Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-80-03

1980-11-01

An Abstract Model of Unstratified Database System

Takayuki D. Kimura, Jerome R. Cox Jr., and Will D. Gillett

A semantic data model is introduced with the following capabilities: (1) Abstraction
mechanisms for aggregation, generalization and classification, (2) Unstratified control of the
database content, (3) Refined control of intentional and extensional information, and (4)
Extensive semantic consistency checking. The basic features of the model are illustrated
through a scenario of interactions between the user and the database system (using the
proposed model) for constructing a simple database on technical publications.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

6‘ Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

Kimura, Takayuki D.; Cox, Jerome R. Jr.; and Gillett, Will D., "An Abstract Model of Unstratified Database
System" Report Number: WUCS-80-03 (1980). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/881

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F881&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F881&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F881&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F881&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F881&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F881&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F881&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/881?utm_source=openscholarship.wustl.edu%2Fcse_research%2F881&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

An Abstract Model of an Unstratified
Database System

T. D. Kimura, J. R. Cox, Jr., and W. D, Gillett

WUCS-80-03

November 1980

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

Saint Louis, MO 63130-4899

Presented at the Fourteenth Hawaii International Conference on System
Sciences, January 1981

This work was supported in part by the NCHSR under Grant HS03792 and the
NIH under Grant RR(00396

ADS. Section 5 presents a smmmary of the capa-
bilities present in ADS.

2. AN OVERVIEW OF ADS

We consider a database system as a commmicacion
mechanism for a community of users to shave rheir
views of reality. Like a community bulletin
board, the users register in the database system
their judgements about reality, expecting other
users to retrieve them; users also can retract old
judgements. The users interact with the database
system through a symbolism (or a language) whose
syntax and semantics are well-defined and known

to every user in the community. The depository of
the symbols that represent collectively the his-
tory of user judgements is called the database.
The rest of the database system that manages the
content of database, we call the database manager
(not a human marager). (Figure 1).

command — . g = response

Manager
{¢)

Database
InformationState)

Figure 1: Database System (as a state machine)

ADS models, at a low conceptual level, a database
as a collection of symbols and a database system
as a language processor (like a compiler). HNote
again that, from our point of view, a database

is a linguistic entity for which there exists
assoclated rules of syntax and semantics. There-
fore, a database design is, in a very broad sense,
a language design.

Because of its primary importance in the design
and usage of a database system, the language
through which the users communicate their judge-
ments and queries to the database system is called
here the base language (B). The imporzance of the
bagse language is highlighted by the fact that the
users can communicate with each other {through the
database system) only the part of reality which

is describable by the base language.

Conceptually speaking, a database is a collection
of expressions from B, each representing a user
judgement. We call a symbolic representation of
a judgement a declaration, i.e., a database is a
collection of declarations.

The term 'judgement' often connotes an intelligent
decision making process, but we use the term here
in a broader sense to mean any process capable of
extracting knowledge about realicy. (One person's
trivial fact may be a result of another person's
deep judgement.)}

2.1 CONSISTENCY CHECKING

The database manager, the manager in short, manages
the information in the database. Insertion, up-
dating and retrieval of the contents of the data-
base is carried out only through the manager. It
is important to understand that the users share
(access) the knowledge in the database through the
manager, but the manager does not have the capa-
bility of validating the knowledge, i.e., it can-
not confirm or deny whether a particular judgement
represents reality or not, This issue is entirely
outside the database system capability. From this
point of view, the database manager is literally a
manager.

The manager, however, has the capability of en-
forcing the policy set by the users and registered
in the database abour what information should be
allowed in the database and what form it must ctake.
These policy statements must be In the database as
a particular type of user judgement expressed in
the language B (i.e., as declarations). There is
a0 significant difference between policy statements
enforced by the manager and ocher statements repre-
senting other user judgements, i.e., the policy
enforced by the manager is virtually under the
user’'s control. One of the typical policies that
the manager enforces is to check the congistency

of a new judgement with old ones already in the
database. What types of consistency the manager
should check (and to what extent) must be provided
by the user. In other words, the definition of the
consistency of the information in the database is
the user's responsibility, but enforcing the con=-
siscency by rejecting any inconsistent judgements
is the manager's responsibilicy.

2.2 UNSTRATIFIED CONTROL

Special attention must be paid to the fact that
the specification of the rules about the contents
of the database (e.g., consistency rules) are con-
tained in the database itself as one of many other
user judgements., This capabilicy of mixing a meta-
language (general judgements or schema) and an
object language (specific judgements or data)
within a database provides the database system
with a capability analogous to the stored-program
capability of von Neumann machines. The manager's
capability to interpret an expression in B either
as a representation of a user judgement or as an
uninterpreted symbol of B (depending upon the
context), is called 'unstratified control' or

'unstracified interpretation'.7 Obviously, humans
have guch a capability: consider our interpre-
tation of the word "Smith" in:

(1} Smith is an Anglo-Saxon.

(2) Smith is an Anglo-Saxon name.
Unstratified control also occurs in certain auto=-
mated systems. For example, the programming

language system LISP has the same capability: an
S-expression can be interpreted (by EVALQUOTE) as

AN ABSTRACT MODEL OF AN UNSTRATIFIED DATABASE SYSTEM

Takayuki D. Kimura, Jerome R. Cox, Jr. and Will Gillett

Department of Computer Science
Washington University, St. Louis, Missouri 63130

Abstract

A semantic data model is tatroduced with the following capabilities:

{1} Abstraction mechanisms for aggregation, generalization and

classification,

(2) Unscratified control of the database content,

(3) Refined control of intensional and extensional information, and

(4) Extensive semantic comsistency checking.

The basic features of the model are illustrated through a scenario of
interactions between the user and the database system (using the proposed
model) for constructing a simple database on technical publications.

1. INTRODUCTION

The purpose of this paper is to introduce a data
model with anticipated applications to medicine. The
presentation of the model will be informal, and we
will present the unique capabilities of the model
primarily through examples. The formal definition

of the model is given elsewhere.l

The Abstract Database System (ADS) is a formal
model of a database system that uses a common
language for storing and describing data and its
schemata and for communicating with the user.

ADS views its darabase as a linguistic entity,
i.e., as a set of symbols arranged to comnstituce
a language which is interpretable by ADS.

ADS is concilse, self-defining, and supplies the
capability to enforce semantic constraints, as
defined by the user. These constraints can be
either local (i.e., properties of a database ob-
ject) or global (i.e., relationships between
different database objects). Since ADS is a
formal model, it is not intended to be used

This work was supported in part by che National
Center for Health Services Research under Grant
H503792 and the National Institutes of Health
under Granc RROQ396.

directly by a human user, but instead, constitutes
a basic semantic model for developing secondary

or vernacular models.2
1.1 BACKGROUND AND CAPABILITIES OF ADS

Our work on ADS has been guided by a specifie

applicacion area, medical informacion sys:ems.3
In such an environment, any database must be
capable of withstanding multiple technological and
administrative eras. As the nation's morbidity
continues to shift frowm acute to chronic disease
(e.g., diabetes, hypertension), the duration of a
patient’s illness will constitute a greater frac-
tion of the patient’'s lifetime. This is a major
reason for our concentrating on a formal model,
capable of being implemented in many different
technologies.

As doctors, nurses, and other nen—technical per-
sonnel (with respect to computers, at least) be-
come more intimately associated with automated
databases, the mode by which they interact with

the database must be flexible enough to meet each
user's need. Doctors and administrators may choose
to 'view' virtually the same information in en~-
tirely different ways. Thus, there must be some
mechanism to translate from one view of information
to another (suppressing some information in the
process.)

Since the extension of a name may be a part of the
descriptor of another name, as we will discuss
later, a change in the extension of one name may
cause a change in the intension of another name.
Therefore, an extensional judgemeant on one name
may require a chain of consistency checking due

to possible changes in the intension of other
names.

This is the essence of consistency checking in ADS
between extensional judgements and intensional
ones. As far as the consistency is concerned,
what should be checked is inate to ADS, i.e., all
extensional judgements.

There is ancther kind of checking capability ADS
provides at the level of a transaction: the

user controls what should be checked based on the
user's view of the world. The mechanism is an
assertion. When an a-name is defined with an
associated a~-descriptor, there is no commitment,
on the user's part, as to the logical value of
the a-descriptor. That is to say, ¢(a-descriptor)
may be T at one point in time, and F at another.
However, once an extensiocnal judgement "a-pame:=T"
is entered, then '¢(a-name)=T' must hold invar-
iently thereafcer.

The set of a-names whose extensions are defined,
i.e., extensionally observed valid assertions, is
called the constraint set. The validity of the
constraint set is checked by ADS after each trans-
action, (not after each judgement). If the
validity is violaced by a transaction, then the
transaction will not be accepted by ADS, even if
ali of the judgements in the transaction are
acceptable to ADS., WNote chat a transaction is a
sequence of judgements, intensional and exten-
sional, and the constraints may be violated
inside the cramsaction, but not after the last
judgement. Also, note that the constraint set
itgself may be modified during the transactiom.

2,12 SUMMARY

In summary, ADS consists of the interprecation
rule (¢} and the information stacte. The infor-
mation stacte is a collection of user defined
names of objects along with the two attributes,
intension (u) and extension (t), associated

with each name, Namely, an information struckure
is a set of triplets:

(name, u{name), t(name)).

ADS accepts sequentially a transaction or a query.
A transaction transforms the information state
from one 'legal' state (i.e., a state in which
the consistency and the constraints are valid) to
another. A query does not change the information
stare.

3. A SIMPLE DATABASE ON PUBLICATIONS

The objective of this section is to describe,
informally, a simple and hypothetical slice of
reality dealing with publicarions of techmnical
papers. This will be used in a subsequent section.

to help the reader better understand how ADS
represents a users view of reality. First, we
will describe the structure of reality (i.e.,
intensional information), and then describe the
individual known facts of reality (i.e., exten-
sional information). Finally, we list queries
that an intelligent database system should be able
to answer about this slice of reality.

3.1 STRUCTURE OF REALITY (A VIEW OF REALITY)

A scholarly work is uniquely identified by its
title and authors, where the authors can be any
number of schoelars; each scholar is identified

by a surname. No scholar can have two scholastic
works with the same title,

There are different types of publications (media)
in which works can be published, e¢.g., journals
and monographs. Some works may be published in
more than one publication, and some may not be
published at all. Regardless of the medium, each

* publication must have at least two attributes, a

ticle and a publication year.

A journal is identified by its title, volume num-
ber, and publication year. If two journals share
the same title, then their volume numbers must be
consistent with their publication years, i.e., a
smaller volume number implies an earlier publi-
cation year, and vice versa.

A monograph is identified by its title, editors,
and publication year. HNo two monographs can have
the same title. In general, no two publicaticmns
of different media can have the same title. For
example, there cannot be a journal and a mono-
graph with the same ticle.

A published work is identified by its work, the
publication in which it appears, and the page
numbers of the work within the publication. No
two published works within the same publication
can have overlapping page numbers. One published
work can be referenced-by another. The year of
the publication of the referenced work can be no
greater than the year of the publication of the
work referencing it. This relation (referenced-
by) has a transitive closure, relevant-te, which
can be directly derived from it.

3.2 FACTS OF THE REALITY

The extensiocnal information to be represented in
this simple database will be presented in tabular
form. There are four known works, as shown in
Table 1. Note that the labels to the left will
be used to identify these works in other tables.
There are two known journals and two known mono-
graphs as shown in Tables 2 and 3, respectively.
There are five known published works, as shown in
Table 4. Note that one work is published twice.
There are three known references, as shown in
Table 5,

2.6 B-EXPRESSIONS

Any expression is a B-expression 1f it is an atomic
symbol {any alphanumeric word without blank) or a
list of other B-expressions; i.e., B expressions
are exactly the same as the lists in LISP.

We denote the null list by < >, and a non-null list
by <ay,85y.-.8 >, where the a, can be any other

list. We assume two operations on B-expressions:

(1) concatenation:
*
<a1,a2,...,an> <b1,bz,...,bm>

A <a1.a2,...an,bl,b2,...,bn>

(2) component_of:
2 in <al,az,...,an>

iff a=a; for some i,
2.7 NAMES

Any atomic symbol starting with an alphabetic
character is a2 name. Some of the names can be
used as variables, but there is no syntactic
difference between variables and other names.

2.8 ADS OBJECTS

From the ADS user's point of view, the world con-
sists of three categories of objects (what can be
named and described by B-expressions):

(1) Assertioms: a logical value either
truth or falsehcod, (denoted by T and
F). The following logical operations
are agsumed to be available: A(and),
V (or), => (implies), ~(not), <=> (if
and only if).

(2) Elements: any member of B-expressions.
The following operations and relacions
are defined on elements: *(concaten-
ation), in (component of), = (idencity).

(3} Sets: any member of the power set of
B-expressions, i.e., a set of B-ex-
pressiona. The membership relation (e}
is the only relation defined on sets.

It is important to note here that (1) a set of
sets is not an object in ADS, (2) no set oper-
ations are available in ADS, and (3) all B-ex-
pressions, including N, D and C, are elements;
that is to say, the set of names (M), the set of
descriptors (D) and the set of commands (C) are

set objects of ADS.
2.9 DESCRIPTORS (D)

The user can name any object provided that the
user can deseribe the object. A description of
an object is called a descriptor (a-descriptors
for assertions, e-descriptors for elements, and
s—descriptors for sets). Each descripter is
encoded (by a fixed algorithm in ADS) and then
represented by a B-expression (an element). In

2 similar way, LISP encodes a function specifi-
cation (in the M-expression) and then represents
it by an S-expression.

The syntax and the interpretation rule for the
descriptors are fixed for ADS, but the semantics
of a descriptor changes as the semantics of its
components changes. The interpretation rule is
called phi (%) and it corresponds to the function
EVALQUOTE in LISP.

Any part of a descriptor which denotes an object
under ¢ is called an expression (a-expressicn,
e-expression, or s-expression, for assertionm,
element, or set, respectively). As a set object,
a-expressions are denoted by A_EXP.

The language for the descriptor is a first-order
longuage in which variables range over the ele-
ments, not the sets or the assertions. A re-
cursive definition of a name 1s allowed; i.e.,
the name associated with a descriptor may appear
in the descriptor itself.

We call a list of variable declarations a form.
For example, <a:T,,<b:T ,c:T3>> i3 a form in which
three variables a%e deciared.

In the following definitions, we will use, for the
sake of brevity, "x:T" as a representative of an
arbitrary form, and p(x) will represent an arbi-
trary a-expression.

The syntax (in D) of descriptors is as follows.

(1) a-descriptors: (V¥ form) (a-expression) -
{ 3 form) (a-expression)

Example:
(¥x:T)(p(x}): for all x in T, p(x) is true,
(Ix:Ty(p(x)): for some x in T, p(x) is true.

(2) e-descriptors: (1 form){a-expression)

Example:
{(1x:T)(p(x)): an x in T such that p(x) is true.

Note:
If for no element p{x) is true, the descriptor
denotes nothing, and if there is more than one
element satisfying p(x), any one (non-deter-
ministically chosen one) can be denoted by the

descriptor, In logic {(e.g., Quinelﬁ), the
expression (1 x) P{x) is called a 'definite
description’, and its meaning {s ‘the object
x such that P(x) is true’.

{3) s-descriptors: (i form) (a-expression)

Example:
(Ax:T) {p(x)): che set of all x in T such that
pi{x) is true.

Note: 17
For the A-notation, see Church.
Note that all variables declared in the "Form"
have a scope which axitends until the end of the
descriptor in which the 'form" appears.

At this point, Table 4 of the database is complete-
ly instanciated.

Referenced_by == (40)
(A<x: tT(Published-Work),
vyt T{Published-Work)>)
(x 4 yA
¥y.publication.year 5 x.publication.year)
+accept
Referenced_by « <NDS_SP, ADT AI>, (al)*
<TT_AJM, NDS_SP>,
<NSP_SP, NDS_SP>
»accept

(40) defines the relation Referenced by, and (41)
makes specific references known. At this point,
Tabie 5 of the database is completely instanciated.
Note that although "Referenced by" is defined to
be a set name, it is used as a relation.

Up to this pointy the scenario has been developing
the structural and factual content of the data-
base described in Section 3. The remainder of the
gscenario shows how derived information can be ob-
tained.

Relevant_to == (42)
(k<pwl: t{Published Work),

pw2: t(Publighed Work)>)
{pwl = pw2y
(3pw: T (Published Work))
(<pwl,pw> ¢ t(Referenced by)
<pw,pw2> ¢ Relevant_to))

+accept

(42) defines another relacion on publications.
Note the recursive nature of the descriptor. The
relacion Relevant to is, in fact, the transitive
¢losure of the relation Referenced by.

? <TT_AJM, ADT_AI> ¢ Relevant_to (43)
*Yes

? <NSP_SP, NDS_SP> ¢ Relevant_to (44)
+Yes

? <NDS SP, NSP_SP> ¢ Relevant_to (45)
+No

In (43), TT_AJM is relevant to ADT_AI because
TT_ATM is referenced by NDS_SP and NDS_SP is
referenced by ADT AI. In (44), NSP_SP is directly
referenced by NDS SP,
? (1<form: FORM>) (Jany: ANY) (46)
(u(Journal) =
<"A", form,any>)
+ <title: Phrase,
volume: Number,
year: Number>

In (46), we ask a question about the schema of
Journal; what 1s its form? This is possible only
because we know the encoding mechanism used in
ADS. Given more detailed information about the
encoding mechanism, other information can be ex-
tracted from a name's descriptor. For instance,
the list of attributes (which is essentially what
(46) extracts) can be obtained, or the list of

all set names present in the a_expression can be
cbtained.

Given a database in this form, what kinds of things
can be done? Obviously, new relations can be con=-
structed from the information available. For
instance, 2 relation stating which scholars refer-
ence other scholars can be defined (using "Refer-
enced _by"). The structure of any database name
can be extracted (as exemplified by (46)). HNote
that this can be done even if there are no specif-
ic ipstances of the particular kind of object
currently in che database; this capabilicy is
available because the Intension and extension are
separated in ADS, and the intension is available
{through the descriptor) once the name has been
declared.

5. SUMMARY
5.1 CAPABILITIES QF ADS

ADS has a unique cowbination of features.,
these are:

Among

o Database objects are agsertions, elements
and sets of elements. These three object
types supply a flexible framework in which
to state information, classify that infor-
mation, and enforce constraints on the
structure and organization of that infor-
mation.

¢ ADS conceptually separates intensional
and extensional information. It constrains
extensional information to conform to in-
tensional information. Intensional and
extensional information are maintained in
the same database.

o Descriptors are used to state intemsional
information. Recursive use of names is
available within the descriptors. Descrip-
tors are encoded and stored as elements.
Thus, they can be manipulated and trans-
formed like any other element.

e Quantifiers ('for all' and 'there exists')
are gvailable within descriptora ro state
complex relationships between database ob—
jects.

¢ Unstratified control is used in ADS. Com~-
mands, data, and data descriprors all are
encoded in a common language. Although
sets of sets are not primary ADS database
objects, this construct can be 'simulated'
by the use of unstratified control.

These features of ADS give it the following prop-
erties:

e Variant records and view tranalation are
easily and naturally handled by ADS.

e Both local and global constraints are
easily stated and enforced.

(start < end) is not satisfied. This example
illustrates how a record structure with imposed
semantic conditions can be represented in ADS.

Scholar == (Ax: Surname) (3)
saccept

Scholar + "Russell", "Dahl" (4)
+accept

? t(Scholar) {5

+{Russell, Dahl}

The set. name ''Scholar" is defined as a name of
the set of objects of the type Surname; two known
members of Scholar are ldencified, and accepted
by the system hecause their 'type' is correct

and no condition is to be checked because the
a_expression is 'null'; the known members of
Scholar are then retrieved in {5).

Scholar_list == (6)
(r<head: t(Scholar}> * (tail: ANY))
(cail = < > y
tail ¢ Scholar_list A n(head in tail))
“+accept
? <"Russell", "Dahl"> e Scholar_list (7)
. +Yes
? <"Dijkstra"> e Scholar list . (8)
-No
? <"Russell”> ¢ t(Scholar_list) (9)
“No
? <"Russell", "Russell™> ¢ Scholar_list (10)
“No
Scholar+"Dijkstra","Hoare","Tompa","Marsh"(11)
~+accept
7<"Dahl",”"Dijkscra", Hoare"> e Scholar_list(12)
+Yesg

In (6), the set name "Scholar_list" is defined to
contain lists of known members of Scholar such
that no scholar appears more than once in the
lise. <"Russell", "Dahl'> matches the descriptor
and 13 thus a possible member of Scholar_lisc
(Note (5)), <"Dijkstra"> cannct be a member of
Scholar_ list because "Dijkscra" 1s not currently
a known member of Scholar. <"Russell"> is not a
known member of Scholar list because there are
currently no known members of Scholar_lisc, i.e.,
t{Scholar_list) is the empty sec. <"Russell",
"Russell"> ig not a possible member of Scholar_
list because "Russell" appears twice. HNote that
(6) demonstrates the ADS capability of recursive
type definitions, and dynamic record structure.

In declaration (13) below, the a_expression states
that any new work cannot have an author that is
also an author of a known member of Work with the
same title. The declaration (13) demonstrates
ADS's capability of specifying complex consis~
tency conditions.

Work == (i<ticle: Phrase, (13)

authors: Scholar list>)
(¢ work: t(Work))
(% author: 7(Scholar)}}
((work.citle=ticleAauthor in authors)=>

an(author in work.authors))
+accept

TT==(1x: Work) (x=<"Theory of Types", (14)
<"Rugsell”>>)

“accept

In (14), the element name "“TIT" is defined to be a
name of a work and is intensionally 'bound' to a
specific work which is an element. Since the
descriptor of TT describes one and only one object,
it can be thought of and used as a constant (simi-
lar to the CONST construct of Pascal). Similarly,
the element names "NDS", "ADT" and "NSP" can be
defined (see Table 1), Line {14) illustrates the
usage of (t x) notation.
Work«TT, NDS, ADT, NSP (15)
+accept

In (15), four works are declared to be known mem-—
bers of Work. At this point, all of Table 1 is
instanciated in the database.

In descriptor (16}, the a_expression sctates that
any new journal with the same title as any known
member of Journal must have its volume number and
year of publicacion ordered in an appropriate
manner.
Journal==(A<title: Phrase, (16)
volume: Number,
year: Number>)
¢x: t{Journal))
(x.title = gitle =>
(x.volume<volume <=> x.year<year))
+accept
AJM==(1x: Journal) (x= (17
<"American Journal of Mathematics",42,1936>)

+accept

Al==(1x: Journal) (x= (18)

<"Acta Informatica™,13,1980>)

+accept

Journal « AJM (19)
“accept

Work + AI (20$)
. Teject

Two journals (AJM and AI) are instanciated (as
constants), and one (ATM) 1s declared to be a
known member of Journal. 1In (20}, AL is declared
to be a known member of Work. However, the mean-
ing of AI does not satisfy the descriptor for
Work, and the command is rejected.

Monograph == (A<title: Phrase {21)
editors: Schelar_lisc,
yvear: Number>)

(ymono: t(Monograph))
(mono.title # ticle)
“accept
SP == (yx: Monograph) (x= (22)
<"Structured Programming',
<"Dahl","Dijkstra","Hoare'>,1972>)

“+accept
LK == (1x: Monograph) (x= (23)
<"Logic and Knowledge",
<"Marsh">, 1968>)
+accept
Monogravh + SP (24)

+accept

Title Authors
TT:| "Theory of Types" "Russell”
NDS:| "Notes on Data Structure' "Hoare"
ADT:! "Abstract Data Type” "Tompa'
NSP:] "Notes on Structured "pijkstra"
Programming"
Taila l: Xoown Works
Ticle Volume Pub.Date
AJM:] "American Journal of Mach."| 42 1936
Af:] "acta Informatica" 13 1980
Tabl= 2: <Znown Journats
Title Edirors Pub, Date
S§P:| "Structured ""Dahl", 1972
(1]
Programming "Dijkstra",
"Hoare"
LK:| "Logic and Knowledge" | "Marsh” 1968
"aple 3. snown Honograpns
Work Publication Pages
TT-AJM: TT ATM 230, 265
NDS-SP: NDS SP 83, 174
ADT=-AL: ADT AL 205, 224
NSP=SP: NsP SP I, 82
TT-LK: TT LK 59, 102
Table 4: wroown Published Works

Referent Referrer
NDS=-SP ADT=-AL
TT-AIM NDS=-SP
NSP-5P NDS=SP

Table 5: Known References

3.3 QUERIES

What kinds of queries should an intelligent data-
base system, in general, be able to answer about
such a database? Below we simply list some
queries we believe should be answerable by an
intelligent system.

(1) Is Russell an author of Principia
Mathematica?

(2) 1Is he the only author?

(3) TIs there any work published in more than
one publication?

{4) Does Dijkstra 'know' about any works
published by Hoare?

(5) Which scholar publishes more than any
other scholar?

(6) What are the currently known publication
types?

(7) What are potential publication types?

(8) 1Is "technical report" a potential publi-
cation type?

(9) If I wanted to define a new publication
type, say "book", what attributes would
it have to have?

(10) What are the attributes of a Journal?

(11) Given a specific published work, what
are all the published works that can be
found through a chain of references
starting at the original published work?

4. ADS REPRESENTATION OF THE PUBLICATION DATABASE

The following scenaric is presented to show how
the database described in the third section might
be developed in ADS. We have 'borrowed' certain
notations from Pascal, such as variable declara-
tions and attribute selectors, to use as a part of
D (the meta-language for the descriptors). Besides
the system defined names, the following set names
are assumed to be predefined:

Number: a positive integer

Phrase: any sequence of characters

Surname: the last name of a person

We will paraphrase 1(S), the extension of S5, as
"known S", and S itself, or che incension of §, as
"possible 5". We prefix the response from ADS to
the user by '-'.

Pages == {A<start: Number, end: Number>} (1)
{start £ end)
+accept
? <13,5> ¢ Pages . (2)
-Ho

In (1), "Pages" is declared to be a set name whose
elements are lists of two numbers: the first must
be no greater than the second. (This will be used
to specify the page numbers in "Publication').

In (2), <13,5> is compared with the descriptor of
Pages to see if it is a possible member of the set.
The answer is "No" because the a_expression

In (21}, the a_expression states that no new mono-
graph can have the same title as any known member
of Monograph. Two monographs are instanciated
(as constants), and one is declared to be a known
member of Monograph. Note that in "Journal" and
"Monograph" two attributes, "title: Phrase" and
"year: Number", appear.
Medium == (25}
(Atype name: t(SNAME})
(u(type_name)w<"A" attrib:FORM,any:A_EXP>
=> ("gitle: Phrase" in attribA
"year: Number" in attrib))
~accepe
(26)
~accept

Medium+"Journal", "Monograph"

In (25), the set name '"Medium" is declared. A
member of ifedium can be any known set name (i.e.,
t(SNAME)}) such that its deseriptor requires any
element associated with it to have a title and a
publication year. 'Journal" and "™Monograph" are
two' such set names, and in (26) they are declared
to be known members of Medium. Conceptually,
Medium is a realization of the 'clasaificacion'

concept of Smi:h.6 Medium will be used as a
generic 'access function' to obtain the specific
publication associated with the known members of
Medium. For instance, ir would be possible to
define a new ser name "BOOK" whose 'form' contains
a 'title' and a 'year'. Then "BOOK" could be de-
clared to be a known member of Medium.

This capabilicy of ADS to treat a 'meta-expression'
(an expression to specify a set of expressions,
for example an s-descriptor) as an element ex~
pression, is one of the most important and unigue
ones compared with other data models. Thus, (25)
illustrates ADS's capability of unstratified
control.

Publications = (Apub: ANY) 27
Qteype: t(Medium)}
{pub ¢ v(type))
“accept
Publication Name == (iname: Phrase) (28)

(Jpub: Publicacion)
{(name = pub.citle)
+accept

In (27), we state that a member of Publication can
be anything that is a known member of any known
member of Medium {(see (29) and (30) below). In

Smith and Smith's :erminologys, Publication is a
generalization of Journal and Moncgraph (i.e., the
result of ser union operation). In (28), the set
name “Publication Name" allows the user to 'select'
or 'strip off' the title of members of Publication.

? AJM ¢ Publication (29)
+Yes

? Al e Publication 3
+Ho

? Publication_Name (31)

+{"American Journal of
Math.", "Structured Pro-
gramming"}

Note that AJM is a member of Publication since it
is a known member of Journal. AI is not a member
of Publication since it is not a knovm member of

Journal or Monograph.

Journal + AI (32)
“accept

Monograph + LE (33)
Saccept

? AL £ Publication (34)
+Yes

As we add Al to be a known member of Journal (in
(32)), it becomes a member of Publication. At
this point, Tables 2 and 3 of the database are
completely instanciated.

In (353), an assertion is made that states thatr no
two known members of Publication derived from
different known members of Medium can share the
same title. For instance, no member of Journal
¢can have the same title as any member of Monograph.
In (36), the assertion is declared to be true.
Disjoint_Publication_titleg== (35)
(¥«: t(Medium))
¥y: t(Medium))
(x ¢y = (Yu: t(x)) Wv: 1(y))
(u.title # v.tricle))
+accept
Disjoint_Publicacion_titles:=True
+accept

(36)

Judgement (36) would be rejected if there already
are known members of Journal and Monograph with

the same title. Since (36) 1s accepted, the asser-
tion becomes a constraint and will be tested after
each transaction.

In deseriptor (37), the a_expression states that
no two known members of Published Work can have
the same publication and cverlapping pages.

Published Worke= (37)
(d<work: t(ork},
publication: Publication,
pages: Pages>)
{ypw: t(Published Work))
{publication # pw.publicationV
pages.end < pw.pages.starty
pw.pages.end < pages.start)
+accept
TT_AJM==(1 x: Published Work) (38)
(x=<TT,AM,<230,265>>)
+accept

In (38), the element name "TT_AJM" is defined to be
the name of a member of Published Work whose work
is TT, publication is AJM, and pages are 230 to
265. Similarly, the element names '"NDS_SP",
"“ADT_AT", "NSP_SP", and "TIT_LK" can be defined
(see Table 4).

Published Work « TT_AJM, NDS_SP, ADT aI, (39
NSP_SP, TI_LK

~accept

a specification of a function or as an argument
depending on where the $~-expression occurs.

This capability of "unstratified control' is one
of the most important and unique properties of
ADS. Due to this capability, ADS can incorporate
in che database not only a schema of the data,
but alse the schema of the schema, and so on.
dlse, it can provide a capability of multi-level
abstraction of reality.

2.3 INTENSION AND EXTENSION

There are two kinds of judgements users make in
general about reality: intensional judgements
and extensional ones. Roughly speaking, inten=-
gional judgements represents 'general facts' such
as "every journal has a publication date", "no
two books have the same title" and "a brother of
the father is :r. uncle." On the other hand, ex-
tensional judgements represent 'specific facts'
such as "CACM Vol. 22 was published in 1979,"
'""adnic and Donovan wrote the book Operating
Systems, Tsichritis and Bernstein wrote the book
Operating Systems", and "Joe is a brother of my
facher." Another way of differentiating the two
kinds of judgements is that the former represents
a user's view of how the world is supposad to be,
and cthe latter represents a user's view of how
the world actuaily is. The database manager, a
part of ADS, checks the consistency between
extensional judgements and related intensional
judgements automatically i.e,, without user
specification. For example, if the intensional
judgement "all pants are made of cotton" is
entered into the database, then, subsequently,
the extensional judgement "my pants are made of
orlon" will be rejected by the manager because
the extensional judgement is not consiscent with
the previous intensional one. At this point, the
user has two options. One is te cancel the in-
tensional judgement and enter a new one. The
other is to change the extensional judgement.

2.4 ADS AS A STATE MACHINE

ADS models an information system at a low concep—
tual level, and it is not intended that any human
user will interface with ADS directly. Thus, the
relationship batwveen the information system and
ADS might be :epicted as in Figure 2.

User Information
System
Interface
Lot e System b ADS

Figure 2: User and ADS

In the remainder of this paper, the term 'user’,
when applied to ADS, rafers to the interface
system, and not a human user.

The specific model of ADS described in this paper
is 2 single user wodel, and can be thought of as
a state machine (Figure 1).

A single sequence of commands is input to ADS, and
a single sequence of responses is ourput from ADS.
Comsands may be either update commands or query

commands.

As a stace machine, ADS has an interpretation
function ¢, which has two inputs, the command and
the current information state, and two outputs,
the response to the user and the new information
state, If the command is a query command, then
the appropriate information is extracted and be-
comes the response to the user; the new infor-
mation state is the old (current) information
state. If the command is an update commaud, then
a potential information state is created anrd
checked for consistency. If the potential infor-
mation state is consistent, then it becomes the
new information state and the response 'accept' is
produced to the user; otherwise, the new infor-
mation state is the old (current) information
state and the response to the user is 'reject’.
The information state is what is commonly thought
of as the database itself.

2.5 BASE LANGUAGE

In ADS the base language is used primarily to
represent a user judgement, which involves objects,
names of objects, descriptions of objects and the
relationships among the objects (e.g., a certain
symbol object is a member of a certain symbol
class).

Some expressions in B are also used to interface
with the database manager prescribing what oper-
ation the manager is requested to perform on the
database.

Thus, B i{s particioned into several blocks basad
on its usage by the users and the database manager;
Names (NCB) for naming objects, Descriptors (DC B)
for describing objects, and Commands (CCB) for
prescribing actions for the manager.

In the formal definition of ADSl, we adopt the set
of binary crees (any symbolic representation there-
of) as the base language due to its structural
gimplicity. 1In this paper, however, we will intro-
duce different meta-languages for B, N, D, C,
denoted by B, N, D, C, for ease of understanding,
and we assume that there exists an encoding
function from these meta-languages to the binary
trees. Also, for the sake of brevity, we assume
that the encoding of D inte the binary tree is
defined in two steps; i.e., D is encoded into B
first, cthen B is encoded into B. Hereafter, we
deal only with the meta-languages B, N, C and D
and the encoding of D into B.

The encoding of an s-descriptor inte a B-ex-
pression is (here, [] denotes the encoding
function):

[{\ form)(a-expression)}] &
<"A", [form], [a~expresaion]>

Among others, the following special objects are
given system names:

(1) ANY: the ser of all B-expresaions
(2) SNAME: che set of set names

(3) FORM: the set of forms (variable
declaracion sequences; encoded in B)

(4) A _EXP: che set of a-expressions (en-
coded in B)

2.10 DECLARATIONS (JUDGEMENTS)
The user interacts with ADS through either a trans-

action or a guery. A transaction is a sequence of
declarations (representations of judgements).

The user enters an intensional judgement into ADS
whenever a new specific abstraction 1s made about
the world, i.e., whenever the user recognizes (in
conception) the significance of a particular way
of viewing a particular object. The user repre-
sents that view by constructing a descriptor for
the object, and further, assigning a name to the
object. Intensional judgements in ADS are repre-
sented by 'definitions', and the syntax of a
definition is:

name==descriptor

which 13 in an encoded B-expression form when ADS
accepts the judgement. ADS rejects the above
definition (intensional judgement) when the name
is already defined.

The effect of entering an intensional judgement
into ADS is the establishment of an association
between the name and the descriptor. The associ-
ation is called mu{u). After the definition, the
following holds:

u(name) = descriptor,
and the name becomes an a-name if the deseriptor

is an a-descriptor, and similarly for e-name and
s-name.

The object denoted by the descriptor, i.e., ¢ {des-
criptor), is called in ADS the intension of the
name, and we denote it by ¢(u(name)). <&(u{name))
denotes what 'possible' objects can be associated
with the name.

The user enters an extensional judgement inco ADS
whenever a specific observation is made about the
world.

Associated with each name, there exists an object
called the extension of the name, which

represents the accumulation of cthe extensional
judgements so far entered into the system. We
denote the association between a name and its
extension by tau{(r), and let t(name) represent
the extension of the name. It denotes what
"known' object fs currently associated with the
name.

Initially, when the name is defined, the following
hold:

t{a-name) = undefined,

T(e-name) = undefined,

7{s-name) = the empty set.
Every extensional judgement involves one name
whose extension i3 changed if the judgement is
accepted by ADS. The syntax and semantics of an
extensional judgement are as follows:

(1) a-name:=T(or F}
If $(u(a-name)) = T {or F) and t(a-name) =
udefined then assign T (or F) to

t(a=-name).

(2) e-name:=e-expression
If ¢(u(e-name)) = ¢(e-expression) and
t(e—name) = undefined then assign

#({e-expression) to t(e-name).

{3) s-name + e-expression
If ¢(e-expression)cé(u(s-name) then
include ¢(e-expression) as a member

of t(s=name).

The user enters a query to ADS for retrieving an

object from the database. Symtactically, a query
consists of a question mark followed by a single

expression.

The effect of the query is a display of the deno-
tation of the expression to the user.

2.11 CONSISTENCY AND CONSTRAINTS

The conditional part of each operation in the
above definitions is a part of the consistency
condition every extensional judgement must satisfy
in order that ADS may accept the judgemenc. an
individual extensional judgement will be accepted
by ADS if and only if its syntax is correct, every
name in the judgement is defined, every expression
has a denotation, and the following consistency
condition is satisfied.

Consistency Condition:

For each user defined name,
T(a-name) = ${u(a-name)} or undefined,
t(e-name) = ¢(u(e-name)) or undefined,

t{s-name) € ¢(u(s-name)).

ADS has very flexible data object types. Variant
récords and view translations are easily and
naturally hapdled by ADS. Recursive definitions
of database objects are possible, and quantifiers
(for all and there exists) are available for
stating complex relationships among objects.
Through these features, ADS supports the three
abstraction mechanisws proposed by Smith & Smith
for a general purpose database system: aggre-
4,5,6

gation, generalization and classification.

ADS uses the same language for stating intensional
(counceptual or schematic) and extensiomal (factual
ot specific) information. Thus, it is posaible
for the user to be his/her own database manager.

The property of unstratified cnn:rol7 allows the
user to define any level of abstraction desired;
for example, by introducing a schema for schemata.
Researchers may Erequently change their view of
the structure of reality as they sift through the
pieces of a puzzle that will fit together only
when apprehended in the correct way. Such re-
searchers must have the capability to restructure
the way in which the dactabase interprets the in-
formation being manipulated.

The ability to perform semantic checking on infor-
mation is undeniably importanc. Even in rela-
tively static databases, such as admission records
of patients, editing of input data is required.
Humans are inherently error prone, and they need
help to confirm their stacements of fact. A user
should not be allowed to enter the value 155 (i.e.,
the patient's weight) For the patient's tempera-
ture. The problem is even more acute in a dynamic
situation where the user may be thinking of a
previously defined conceptual framework. Without
the guideposts of semantic constraints in a com-
plex, ever-changing structure, the researcher will
inevitably stumble or get lost.

ADS supplies ctwo mechanisms for applying semantic
constraincs. The first is the manner in which
intensional and extensional informationm is coor-
dinated. Not only does ADS separate intensional
information from extensional informatiom, but it
requires all extensional information to conform
to the intensional information. The second is
that ADS allows- the user to state global asser-
tions that constrain relacionships among differ-
ent database objects.

The medical field is not a static one. The per-
ception of a disease, its cause, treatment, and
cure changes dynamically with time. Any database
system that claims to address these concepts must
be able to adapt to changes and refinements. ADS,
we believe, will supply a framework capable of
meeting these needs.

1.2 OTHER SEMANTIC DATA MODELS
ADS has the following primary capabilities.
(1) Abstraction mechanism:

aggregation, generalization, and classi-
fication,

(2) Extensive semantic consistency checking,

(3) Explicit separation of the concepts of
intension and extension, combined with
the integration of the incensionmal and
exténsional databases, and

(4) Unstratified control over language inter-
pretation.

There are other known models that possess some of
the above capabilities, but none have all of the

capabilities, as far as we know. Smith & Smj.thB

incorporate abstraction mechanisms and semantic
consistency checking which is similar to type
checking in a programming lanugage. However, the
notions of intensional and extensional databases
are not dealt with directly, not to mention the
pessible integration of the two within a single
database.

A similar observation can be made on the extended

relational model of Codd.g It has more semantic
consistency checking capabilities and more abstrac-
tion capabilities (although only up to 3 levels)

than the original relational modelln, but again, no
effort is made to separate and integrate inten-
sional and extensicnal informatjon at the user's
level,

The integration of intension and extension has been
more successfully done in logical database models

such as Minker's.ll However, the abstraction
mechanisms are not its main concern, and che un~
stracified control capability is not present.

There are two known data models which have the
capability of unstratified control; Abr:l.al12 and
Laine.13 In particular, Abrial's is an extensive,
powerful and valuable data model worth careful
study, not only because of its unstracified comtrol
but also because of its inclusion of a 'process'
concept as a part of a database model. HNeverthe-
less, it fails to recognize the importance of the
intension/extension dichotomy in the database de-

sign.

Some recently proposed data models, such as those

of Roussopoulosl4 and Mylopoulosls, treat

the notions of intension, extension, and abstrac-
tion as primary concepts in the database design;
but again they lack the generality of uniform
trearment of the meta and object databases that
can be facilitated by ungtratified control.

1.3 CONTENT OF THE PAPER

Section 2 presents an overview of ADS and states
what types of database objects are available, how
they are defined, and how they are manipulated.
Section } presents a narrative of a sample data-
base to be modeled. Section 4 presents a scenario
of how this sample database might be modeled in

	An Abstract Model of Unstratified Database System
	Recommended Citation

	tmp.1465590965.pdf._5tnH

