)

∑
{v1,v2}∈(V ′

2)

w(v1, v2) =

(
k

d

)(
d

2

)
OPT

which implies the lemma for |T | = 0.

With this fact, it is straightforward to prove that d-Greedy Augment achieves an approx-
imation ratio of (2k − 2)/(k + d− 2).

Theorem 5. The average weight of the edges in the solution returned by d-Greedy Aug-
ment is at least (k + d− 2)/(2k − 2) ·OPT .

Proof. Since d-Greedy Augment adds d vertices to T during each augmenting step, we
have that |T | = (i − 1)d before the ith augmenting step. Thus by Lemma 4, there exists
a set of d vertices V ′ ⊆ V that can be added to T such that augT (V ′) = 1

2
d(di − 1)OPT .

We know therefore that the weight of the edges added by d-Greedy Augment on the ith

augmenting step is at least 1
2
d(di − 1)OPT , since d-Greedy Augment chooses the set of

d vertices that maximizes augT (V ′). Thus after j steps, the weight of the edges in T is at
least

j∑
i=1

1

2
d(di− 1)OPT =

1

4
dj(dj + d− 2)OPT

Since the algorithm terminates after k/d steps, the final total weight of the edges in T is at
least 1

4
k(k + d− 2)OPT . Since there are k(k− 1)/2 edges in this set of vertices, we conclude

that the average weight of the edges in the solution returned by d-Greedy Augment is at
least (k + d− 2)/(2k − 2) ·OPT .

11

Fig. 2.2: An intermediate state of d-Greedy Augment.

To prove Lemma 4, we begin with some notation. Consider an intermediate state of d-
Greedy Augment. The set of vertices chosen so far is T , and let S be the set of vertices
in an optimal solution. Let u = |S ∩ T |, t = |T − S|, and s = |S − T |. Arbitrarily label
the vertices in S ∩ T as a1, a2, . . . , au, the vertices in T − S as b1, b2, . . . , bt, and the vertices
in S − T as c1, c2, . . . , cs. Note that one of u or t may be equal to zero, but since we are in
an intermediate state of d-Greedy Augment, we know that d ≤ |T | ≤ |S| − d, and hence
u + t ≥ d and s ≥ t + d. This situation is illustrated in Figure 2.2.

We break the proof of Lemma 4 into five cases based on the values of u and t and state the
proof for each case as its own lemma. For each of these cases, we show that a group of d
vertices satisfying the condition of Lemma 4 can be found in the set S − T . We start with
the case when S and T are disjoint, i.e., when u = 0 and t ≥ 1. This case permits a direct
analysis without the use of linear programming. It is instructive to analyze this case first,
since it will be become more clear why imitating this analysis does not seem to be possible
for the other cases. This should help motivate the use of the more general technique of
factor-revealing linear programs for the other cases.

Lemma 6. Lemma 4 holds when u = 0 and t ≥ 1. Specifically, there exists a set of indices
L ∈

(
[s]
d

)
such that 2

∑
`∈L

∑
j∈[t]

w(bj, c`) +
∑

{`,m}∈(L
2)

w(c`, cm) ≥ 1

2
d(d + t− 1)OPT

Proof. The key observation is that because of the triangle inequality, edges adjacent to the
high-weight edges in S must also have high weight on average. By the triangle inequality,

w(bj, c`) + w(bj, cm) ≥ w(c`, cm) j ∈ [t] , {`, m} ∈
(

[s]

2

)
2 Note that if d = 1, then the second sum in this inequality is empty. In general, there will be a number

of formulas in this section that simplify significantly if d = 1. However, we use the general form for
compactness, and unless otherwise noted, all statements hold for any d ≥ 1.

12

Summing over all j, this becomes∑
j∈[t]

w(bj, c`) +
∑
j∈[t]

w(bj, cm) ≥ tw(c`, cm) {`, m} ∈
(

[s]

2

)

Now, summing over all {`, m} yields

∑
{`,m}∈([s]

2)

∑
j∈[t]

w(bj, c`) +
∑
j∈[t]

w(bj, cm)

 ≥ t
∑

{`,m}∈([s]
2)

w(c`, cm) = t

(
s

2

)
OPT (2.1)

where the equality follows from the optimality of S. By applying Lemma 1 to the lefthand
side of (2.1), we can rewrite it as

(s− 1)
∑
`∈[s]

∑
j∈[t]

w(bj, c`) ≥ t

(
s

2

)
OPT

which can be simplified to ∑
`∈[s]

∑
j∈[t]

w(bj, c`) ≥
st

2
OPT

From this fact, along with the optimality of S, it follows that 3(
s− 1
d− 1

) ∑
`∈[s]

∑
j∈[t]

w(bj , c`) +
(

s− 2
d− 2

) ∑
{`,m}∈([s]

2)

w(c`, cm) ≥
((

s− 1
d− 1

)
st

2
+

(
s− 2
d− 2

)(
s

2

))
OPT

=
1
2

(
s

d

)
d(d + t− 1)OPT (2.2)

where the equality is obtained from some simplification using Lemma 2. We can now apply
Lemma 1 to the lefthand side of this inequality to obtain

∑
L∈([s]

d)

∑
`∈L

∑
j∈[t]

w(bj, c`) +
∑

{`,m}∈(L
2)

w(c`, cm)

 ≥ 1

2

(
s

d

)
d(d + t− 1)OPT

But this implies that there must exist at least one L ∈
(
[s]
d

)
such that∑

`∈L

∑
j∈[t]

w(bj, c`) +
∑

{`,m}∈(L
2)

w(c`, cm) ≥ 1

2
d(d + t− 1)OPT

3 Again, note the difference in the formula if d = 1. In this case,
(

s−2
d−2

)
= 0.

13

Now that we have proved Lemma 4 for the case when T is disjoint from S, we turn to proving
Lemma 4 when some number of vertices in T are also in S. Intuitively, the algorithm should
do no worse when T is not disjoint from S. If d-Greedy Augment has already found some
of the optimal solution, then that should not hurt its performance. However, we will see that
this case seems harder to analyze, and we will need to use factor-revealing linear programs
for this case. We start with the most general non-disjoint case that we examine, when u ≥ 2
and t ≥ 1. (Our application of the triangle inequality leads to certain boundary cases that
arise for other values of u and t, which we handle separately.)

Lemma 7. Lemma 4 holds when u ≥ 2 and t ≥ 1. Specifically, there exists a set of indices
L ∈

(
[s]
d

)
such that

∑
`∈L

∑
h∈[u]

w(ah, c`) +
∑
j∈[t]

w(bj, c`)

 +
∑

{`,m}∈(L
2)

w(c`, cm) ≥ 1

2
d(d + t + u− 1)OPT

Proof. It is sufficient to show that

(
s− 1
d− 1

) ∑
`∈[s]

 ∑
h∈[u]

w(ah, c`) +
∑
j∈[t]

w(bj , c`)

+
(

s− 2
d− 2

) ∑
{`,m}∈([s]

2)

w(c`, cm) ≥ 1
2

(
s

d

)
d(d+t+u−1)OPT

(2.3)
since we can then proceed to prove this lemma as we proved Lemma 6 from inequality (2.2).
To prove inequality (2.3), we proceed as we did in Lemma 6; we use the triangle inequality
and the optimality of S. By the triangle inequality, we have

w(ah, c`) + w(ah, cm)− w(c`, cm) ≥ 0 h ∈ [u] , {`, m} ∈
(

[s]

2

)
(2.4)

w(bj, c`) + w(bj, cm)− w(c`, cm) ≥ 0 j ∈ [t] , {`, m} ∈
(

[s]

2

)
(2.5)

w(ah, c`) + w(ai, c`)− w(ah, ai) ≥ 0 {h, i} ∈
(

[u]

2

)
, ` ∈ [s] (2.6)

By the optimality of S, we have∑
{h,i}∈([u]

2)

w(ah, ai) +
∑

{`,m}∈([s]
2)

w(c`, cm) +
∑
h∈[u]

∑
`∈[s]

w(ah, c`) ≥
(

s + u

2

)
OPT (2.7)

At this point in the proof of Lemma 6, it was possible to combine the inequalities expressing
the triangle inequality and the optimality of S to yield (2.2) and finish the proof. In this
lemma, however, the inequalities have a much more complicated form because of the overlap
of S and T , and it does not seem possible to combine them directly to yield (2.3). To prove

14

(2.3), we instead consider an adversary trying to minimize(
s− 1

d− 1

) ∑
`∈[s]

∑
h∈[u]

w(ah, c`) +
∑
j∈[t]

w(bj, c`)

 +

(
s− 2

d− 2

) ∑
{`,m}∈([s]

2)

w(c`, cm)

subject to the constraints given by (2.4), (2.5), (2.6), and (2.7). If we can show that the
optimal value of this factor-revealing linear program (where the variables are the weights of
the edges) is at least 1

2

(
s
d

)
d(d + t + u − 1)OPT , then we will have proven (2.3). Since the

value of any feasible dual solution is a lower bound for the optimal value of the primal, we
can prove (2.3) by finding a feasible dual solution with value 1

2

(
s
d

)
d(d + t + u− 1)OPT . The

dual linear program is

maximize (
s + u

2

)
OPT · z

subject to

−
∑
`∈[s]

y{h,i},` + z ≤ 0 {h, i} ∈
(

[u]

2

)

−
∑
h∈[u]

wh,{`,m} −
∑
j∈[t]

xj,{`,m} + z ≤
(

s− 2

d− 2

)
{`, m} ∈

(
[s]

2

)
(2.8)

∑
m∈[s]−{`}

wh,{`,m} +
∑

i∈[u]−{h}

y{h,i},` + z ≤
(

s− 1

d− 1

)
h ∈ [u] , ` ∈ [s]

∑
m∈[s]−{`}

xj,{`,m} ≤
(

s− 1

d− 1

)
j ∈ [t] , ` ∈ [s]

where wh,{`,m} corresponds to (2.4), xj,{`,m} corresponds to (2.5), y{h,i},` corresponds to (2.6),
and z corresponds to (2.7). It can be easily verified that the following dual solution is
feasible.

w′
h,{`,m} =

s− d− t + 1

(u + s)(s− 1)

(
s− 1

d− 1

)
h ∈ [u] , {`, m} ∈

(
[s]

2

)
x′j,{`,m} =

1

s− 1

(
s− 1

d− 1

)
j ∈ [t] , {`, m} ∈

(
[s]

2

)
y′{h,i},` =

d + t + u− 1

(u + s)(u + s− 1)

(
s− 1

d− 1

)
{h, i} ∈

(
[u]

2

)
, ` ∈ [s]

z′ =
d(d + t + u− 1)

(u + s)(u + s− 1)

(
s

d

)

15

The only constraint that is not trivial to verify is (2.8), but some straightforward manipula-
tion shows that if d = 1, then the lefthand side is equal to

− su(u + t)

(u + s)(u + s− 1)(s− 1)

which is no greater than 0 since s ≥ 2 when t ≥ 1. Similarly, if d > 1, then the lefthand side
can be written as (

1− su(d + t + u− 1)

(u + s)(u + s− 1)(d− 1)

) (
s− 2

d− 2

)
which is clearly no greater than

(
s−2
d−2

)
. We conclude the proof by noting that the value of

this dual solution is(
s + u

2

)(
s

d

)
d(d + t + u− 1)

(u + s)(u + s− 1)
OPT =

1

2

(
s

d

)
d(d + t + u− 1)OPT

which implies that the optimal value of the primal is no less than 1
2

(
s
d

)
d(d + t + u− 1)OPT

and hence implies inequality (2.3), thus proving the lemma.

We have now proved the most general (and hardest) case of Lemma 4. It remains only to
prove three boundary cases. The next case we consider is when u = 1 and t ≥ 1. Using
factor-revealing linear programming seems to be necessary for this case as well, but we need
to consider it seperately because here we do not have constraint (2.6) (or dual variables of
the form y{h,i},`). Because the proof is so similar to the proof of Lemma 7, we merely state
the primal and dual factor-revealing linear program and give a feasible solution to the dual
that provides a sufficient lower bound for the optimal value of the primal.

Lemma 8. Lemma 4 holds when u = 1 and t ≥ 1. Specifically, there exists a set of indices
L ∈

(
[s]
d

)
such that

∑
`∈L

w(a1, c`) +
∑
j∈[t]

w(bj, c`)

 +
∑

{`,m}∈(L
2)

w(c`, cm) ≥ 1

2
d(d + t)OPT

Proof. As before, it is sufficient to prove that

(
s− 1

d− 1

) ∑
`∈[s]

w(a1, c`) +
∑
j∈[t]

w(bj, c`)

+

(
s− 2

d− 2

) ∑
{`,m}∈([s]

2)

w(c`, cm) ≥ 1

2

(
s

d

)
d(d+ t)OPT

Again, we prove this by lower-bounding the optimal solution to the following linear program,
in which the constraints are again derived by the triangle inequality and the optimality of S.

16

minimize (
s− 1

d− 1

) ∑
`∈[s]

w(a1, c`) +
∑
j∈[t]

w(bj, c`)

 +

(
s− 2

d− 2

) ∑
{`,m}∈([s]

2)

w(c`, cm)

subject to

w(a1, c`) + w(a1, cm)− w(c`, cm) ≥ 0 {`, m} ∈
(

[s]

2

)
w(bj, c`) + w(bj, cm)− w(c`, cm) ≥ 0 j ∈ [t] , {`, m} ∈

(
[s]

2

)
∑

{`,m}∈([s]
2)

w(c`, cm) +
∑
`∈[s]

w(a1, c`) ≥
(

s + 1

2

)
OPT

The dual of this linear program is

maximize (
s + 1

2

)
OPT · z

subject to

−x{`,m} −
∑
j∈[t]

yj,{`,m} + z ≤
(

s− 2

d− 2

)
{`, m} ∈

(
[s]

2

)
∑

m∈[s]−{`}

x{`,m} + z ≤
(

s− 1

d− 1

)
` ∈ [s]

∑
m∈[s]−{`}

yj,{`,m} ≤
(

s− 1

d− 1

)
j ∈ [t] , ` ∈ [s]

We conclude the proof of this lemma by providing the following dual solution, which can
easily be shown to be feasible and to have the value 1

2

(
s
d

)
d(d + t)OPT .

x′{`,m} =
s− d− t + 1

(s + 1)(s− 1)

(
s− 1

d− 1

)
{`, m} ∈

(
[s]

2

)
y′j,{`,m} =

1

s− 1

(
s− 1

d− 1

)
j ∈ [t] , {`, m} ∈

(
[s]

2

)
z′ =

d(d + t)

s(s + 1)

(
s

d

)

17

The next case we consider is when u ≥ 2 and t = 0. Although the factor-revealing LP is
slightly different, the proof for this case is very similar to the proofs of Lemmas 7 and 8.

Lemma 9. Lemma 4 holds when u ≥ 2 and t = 0. Specifically, there exists a set of indices
L ∈

(
[s]
d

)
such that∑

`∈L

∑
h∈[u]

w(ah, c`) +
∑

{`,m}∈(L
2)

w(c`, cm) ≥ 1

2
d(d + u− 1)OPT

Proof. Again, it is sufficient to prove that(
s− 1

d− 1

) ∑
`∈[s]

∑
h∈[u]

w(ah, c`) +

(
s− 2

d− 2

) ∑
{`,m}∈([s]

2)

w(c`, cm) ≥ 1

2

(
s

d

)
d(d + u− 1)OPT

which we do by finding a lower bound to the optimal solution of the following linear program.

minimize (
s− 1

d− 1

) ∑
`∈[s]

∑
h∈[u]

w(ah, c`) +

(
s− 2

d− 2

) ∑
{`,m}∈([s]

2)

w(c`, cm)

subject to

w(ah, c`) + w(ah, cm)− w(c`, cm) ≥ 0 h ∈ [u] , {`, m} ∈
(

[s]

2

)
w(ah, c`) + w(ai, c`)− w(ah, ai) ≥ 0 {h, i} ∈

(
[u]

2

)
, ` ∈ [s]

∑
{h,i}∈([u]

2)

w(ah, ai) +
∑

{`,m}∈([s]
2)

w(c`, cm) +
∑
h∈[u]

∑
`∈[s]

w(ah, c`) ≥
(

s + u

2

)
OPT

The dual of this linear program is

maximize (
s + u

2

)
OPT · z

18

subject to

−
∑
`∈[s]

y{h,i},` + z ≤ 0 {h, i} ∈
(

[u]

2

)

−
∑
h∈[u]

xh,{`,m} + z ≤
(

s− 2

d− 2

)
{`, m} ∈

(
[s]

2

)
∑

m∈[s]−{`}

xh,{`,m} +
∑

i∈[u]−{h}

y{h,i},` + z ≤
(

s− 1

d− 1

)
h ∈ [u] , ` ∈ [s]

The following dual solution is feasible and has value 1
2

(
s
d

)
d(d + u− 1)OPT , thus concluding

the proof of the lemma.

x′h,{`,m} =
s− d + 1

(u + s)(s− 1)

(
s− 1

d− 1

)
h ∈ [u] , {`, m} ∈

(
[s]

2

)
y′{h,i},` =

d + u− 1

(u + s)(u + s− 1)

(
s− 1

d− 1

)
{h, i} ∈

(
[u]

2

)
, ` ∈ [s]

z′ =
d(d + u− 1)

(u + s)(u + s− 1)

(
s

d

)

The final case yet to be covered is when u = 1 and t = 0. If this is true, then it must be the
case that d = 1, since u + t ≥ d. The proof of this case follows from a simple contradiction
argument.

Lemma 10. Lemma 4 holds when u = 1 and t = 0 (and hence d = 1). Specifically, there
exists an ` ∈ [s] such that w(a1, c`) ≥ 1

2
OPT .

Proof. Suppose by way of contradiction that no such ` exists. Then by the triangle inequality,
w(c`, cm) < OPT for all {`, m} ∈

(
[s]
2

)
. But this contradicts the optimality of S, since it

implies that every edge in S has weight strictly less than OPT . Thus we conclude that the
set S − T does indeed contain a vertex c` satisfying the statement of the lemma.

Lemmas 6, 7, 8, 9, and 10 together imply Lemma 4, which in turn implies Theorem 5, stating
that d-Greedy Augment has approximation ratio (2k − 2)/(k + d− 2).

19

3. EXPECTED CASE PERFORMANCE

In this section, we make some observations about the expected characteristics of random in-
stances of the remote-clique problem and the expected performance of d-Greedy Augment
on these instances. In order to make the random graph models easier to analyze, we consider
unweighted graphs (or equivalently weighted graphs in which the edge weight is always 0 or
1). Although this changes the problem because the triangle inequality is no longer satisfied,
analyzing the expected behavior of this problem is a first step in understanding the expected
behavior of the remote-clique problem. As we will see, it also provides some inuition for the
design of our experiments in Section 4.

Let Gn,p be a random graph on n vertices in which each edge is chosen independently with
probability p. It has been proved that for any constant ε > 0, if k = (2 + ε) log1/p n then
the probability of Gn,p having a clique of size k approaches zero as n approaches infinity.
(Thus we say that almost every graph does not have a clique of size k.) Conversely, it has
been shown that if k = (2 − ε) log1/p n, then almost every graph Gn,p has a clique of size
k [1]. There are many similar results in the theory of random graphs, and the function
k = 2 log1/p n is called a threshold function for the property of having a clique of size k.

In order to better understand the expected behavior of random instances of the remote-clique
problem, we seek a threshold function for property Pk,r, defined as follows.

Definition 1. We say that random graph Gn,p has property Pk,r if there exists a set V ′ of k
vertices such that at least r edges in Gn,p have both endpoints in V ′.

Note that Pk,r is a generalization of the property of having a clique of size k since the
two properties are equivalent if r =

(
k
2

)
. We have a partial result regarding this property,

although we do not have a complete proof of a threshold function. To prove our result,
we will need the following technical lemma, which is an example of one of the well-known
Chernoff bounds. For a proof, the reader is referred to [10].

Lemma 11. Let Bn,p be a binomial random variable with parameters n and p. Then for any
δ such that 0 < δ ≤ 1,

Pr (Bn,p ≥ (1 + δ)np) ≤ e−npδ2/3

We now proceed with the statement and proof of our result regarding property Pk,r.

Theorem 12. Let r = (1 + δ)
(

k
2

)
p for some 0 < δ ≤ 1. Then for any integer k ≥ 3, if

(k − 1)pδ2 = 6(1 + ε) ln n for some constant ε > 0, then

Pr (Gn,p has property Pk,r) ≤ n−ε

Proof. Let random graph Gn,p have vertex set V and edge set E. For each V ′ ∈
(

V
k

)
, let XV ′

be a random variable defined as follows

XV ′ =

{
1 if there are at least r edges in E having both endpoints in V ′

0 otherwise

By a union bound, we have that

Pr (Gn,p has property Pk,r) ≤
∑

V ′∈(V
k)

Pr (XV ′ = 1)

=

(
n

k

)
Pr

(
B(k

2),p ≥ r
)

By Lemma 11, then,

Pr (Gn,p has property Pk,r) ≤
(

n

k

)
e−(k

2)pδ2/3 ≤
(ne

k

)k

e−(k
2)pδ2/3 (3.1)

where the second inequality comes from the easily proved estimate
(

n
k

)
≤ (ne/k)k (see [8]).

Inequality (3.1) simplifies to

Pr (Gn,p has property Pk,r) ≤
(

n1+ 1−ln k
ln n

− (k−1)pδ2

6 ln n

)k

By substituting 6(1 + ε) ln n for (k − 1)pδ2, we get

1 +
1− ln k

ln n
− (k − 1)pδ2

6 ln n
= 1 +

1− ln k

ln n
− 6(1 + ε) ln n

6 ln n

= −ε +
1

ln n
(1− ln k)

≤ −ε

where the last inequality follows from the fact that k ≥ 3 and hence (1 − ln k) is negative.
We conclude that

Pr (Gn,p has property Pk,r) ≤ n−εk ≤ n−ε

Note that the expected number of edges in any set of k vertices is
(

k
2

)
p. Therefore, if δ is

a constant close to 0, then Theorem 12 states that if (k − 1)pδ2 = 6(1 + ε) ln n, then the

21

probability that there exists a set of k vertices that is significantly heavier than the average
weight is small. In this case, then, randomly choosing any group of k vertices will give nearly
an optimal solution on average. Thus, assuming that p is a constant, this problem is not
very interesting when k is significantly greater than log n.

Now that we have a result describing what happens when k is large, we turn towards exam-
ining what happens when k is small. Specifically, we ask how small k has to be to guarantee
that Greedy Augment (d-Greedy Augment with d = 1) always finds a complete sub-
graph of k vertices on Gn,p. Towards this goal, we prove the following result.

Theorem 13. Let E be the event that Greedy Augment returns a set of vertices with
less than

(
k
2

)
edges on Gn,p. Then for any constant ε > 0

pk′(n− k′)− ln k′ ≥ ε ln n⇒ Pr (E) ≤ n−ε

where k′ = k − 1.

Proof. Let Ei be the event that on the ith augmenting step, Greedy Augment chooses a
vertex v′ in which there is at least one vertex v ∈ T such that the edge {v′, v} does not exist.
Thus E =

⋃k
i=1 Ei, and we have

Pr (E) ≤
k∑

i=1

Pr (Ei) =
k∑

i=2

Pr (Ei) ≤ (k − 1) Pr (Ek)

where the equality follows because Pr (E1) is clearly 0, and the last inequality follows because
Pr (E1) ≤ . . . ≤ Pr (Ek). Event Ek happens exactly when for all vertices v′ ∈ V − T , there
exists a vertex v ∈ T such that the edge {v, v′} is not in the graph. The probability of this
occuring for a single vertex v′ is 1 − pk−1. Since there are n − k + 1 vertices in V − T , we
therefore have that Pr (Ek) = (1− pk−1)n−k+1. Substituting k′ for k − 1, we have

Pr (E) ≤ k′(1− pk′)n−k′ ≤ k′e−pk′ (n−k′)

= n
ln k′−pk′ (n−k′)

ln n

But by assumption, we have

ln k′ − pk′(n− k′)

ln n
≤ ln k′ − (ln k′ + ε ln n)

ln n
= −ε

which proves the claim.

Note that the smaller k is, the larger the value of pk′(n−k′)− ln k is. Therefore, this theorem
shows that if k is small enough relative to n, then the probability of Greedy Augment
not finding a full clique on k vertices approaches 0 as n gets large.

22

To conclude this section, we describe one more result of a slightly different nature that
is motivated by the following line of reasoning. Suppose we have a random graph model
in which we know that there is at least one set of k “seed” vertices that is completely
connected. Then a reasonable strategy for attempting to find this clique would be to choose
a large number of sets of r vertices (where r ≤ k) and proceed as Greedy Augment would
from these sets, returning the best solution found. The hope with this strategy is that at
least one of these sets of vertices would be completely contained in the seed clique and that
with high probability Greedy Augment would perform optimally for this set of vertices
by returning the seed clique itself.

A first step in asking whether such a strategy is feasible is to ask how big r must be to
guarantee that with high probability Greedy Augment, when started with a set R of r
vertices inside of a completely connected set K of k vertices, returns the set K itself. Along
these lines, we show in the next theorem that if r is large enough relative to n and k then the
probability that Greedy Augment will return a set of k vertices other than K approaches
0 as n approaches infinity. To do this, we first formally define the random graph model we
use.

Definition 2. Let Hn,p,K be a random graph on n vertices where K is a k-element subset of
the vertices and each edge e is chosen independently with probability pe, where

pe =

{
1 if both endpoints of e are in K
p otherwise

We now show the following.

Theorem 14. On random graph Hn,p,K, suppose that Greedy Augment is started with
the set of r vertices R chosen randomly from K. Let E be the event that Greedy Augment
returns a set of vertices different than K. Then for any constant ε > 0,

r = log 1
p
(nε(n− k)(k − r))⇒ Pr (E) ≤ n−ε

Proof. For r + 1 ≤ i ≤ k, let Ei be the event that Greedy Augment chooses a vertex
v′ 6∈ K to be the next vertex to add when there are currently i − 1 vertices in T . Then
E =

⋃k
i=r+1 Ei, and therefore

Pr (E) ≤
k∑

i=r+1

Pr (Ei) ≤ (k − r) Pr (Er+1)

where the last inequality follows because Pr (Er+1) ≥ . . . ≥ Pr (Ek). For Er+1 to occur, there
must be at least one vertex v′ ∈ V −K such that v′ has an edge to every vertex in R. By
a union bound, the probability of this is no greater than (n− k)pr. Therefore, we have that
Pr (E) ≤ (n− k)(k − r)pr. But by assumption, (n− k)(k − r) = n−ε/pr. Thus, we conclude
that Pr (E) ≤ n−ε.

23

4. EXPERIMENTAL RESULTS

In this section, we experimentally test the performance of d-Greedy Augment and related
heuristics. At first we focus on the following four algorithms, although we will eventually
introduce a new algorithm called Smart Augment.

• Random. This algorithm chooses a random subset of k vertices and returns the result.
We include this in our experiments to make sure that our less trivial heuristics perform
better than this.

• Greedy Augment. This algorithm is d-Greedy Augment with d = 1. Therefore
it has a running time of O(kn) and it guarantees an approximation ratio 2.

• 2-Greedy Augment. This algorithm is d-Greedy Augment with d = 2. It has a
running time of O(kn2) and it guarantees an approximation ratio of 2− 2

k
. Although

this is asymptotically equivalent to the ratio provided by Greedy Augment, we test
it experimentally because it is conceivable that it performs significantly better than
Greedy Augment in practice.

• All-Greedy Augment. For each vertex in v ∈ V , this algorithm runs Greedy
Augment with the set T initialized with v. (Recall that in the standard version of
Greedy Augment, the set T is initialized with an arbitrary vertex.) All-Greedy
Augment returns the best solution found this way. Since All-Greedy Augment
runs the algorithm Greedy Augment n times, the running time of All-Greedy
Augment is O(kn2).

As we will see, the performance of these algorithms in practice seems to be much better than
the approximation ratio of 2 might suggest, even on graphs whose edge weights do not obey
the triangle inequality. In the experiements we run, even Greedy Augment does not ever
return a solution whose value is worse than 3

4
times the optimal solution. Therefore, because

of its speed, Greedy Augment provides an attractive option for the task of approximately
solving remote-clique. Nevertheless, it is not clear from our analyses earlier in this thesis
how the more complicated algorithms 2-Greedy Augment and All-Greedy Augment
perform relative to Greedy Augment. It is one of the goals of this section to answer which
of these algorithms provides a better option if a quadratic time algorithm is acceptable for
a given application.

Finding a random graph model to test these algorithms experimentally is a challenge. The
straightforward model to choose would be Gn,p, but there are several problems with this
choice. First, the edge weights in Gn,p do not obey the triangle inequality. Although this
does not make the problem any easier, it would be nice if at least one model that we test the
algorithms on is consistent with the model from Section 2. We could make the edges satisfy
the triangle inequality if we added 1 to the weight of every edge in Gn,p (that is, if we made
it so that every edge has weight either 1 or 2 and the probability that an edge has weight 2
is p). However, even using this model has problems. As shown by Theorem 12, for values of
k much larger than log n, the weight of an optimal solution is not significantly greater than
that of a random solution. Thus, this graph model does not seem to be a useful benchmark
for comparing our algorithms. Even for small values of k, there is still no efficient way to
determine the value of the optimal solution in Gn,p.

To rectify these problems, we introduce a heavy “seed clique” in the random graph, as in
the model Hn,p,K of Section 3. In other words, we select k vertices at random and set the
weight of edges between these vertices to be 2. However, this introduces the new problem
that the vertices in the seed clique have a much higher degree than vertices outside of the
seed clique (where the degree of a vertex v in a weighted graph is defined to be the sum of
the weights of the edges incident to v), and thus the problem becomes easy to solve by the
trivial algorithm that chooses the k vertices with highest degree. We can fix this by reducing
the expected weight of edges that have one endpoint in the seed clique and the other outside
of the seed clique. That is, if we lower the probability that such an edge has weight 2 by
the right amount, then we can force the expected degree of all the vertices to be the same.
Along these lines, we define the graph model An,p,k formally as follows.

Definition 3. Random graph An,p,k is the graph on n vertices created as follows. First, a
set of k random vertices is chosen to be the seed clique. Then, the weights of the edges are
chosen independently to be either 1 or 2 such that the probabibility pe that edge e has a weight
of 2 is

pe =

1 if both endpoints of e are in the seed clique
p if both endpoints of e are outside the seed clique
(n−k−1)(1+p)−2(k−1)

n−2k
− 1 otherwise

If ((n − k − 1)(1 + p) − 2(k − 1))/(n − 2k) − 1 < 0 (which may happen for large k), then
An,p,k is not defined. Note that an optimal solution in An,p,k has an average edge weight of
2. Also, since the expected weight of edge e is 1 + pe, the expected degree of a vertex in the
seed clique is

(k− 1) · 2 + (n− k) · (n− k − 1)(1 + p)− 2(k − 1)

n− 2k
=

(n− k − 1)(n− k)(1 + p)− 2k(k − 1)

n− 2k

whereas the expected degree of a vertex outside of the seed clique is

(n−k−1)(1+p)+k · (n− k − 1)(1 + p)− 2(k − 1)

n− 2k
=

(n− k − 1)(n− k)(1 + p)− 2k(k − 1)

n− 2k

25

Fig. 4.1: Performance of the algorithms on A1000,0.5,k.

Thus we see that, as desired, the expected degree of every vertex is the same.

We tested the performance of the four algorithms listed above on instances of An,p,k. We set
n to be 1000 and p to be 1

2
. We varied k from 2 to 256. For each value of k, we created 100

random instances of An,p,k and ran all four algorithms on these instances. In Figure 4.1, we
plot the average performance ratio from these experiments (the value of the optimal solution,
k(k − 1), divided by the value of the solution returned by the algorithm) as a function of k.

All three of our heuristics (Greedy Augment, 2-Greedy Augment, and All-Greedy
Augment) not only have performance ratios significantly better than 2, but, more impor-
tantly, they also perform significantly better than Random. Perhaps surprisingly, Greedy
Augment and 2-Greedy Augment perform nearly identically on this graph model. All-
Greedy Augment, on the other hand, performs much better than both Greedy Aug-
ment and 2-Greedy Augment, particularly as k gets large.

Although from this experiment it appears that All-Greedy Augment is the best algo-
rithm, it is possible that its good performance is an artifact of the graph model An,p,k because
as k gets larger, it becomes increasingly unlikely that an edge with one endpoint in the seed
clique and one outside has weight 2. For example, in A1000,0.5,256, the probability of such
an edge having weight 2 is approximately 0.24. Therefore, as k gets larger, it becomes less
likely that if Greedy Augment begins with T completely contained in the heavy seed
clique (which All-Greedy Augment is guaranteed to do in at least k iterations) it will
ever choose a vertex outside of the seed clique.

To help ensure that the results from this experiment were based on more than the particular
characteristics of the graph model An,p,k, we tested the performance of the algorithms on

26

Fig. 4.2: Performance of the algorithms on B1000,0.75,k.

another graph model, called Bn,q,k. In this graph model, the weights of the edges are chosen
independently and uniformly to be between 0 and 1. Again, we provide a heavy seed clique
to make sure that the weight of an optimal solution is significantly greater than that of a
random solution. A natural choice for the weight of the edges in the optimal solution would
be 1, but this has the potential to make the problem too easy, since the weight of every edge
in the optimal solution would be much higher than the average edge weight. Instead, we set
the weight of the edges in the heavy clique to be q, for some 0.5 < q < 1. Doing this means
that we no longer know that the seed clique is in fact an optimal solution (and chances are
that it will not be for small values of k). Since there is no good way to determine what the
exact value of the optimal solution is, it is not possible to measure the exact performance
ratio for this model. However, if we test the algorithms on the same instances of Bn,q,k, then
we can still measure their relative performance by the value of the solution that they return.
We define graph model Bn,q,k more formally as follows.

Definition 4. Random graph Bn,q,k is the graph on n vertices created as follows. First, k ver-
tices are chosen randomly to be in the seed clique. The weight of each edge with both vertices
in the seed clique is set to q, and the weight of the remaining edges is chosen independently
and uniformly to be between 0 and 1.

Note that the edge weights in Bn,q,k do not satisfy the triangle inequality, but this should
not make the model any easier for an algorithm.

The results of a test of our algorithms on graph model Bn,q,k is shown in Figure 4.2. Again,
we set n to be 1000 and varied k from 2 to 256. We set q to be 0.75. For each value
of k, we created 100 instances of Bn,q,k and tested each of the four algorithms on these

27

instances. In Figure 4.2, which shows the average value of the solution returned by each of
the algorithms, we see results that are mostly similar to those of our previous experiment.
The major difference between these results and the results for model An,p,k is that the gain in
performance of All-Greedy Augment is not as pronounced for high values of k, although
this is not unexpected given our previous discussion. However, just as in our previous
experiment, all three of our heuristics perform significantly better than Random. Greedy
Augment and 2-Greedy Augment perform nearly identically, whereas All-Greedy
Augment consistently performs better than the other two algorithms.

Although All-Greedy Augment outperforms both Greedy Augment and 2-Greedy
Augment, it is still a fairly simple algorithm, and it is natural to wonder if there is a
“smarter” algorithm that performs better in practice than All-Greedy Augment. For the
remainder of this section, we describe an algorithm called Smart Augment that attempts
to be more careful than All-Greedy Augment about which vertices to choose.

One of the advantages of All-Greedy Augment seems to be that once Greedy Aug-
ment starts with a set of vertices inside an optimal solution, it is unlikely to add vertices
outside of the optimal solution since the edge weights in the optimal solution will be much
larger than the edge weights to vertices outside of the optimal solution. However, when T is
still a small set, this algorithm can be “fooled” into choosing vertices outside of the optimal
solution if they have a heavier weight to T than the vertices in the optimal solution. Smart
Augment attempts to rectify this problem by first choosing a set of vertices that are likely
to be optimal, namely, the union of T and the set of k− |T | vertices in V − T whose weight
to T is highest (call this set T ′). Then Smart Augment chooses a vertex that maximizes
the average edge weight to T ∪ T ′ (instead of just the edge weight to T , as All-Greedy

Fig. 4.3: Performance of Smart Augment on A500,0.5,k.

28

Fig. 4.4: Performance of Smart Augment on B500,0.75,k.

Augment does). The idea behind this is that any random fluctuations that may make
a vertex outside of the optimal solution look locally attractive will be “smoothed out” by
choosing vertices based on their weight to a large set of vertices that is likely to overlap
significantly with the optimal solution. As in All-Greedy Augment, Smart Augment
iterates through each vertex v ∈ V and initializes the set T with v. It then returns the best
solution obtained. Thus we are guaranteed that in at least k iterations, the set T is initially
contained within an optimal solution.

An implementation of Smart Augment is listed as Algorithm 2. Each iteration of the while
loop takes O(kn) time to compute the set T ′ and to determine the weight of each vertex to
the set T ∪ T ′. Since there are O(k) iterations of the while loop for each starting vertex v0,
the time for each iteration of the outer for loop is O(k2n). Thus the overall running time of
Smart Augment is O(k2n2).

We tested the performance of Smart Augment on graph models An,p,k and Bn,q,k and
compared it to the performance of All-Greedy Augment on the same graph instances.
Because of the slower running time of Smart Augment (even without the extra factor of
k the constants hidden by the asymptotic notation seem to be much higher), we set n to
be 500 and only tested values of k up to 64. We also used only 20 problem instances for
each value of k. The results of the performance of Smart Augment on graph model An,p,k

are plotted in Figure 4.3, and the results of the performance of Smart Augment on graph
model Bn,q,k are plotted in Figure 4.4. For graph model An,p,k, the two algorithms performed
nearly identically, except for intermediate values of k, when Smart Augment performed
better. For graph model Bn,q,k, the results were similar. Smart Augment performed only
slightly worse than All-Greedy Augment for small values of k, and for larger values of

29

Algorithm 2 Smart Augment

BestSolutionValue← −∞
for all v0 ∈ V do

SolutionValue← 0
T ← {v0}
LastAdded← v0

while |T | < k do
for all v ∈ V − T do

aug(v)← aug(v) + w(LastAdded, v)
end for
Find T ′, the set of the k − |T | vertices v′ in V − T with the highest values of aug(v′)
BestVertexValue← −∞
for all v ∈ V − T do

VertexValue← 0
for all v′ ∈ T ∪ T ′ do

VertexValue← VertexValue + w(v, v′)
end for
if v ∈ T ′ then

VertexValue← VertexValue/(k − 1)
else

VertexValue← VertexValue/k
end if
if VertexValue > BestVertexValue then

BestVertexValue← VertexValue
BestVertex← v

end if
end for
T ← T ∪ {BestVertex}
SolutionValue← SolutionValue + aug(BestVertex)
LastAdded← BestVertex

end while
if SolutionValue > BestSolutionValue then

BestSolutionValue← SolutionValue
BestSolution← T

end if
end for
return BestSolution

30

k, it performed a little bit better.

To summarize the results of this section, our experiments show that all of the heuristics
based on d-Greedy Augment performed very well for the two random graph models we
examined. Greedy Augment has the natural advantage of being a very fast algorithm that
returns a solution that is guaranteed to be no worse than 1

2
optimal and which in practice

seems to do much better. However, if it is possible to spend more time, then the algorithm
All-Greedy Augment is the natural choice because it seems to perform significantly
better than Greedy Augment in practice with a slowdown of only a factor of n in running
time. The algorithm 2-Greedy Augment should be avoided since it has the same running
time as All-Greedy Augment, but performs the same as Greedy Augment. Finally,
the algorithm Smart Augment performs slightly better than All-Greedy Augment,
although it is much slower. Therefore it should only be used if efficiency is of little concern.

31

5. CONCLUSION

In this thesis, we have used the technique of factor-revealing linear programs to prove that
d-Greedy Augment achieves an approximation ratio of (2k−2)/(k+d−2). This improves
the best-known approximation ratio of Greedy Augment from 4 to 2. Since we have shown
that there are an infinite number of problem instances in which d-Greedy Augment returns
a solution no better than (k + d− 2)/(2k − 2) ·OPT , we have completely characterized the
worst-case performance of d-Greedy Augment.

We also examined how d-Greedy Augment performs in practice, both by providing some
theoretical results regarding the expected performance of Greedy Augment on random
graphs and by experiementally analyzing the behavior of d-Greedy Augment and related
heuristics. Our experiments show that All-Greedy Augment, a simple modification of
Greedy Augment, seems to perform better in practice than Greedy Augment. There-
fore, if O(kn2) time complexity is acceptable for a given application, All-Greedy Aug-
ment provides an attractive choice for the algorithm designer.

There are several remaining open questions. First, there are no hardness of approximation
results for the remote-clique problem. An interesting direction for future research would be
to either find an algorithm that achieves an approximation ratio asymptotically better than
2 or to show that this is imposssible if P 6= NP . There are also unanswered questions from
our analysis of the expected performance of Greedy Augment on random graphs. Each
of the three theorems in Section 3 establishes a condition that is sufficient to guarantee with
high probability that a property of Greedy Augment on a random graph holds. However,
the theorems do not show that these conditions are necessary to guarantee these properties.
Establishing such necessary conditions, and thereby determining whether our functions are
true threshhold functions, is another interesting direction for future research.

BIBLIOGRAPHY

[1] Béla Bollobás. Random Graphs. Academic Press, London, 1985.

[2] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In OSDI ’99:
Proceedings of the third symposium on Operating systems design and implementation,
pages 173–186, Berkeley, CA, USA, 1999. USENIX Association.

[3] Barun Chandra and Magnus M. Halldorsson. Approximation algorithms for dispersion
problems. J. Algorithms, 38(2):438–465, 2001.

[4] U. Feige, D. Peleg, and G. Kortsarz. The dense k-subgraph problem. Algorithmica,
29(3):410–421, 2001.

[5] R. Hassin, S. Rubinstein, and A. Tamir. An approximation algorithm for maximum
dispersion. Operations Research Letters, 21:133–137, 1997.

[6] Kamal Jain, Mohammad Mahdian, Evangelos Markakis, Amin Saberi, and Vijay V.
Vazirani. Greedy facility location algorithms analyzed using dual fitting with factor-
revealing LP. J. ACM, 50(6):795–824, 2003.

[7] M.J. Kuby. Programming models for facility dispersion: the p-dispersion and maxisum
dispersion problems. Geographical Analysis, 19(4):315–329, 1987.

[8] Jiri Matousek and Jaroslav Nesetril. Invitation to Discrete Mathematics. Oxford Uni-
versity Press, Oxford, 1998.

[9] Aranyak Mehta, Amin Saberi, Umesh Vazirani, and Vijay Vazirani. Adwords and gen-
eralized on-line matching. In FOCS ’05: Proceedings of the 46th Annual IEEE Sym-
posium on Foundations of Computer Science, pages 264–273, Washington, DC, USA,
2005. IEEE Computer Society.

[10] Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized Algo-
rithms and Probabilistic Analysis. Cambridge University Press, New York, 2005.

[11] S. S. Ravi, D. J. Rosencrantz, and G. K. Tayi. Heuristic and special case algorithms for
dispersion problems. Operations Research, 42:299–310, 1994.

	The Remote-Clique Problem Revisited
	Recommended Citation
	The Remote-Clique Problem Revisited

	tmp.1418149444.pdf.Ctzq4

