
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2013-28

2013

Kernel Density Metric Learning Kernel Density Metric Learning

Yujie He, Wenlin Chen, and Yixin Chen

This paper introduces a supervised metric learning algorithm, called kernel density metric

learning (KDML), which is easy to use and provides nonlinear, probability-based distance

measures. KDML constructs a direct nonlinear mapping from the original input space into a

feature space based on kernel density estimation. The nonlinear mapping in KDML embodies

established distance measures between probability density functions, and leads to correct

classification on datasets for which linear metric learning methods would fail. Existing metric

learning algorithms, such as large margin nearest neighbors (LMNN), can then be applied to the

KDML features to learn a Mahalanobis distance. We also... Read complete abstract on page 2. Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
He, Yujie; Chen, Wenlin; and Chen, Yixin, "Kernel Density Metric Learning" Report Number: WUCSE-2013-28
(2013). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/103

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Washington University St. Louis: Open Scholarship

https://core.ac.uk/display/233234584?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F103&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F103&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F103&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F103&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F103&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F103&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F103&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/103?utm_source=openscholarship.wustl.edu%2Fcse_research%2F103&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/103

Kernel Density Metric Learning Kernel Density Metric Learning

Yujie He, Wenlin Chen, and Yixin Chen

Complete Abstract: Complete Abstract:

This paper introduces a supervised metric learning algorithm, called kernel density metric learning
(KDML), which is easy to use and provides nonlinear, probability-based distance measures. KDML
constructs a direct nonlinear mapping from the original input space into a feature space based on kernel
density estimation. The nonlinear mapping in KDML embodies established distance measures between
probability density functions, and leads to correct classification on datasets for which linear metric
learning methods would fail. Existing metric learning algorithms, such as large margin nearest neighbors
(LMNN), can then be applied to the KDML features to learn a Mahalanobis distance. We also propose an
integrated optimization algorithm that learns not only the Mahalanobis matrix but also kernel bandwidths,
the only hyper-parameters in the nonlinear mapping. KDML can naturally handle not only numerical
features, but also categorical ones, which is rarely found in previous metric learning algorithms. Extensive
experimental results on various benchmark datasets show that KDML significantly improves existing
metric learning algorithms in terms of kNN classification accuracy.

https://openscholarship.wustl.edu/cse_research/103?utm_source=openscholarship.wustl.edu%2Fcse_research%2F103&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/103?utm_source=openscholarship.wustl.edu%2Fcse_research%2F103&utm_medium=PDF&utm_campaign=PDFCoverPages

Department of Computer Science & Engineering

2013-28

Kernel Density Metric Learning

Authors: Yujie He, Wenlin Chen, Yixin Chen

Corresponding Author: wenlinchen@wustl.edu

Abstract: This paper introduces a supervised metric learning algorithm, called kernel density metric learning
(KDML), which is easy to use and provides nonlinear, probability-based distance measures. KDML constructs a
direct nonlinear mapping from the original input space into a feature space based on kernel density estimation.
The nonlinear mapping in KDML embodies established distance measures between probability density
functions, and leads to correct classification on datasets for which linear metric learning methods would fail.
Existing metric learning algorithms, such as large margin nearest neighbors (LMNN), can then be applied to the
KDML features to learn a Mahalanobis distance. We also propose an integrated optimization algorithm that
learns not only the Mahalanobis matrix but also kernel bandwidths, the only hyper-parameters in the nonlinear
mapping. KDML can naturally handle not only numerical features, but also categorical ones, which is rarely
found in previous metric learning algorithms. Extensive experimental results on various benchmark datasets
show that KDML significantly improves existing metric learning algorithms in terms of kNN classification
accuracy.

Type of Report: Other

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160

Kernel Density Metric Learning

Yujie He
Department of Computer
Science and Engineering
Washington University, St.

Louis, USA
yujie.he@wustl.edu

Wenlin Chen
Department of Computer
Science and Engineering
Washington University, St.

Louis, USA
wenlinchen@wustl.edu

Yixin Chen
Department of Computer
Science and Engineering
Washington University, St.

Louis, USA
chen@cse.wustl.edu

ABSTRACT
This paper introduces a supervised metric learning algo-
rithm, called kernel density metric learning (KDML), which
is easy to use and provides nonlinear, probability-based dis-
tance measures. KDML constructs a direct nonlinear map-
ping from the original input space into a feature space based
on kernel density estimation. The nonlinear mapping in
KDML embodies established distance measures between prob-
ability density functions, and leads to correct classification
on datasets for which linear metric learning methods would
fail. Existing metric learning algorithms, such as large mar-
gin nearest neighbors (LMNN), can then be applied to the
KDML features to learn a Mahalanobis distance. We also
propose an integrated optimization algorithm that learns not
only the Mahalanobis matrix but also kernel bandwidths,
the only hyper-parameters in the nonlinear mapping. KDML
can naturally handle not only numerical features, but also
categorical ones, which is rarely found in previous metric
learning algorithms. Extensive experimental results on var-
ious benchmark datasets show that KDML significantly im-
proves existing metric learning algorithms in terms of kNN
classification accuracy.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications-
Data Mining; I.2.6 [Artificial Intelligence]: Learning

General Terms
Experimentation, Algorithms, Performance

Keywords
metric learning; k-nearest neighbor classification; kernel den-
sity estimation

1. INTRODUCTION
Learning a distance metric is a fundamental problem in

machine learning and data mining. In many applications,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’13, August 11-14, 2013 in Chicago
Copyright 2013 ACM 978-1-4503-1462-6 /13/08 ...$15.00.

once we have defined a good distance or similarity measure
between all pairs of data points, the data mining tasks would
become trivial. For example, with a perfect distance metric,
the k-nearest neighbor (kNN) algorithm can achieve perfect
classification. As a result, ever since metric learning is pro-
posed by Xing et al. [24], there has been extensive research
in this area [5, 10, 11, 21, 22]. These new methods greatly
improved the performance of many metric-based algorithms
and gained lots of popularity.

There are several basic desirable properties for any met-
ric learning algorithm: 1) it must reflect the true distance
or similarity between data samples; 2) it needs to be flexi-
ble to support different learning settings and data types; 3)
it should be able to generalize to out-of-sample data; 4) it
should be easy to use and does not require extensive param-
eter tuning. Few existing algorithms can satisfy all these
requirements.

A vast majority of existing methods are based on a linear
transformation. Namely, they learn a Mahalanobis distance
between two data points xi, xj ∈ RD in the form of

dL(xi,xj) =‖ L(xi − xj) ‖2, (1)

where ‖ · ‖2 is the ℓ2-norm and L ∈ RD×D is a matrix.
Therefore, L represents a linear transformation of the input
space, which corresponds to rotating and scaling the data
points. Many representative metric learning algorithms, such
as distance metric learning [24], large margin nearest neigh-
bors (LMNN) [22], information theoretic metric learning
(ITML) [5], neighborhood components analysis (NCA) [11],
and SEPAPH [17], are based on such linear transformation
and ℓ2 Euclidean distance.

A main reason for the popularity of linear metric learn-
ing is its good off-the-shelf usability. However, linear met-
ric learning has inherent limits on their mapping capability.
Nonlinear metric learning is more general and offers greater
separation ability in theory. For example, for the four points
in two classes in Figure 1.a), no linear metric learning meth-
ods can give correct kNN classification. For example, the lin-
ear transformation in Figure 1.c) only rotates and scales the
data, so does the LMNN mapping in Figure 1.d). We can see
that kNN classification on the mapped data points in Figure
1.c) and 1.d) still cannot separate the two classes correctly.
However, our nonlinear transformation (to be explained in
Section 6.1) can map the four points to the coordinates in
Figure 1.b), which enable correct kNN classification.

Nonlinear metric learning methods, although more expres-
sive, are far less popular than linear methods. Often, they
are not easy to use, since they require complex computa-

!"# ! $"# $ $"# ! !"#
!"#

!

$"#

$

$"#

!

!"#

!"# ! $"# $ $"# ! !"#
!"#

!

$"#

$

$"#

!

!"#

! " # " !
$

!

"

#

"

!

$

!"!# !"!$! !"!$!"!#
!"!#

!"!$

!

!"!$

!"!#

(a) (b)

(d)(c)

Figure 1: An toy example with four points in two

classes, marked in different shapes. a) shows the orig-

inal data; b) shows the data after our KDML mapping

(the two points in each class are very close to each other);

c) shows a random linear transformation; d) shows the

data after LMNN mapping.

tion, not only for coefficient training, but also for model
selection and hyper-parameter tuning. For example, kernel-
ization methods [3,7,12,21] are inherently limited by the size
of the kernel matrices. Neural network based methods [4] are
also very expensive. Furthermore, these nonlinear methods
often require tuning of many hyper-parameters. Their sensi-
tivity to the parameter tuning further hinders their off-the-
shelf usability, especially for unknown domains. Recently,
Kedem et al. proposed two nonlinear metric learning algo-
rithms χ2-LMNN and GB-LMNN [13]. χ2-LMNN still uses
the linear transformation in (1) but employs a non-Euclidean
distance. However, χ2-LMNN has rather limited scope: it
can only be applied when the input data are sampled from a
simplex SD = {x ∈ RD|x ≥ 0, xT 1 = 1}. GB-LMNN learns
a nonlinear mapping φ(x) which is an ensemble over a num-
ber of regression trees with different heights. GB-LMNN
applies gradient boosting to learn the nonlinear mapping in
a function space.

In this paper, we propose a new metric learning framework
called kernel density metric learning (KDML). It uses
kernel density regression to nonlinearly map each attribute
to a new feature space. The distance is then defined as the
Euclidean distance in the new space. Although we focus on
integrating KDML with LMNN in this paper, this nonlinear
metric learning framework is general and can be used to
support many other metric learning algorithms such as NCA
and ITML.

There are several salient advantages of the KDML ap-
proach. 1) It embodies excellent nonlinear distance mea-
sures with a sound probabilistic explanation. In fact, the
Euclidean distance in the mapped feature space corresponds
to established distance measures between probability den-
sity functions. As a result, such nonlinear mapping allows
us to correctly classify datasets that are notoriously difficult
to tackle by linear metric learning methods. 2) Compared

to kernel-based nonlinear metric learning methods, KDML
is easier to use and offers good off-the-shelf usability. In
fact, end users do not need to tune any parameter in KDML
since we can automatically learn its hyper-parameters using
gradient descent. Moreover, KDML can be used as a pre-
processing blackbox to map features and be integrated with
any supervised metric learning algorithm. Thus, it allows us
to leverage the extensive development on efficient and scal-
able linear metric learning methods. 3) Unlike most existing
metric learning methods which require the attributes to be
numerical, KDML is the first metric learning algorithm that
can naturally handle both numerical, categorical, and mixed
attributes in a unified fashion.

This paper contains the following contributions. We in-
troduce KDML, a nonlinear metric learning algorithm, by
proposing a novel nonlinear mapping which provides a good
similarity measure based on kernel density estimation. It
can naturally handle both numerical and categorical features
and offers good out-of-the-box usability. Further, we inte-
grate KDML with LMNN, and develop an optimization algo-
rithm to train the model in a holistic way. The algorithm au-
tomatically finds optimal bandwidths for a Nadaraya-Watson
kernel density estimator, which is absent in previous work.
Finally we conduct extensive evaluation on a collection of
datasets for multiway classification, with both numerical
and categorical features. We show that KDML improves
the performance of state-of-the-art metric learning methods
for kNN classification tasks.

The rest of this paper is organized as follows. Section
2 gives some preliminaries for metric learning. Section 3
presents the proposed KDML model, including its nonlin-
ear mapping and kernel density estimation. Section 4 com-
bines KDML with LMNN and presents the optimization
algorithm for learning the transformation matrix and ker-
nel bandwidths. Section 5 surveys related work on metric
learning. Section 6 presents experimental results of different
metric learning algorithms on various benchmark datasets.
Finally, Section 7 gives conclusions and discusses our future
work.

2. PRELIMINARIES
In this paper, we focus on a supervised classification set-

ting. The main ideas can also be extended to other settings
such as weakly supervised, semi-supervised, or unsupervised
ones.

We assume we are given a training data set

T = {(x1, y1), · · · , (xN , yN)} ∈ D1 × · · · × DD × C, (2)

where there the dth feature is defined in a domain Dd and
the label yi’s are from a set of C classes C = {1, · · · , C}.
Note that our setting is more general than typical previous
settings, because the domain Di can either be a numerical
set such as R or a categorical set.

We use large-margin nearest neighbors (LMNN) [22] as
the basic metric learning method to be integrated with KDML.
We briefly review the basics of LMNN here.

LMNN is a linear metric learning algorithm that is tai-
lored for kNN classification. For each new input x, kNN
classifies x by a majority vote from the k neighbors that
are closest to x under a certain distance metric. Therefore,
kNN classification relies heavily on the distance metric and
provides a most natural paradigm for evaluating various dis-
tance metric learning algorithms.

LMNN uses the linear transformation in (1). Equivalently,
it learns a Mahalanobis distance:

d2
M(xi,xj) = (xi − xj)

T M(xi − xj), (3)

where M = LT L is a positive semi-definite matrix.
In LMNN, for each input (xi, yi), it specifies a number of

target neighbors with the same label as yi. Normally these m
target neighbors are simply the m neighbors with the same
label that are closest to xi based on the Euclidean distance.
We use j ; i to denote that xj is a target neighbor of
xi, and yij ∈ {0, 1} to denote whether the labels yj and yi

match (yij = 1 when yi = yj).
The objective function of LMNN is to minimize

E(M) = (1− µ)
∑

i,j;i

d2
M(xi,xj) +

µ
∑

i,j;i,l

(1− yil)
[

1 + d2
M(xi, xj)− d2

M(xi, xl)
]

+

(4)

where [z]+ = max(0, z) is the standard hinge loss and µ ∈
(0, 1) is a positive constant controlling the relative weights
of the two terms. The first term minimizes the distance be-
tween each input and its target neighbors, and the second
term, incorporating the idea of a margin as in SVM, pe-
nalizes the distances between those mismatched points that
“invade” the neighborhood of each input.

It is shown that the optimization in (4) can be reformu-
lated into a semidefinite program (SDP) [22]. Weinberger
et al. have proposed a specialized subgradient descent algo-
rithm to solve this SDP, by exploiting the sparsity of active
invaders in the second term of (4). LMNN has received great
attention and popularity due to its good kNN classification
performance, efficiency, and easiness to use.

Another important work is the information-theoretic met-
ric learning (ITML) [5]. ITML also uses the linear trans-
formation in (3) but utilizes a one to one correspondence
between the Mahalanobis distance parameterized by M and
a multivariate Gaussian as

P (x;M) =
1

Z
exp(−1

2
d2
M(x,x0)), (5)

where Z is a normalization factor and x0 is the mean of the
Gaussian. Using this correspondence, the objective of ITML
is to minimize

KL(p(x;M0) ‖ p(x,M)) =

∫

p(x;M0) ln
p(x;M0)

p(x;M)
dx,

where M0 is a fixed matrix such I or the inverse covariance
matrix. The intuition is to regularize M by minimizing the
Kullback-Leibler (KL) divergence [14] between the implied
distribution P (x;M) and a prior distribution.

3. THE KDML FRAMEWORK
In this section, we propose the KDML framework for non-

linear metric learning. We assume that we are given inputs
(x, y) ∈ D1 × · · · ×DD × C, where the dth feature is defined
in a domain Dd and the label y is from a set of C classes
C = {1, · · · , C}.

3.1 KDML feature mapping

Under the KDML framework, we propose two kinds of
transformation for each input (x, y).

Density features. For each dimension d = 1, · · · , D and
any xd ∈ Dd, there exists a conditional probability density
function

Pd(c, xd) = P (y = c|xd), c = 1, · · · , C. (6)

We use Pd(xd) to denote the vector [Pd(1, xd), · · · , Pd(C, xd)].
In this transformation, each input is transformed into a

vector

φP (x) = [P1(x1); · · · ; PD(xD)], (7)

which is a concatenation of all the D probability density
vectors.

An alternative is to use the square roots of the probabili-
ties.

Sd(c, xd) =
√

P (y = c|xd), c = 1, · · · , C, (8)

which leads to a corresponding feature vector φS(x).

Entropy features. For each dimension d = 1, · · · , D and
any xd ∈ Dd, we compute the logarithm of the density

Ed(c, xd) = lnP (y = c|xd), c = 1, · · · , C. (9)

Let Ed(xd) denote the vector [xEd(1, xd), · · · , Ed(C, xd)].
In this mapping, each input is transformed into a vector

φE(x) = [E1(x1); · · · ; ED(xD)], (10)

which is a concatenation of all the entropy vectors.

In KDML, we choose a feature mapping from φP , φS , and
φE and name it φ. We may also include the original vari-
ables in the feature vector to make it strictly more general
than linear mapping. It then employs an existing linear met-
ric learning method to learn a linear transformation Lφ(x)
which gives rise to a Mahalanobis distance in the mapped
feature space.

3.2 Implied distance measures
We now discuss the distance measures implied by using

the above KDML features. We can see that they all corre-
spond to some sound distance/similarity measures between
two probability density functions. As a result, in many cases,
the Euclidean distance in the feature space after mapping re-
flects a better distance measure than the Euclidean distance
in the original input space.

One way to view KDML is that it first transforms the
original input into a new space. In the new space, before
any metric learning, the similarity between two data points
are based on the Euclidean distance between their feature
vectors:

d2(xi, xj) = (φ(xi)− φ(xj))
T (φ(xi)− φ(xj)). (11)

In fact, since there are D dimensions, each data point
corresponds to D probability density functions (PDFs), each
with C possible values. That is, for an input xi, its PDF at
the dth dimension is

PDFi,d = [Pd(1, xi,d), · · · , Pd(C, xi,d)], (12)

where we use xi,d to denote the dth attribute of xi. The
distance in (11) can be viewed as the summation over the D

dimensions

d2(xi,xj) =
D

∑

d=1

diff(PDFi,d, PDFj,d), (13)

where diff() measures the distance between two PDFs over
the set C.

Distance or similarity measures between PDFs have been
extensively studied. A good survey of these measures can be
found in [2]. To justify the features in KDML, we examine
the underlying distance measures they imply.

When the density feature φS is used, considering two
points xi and xj , their Euclidean distance is

d2(xi,xj) = (φS(xi)− φS(xj))
T (φS(xi)− φS(xj))

=
D

∑

d=1

C
∑

c=1

[
√

Pd(c, xi,d)−
√

Pd(c, xj,d)]
2

Therefore, using φS features, the implied distance measure
between the PDFs is

diffS(PDFi,d, PDFj,d) =

C
∑

c=1

[
√

Pd(c, xi,d)−
√

Pd(c, xj,d)]
2.

The above equation is exactly the well-known squared-chord
PDF distance measure [8], which is also the square of the
Matusita distance measure [15]. Hence, the φS feature im-
plies the squared-chord and Matusita PDF distance mea-
sures.

When the density feature φP is used, considering two
points xi and xj , their Euclidean distance is

d2(xi,xj) = (φP (xi)− φP (xj))
T (φP (xi)− φP (xj))

=
D

∑

d=1

C
∑

c=1

[Pd(c, xi,d)− Pd(c, xj,d)]
2. (14)

We can see that, using φP features, the implied distance
measure between two PDFs is

diffP (PDFi,d, PDFj,d) =
C

∑

c=1

[Pd(c, xi,d)− Pd(c, xj,d)]
2. (15)

We can see that (15) is exactly the commonly used squared
Euclidean distance measure between two PDFs [2].

Furthermore, the well-known Squared χ2 PDF distance
measure [18] is

diffχ2(PDFi,d, PDFj,d) =

C
∑

c=1

[Pd(c, xi,d)− Pd(c, xj,d)]
2

Pd(c, xi,d) + Pd(c, xj,d)
(16)

Comparing (15) with (16), we can see that diffχ2 can be
obtained if we apply a linear transformation to φP (xi) and

φP (xi) (by dividing φP (d, c) by
√

Pd(c, xi,d) + Pd(c, xj,d))
and then use the Euclidean distance as the distance mea-
sure. In this sense, the metric learning is more general since
it learns a linear transformation M, in the entire space of
positive semi-definite matrices. Since M is learned under
the guidance of some external objectives, such as optimiz-
ing the kNN classification accuracy, we expect it to give
better metric for each specific data mining task than the
fixed transformation in the squared χ2 measure.

Finally, when the entropy feature φE is used, the Eu-
clidean distance between two points xi and xj is

d2(xi,xj) = (φE(xi)− φE(xj))
T (φE(xi)− φE(xj))

=
D

∑

d=1

C
∑

c=1

[ln Pd(c, xi,d)− lnPd(c, xj,d)]
2

=

D
∑

d=1

C
∑

c=1

[

ln
Pd(c, xi,d)

Pd(c, xj,d)

]2

(17)

Using φE features, the implied distance measure between
the PDFs is

diffE(PDFi,d, PDFj,d) =
C

∑

c=1

[

ln
Pd(c, xi,d)

Pd(c, xj,d)

]2

, (18)

which is not a known PDF distance measure to our knowl-
edge but embodies, under a linear transformation that can
be reflected in the Mahalanobis matrix M, the following
squared variant of KL divergence [14]

diffKL2(PDFi,d, PDFj,d) =

C
∑

c=1

Pd(c, xi,d)

[

ln
Pd(c, xi,d)

Pd(c, xj,d)

]2

In summary, the proposed features correspond to some
sound distance measures between two PDFs. We believe
that they usually give a more reasonable distance measure
than the original Euclidean distance. Performing metric
learning on these transformed features may allow us to im-
prove many learning algorithms.

3.3 Kernel density estimation for computing
features

We have proposed the feature mappings φP , φS, and φE

for KDML. Now we estimate the conditional probability
densities in these features. From (6), (8) and (9), all of
them require estimating P (y = c|xd), for each xd ∈ Dd and
c = 1, · · · , C. Once we have all the P (y = c|xd), those
features can be computed.

Given training data T = {xi, yi}, i = 1, · · · , N , We parti-
tion T into C subsets T1, · · · , TC , which contain data points
with labels y = 1, · · · , y = C, respectively.

To estimate p(y = c|xd), we distinguish the cases of cat-
egorical and numerical attributes. We use p̂(y = c|xd) to
denote the estimates.

Categorical attributes. If an attribute xd takes categor-
ical values, p(y = c|xd) can be estimated by the proportion
of samples with y = c among all the samples whose dth

attribute is xd. Thus, it can be computed using:

p̂(y = c|xd) =
|Tk

⋂

Txd
|

|Txd
| , c = 1, · · · , C (19)

where Txd
= {xi | xi,d = xd, i = 1, · · · , N} is the set of sam-

ples in T whose dth attribute is xd.

Numerical attributes. If an attribute xd takes numerical
values, we propose to use a Nadaraya-Watson type kernel
density regression to estimate p(y = k|xd), k = 0, 1.

According to the Nadaraya-Watson estimator [1, 16], we
have:

p̂(y = c|xd) =

∑

i∈Tc
K(

xd−xi,d

hd
)

∑N
i=1 K(

xd−xi,d

hd
)

(20)

where K(x) is a kernel function satisfying K(x) ≥ 0 and
∫

K(x)dx = 1, and hd > 0 is a parameter called the band-
width of the kernel density function. In this paper, we choose
the Gaussian kernel for K(x), namely,

K(x) =
1√
2π

exp(−x2

2
). (21)

We can thus compute the KDML features by substituting
the estimates in (19) and (20) into (6), (8), and (9). For
example, the entropy features for categorical and numerical
attributes are, respectively,

Ed(c, xd) = ln

[|Tc

⋂ Txd
|

|Txd
|

]

, (22)

and,

Ed(c, xd) = ln

∑

i∈Tc
exp(− (xd−xi,d)2

2h2

d

)

∑

i∈T exp(− (xd−xi,d)2

2h2

d

)

. (23)

We also comment on the difference between the assump-
tions of ITML and KDML. The main assumption of ITML
is that all the data points are drawn from a single Gaussian
distribution, centered at x0. Such an assumption may be
too restrictive in some cases. KDML, in contrast, assumes a
nonlinear distribution which is a mixture of multiple Gaus-
sians at each dimension.

4. COMBINING KDML WITH LMNN
In principle, KDML is a general framework that can be

combined with existing metric learning algorithms as a pre-
processing step, which nonlinearly maps the features in the
original space to a new space.

4.1 The KDML-LMNN approach
As a concrete application, we combine KDML with the

LMNN algorithm and apply it to kNN classification. First,
we map each training data x into a feature φ(x) (which may
be φP (x), φS(x), or φE(x)). Then, we use LMNN to learn a
transformation Lφ(x) which leads to a Mahalanobis distance

d2
M(xi,xj) = (φ(xi)− φ(xj))

T M(φ(xi)− φ(xj)), (24)

where M = LT L is a positive semi-definite matrix.
Applying LMNN to φ(x), we solve the problem of mini-

mizing:

E(M) = (1− µ)
∑

i,j;i

d2
M(xi,xj) +

µ
∑

i,j;i,l

(1− yil)
[

1 + d2
M(xi, xj)− d2

M(xi, xl)
]

+
,

(25)

where d2
M(xi,xj) is defined in (24).

As a side note, we can also substitute d2
M in (24) into (5)

so that KDML is combined with ITML.

4.2 Optimization algorithm
The training of KDML-LMNN aims at learning the op-

timal values of the matrix M and the bandwidths in the
Nadaraya-Watson estimator. For each numerical attributes
xd, there is a hyper-parameter hd that needs to be cho-
sen. One way to choose hd is to use rules-of-thumb to set a

heuristic hd values. A popular one is the Silverman’s rule of
thumb [20]:

h∗
d = 1.06σN−1/5 , (26)

where σ is the standard deviation of xd.
Although such rules-of-thumb often give solid performance,

we can in fact derive a novel way to automatically choose
optimal hd based on the KDML-LMNN objective. Such au-
tomatic tuning is absent in previous work. We propose to
find the hd that minimizes E in (25). For this minimiza-
tion, a nice fact is that we can get the closed form of the
subgradient ∂E

∂hd
and compute it efficiently.

There are two terms in (25). Let

E1 =
∑

i,j;i

D2
M(xi,xj), and (27)

E2 =
∑

i,j;i,l

(1− yil)
[

1 + D2
M(xi,xj)−D2

M(xi,xl)
]

+
(28)

We have

E(M) = (1− µ)E1 + µE2 (29)

We compute the gradients for these two terms separately.
First, since

∂D2
M(xi,xj)

∂xi
=

∂D2
M(xi,xj)

∂xi
= M(xi − xj) (30)

we have

∂E1

∂xk
=

∑

j;k

M(xk − xj) +
∑

k 6=j,k;j

M(xk − xj). (31)

For E2, note that ∂E2

∂xk
is a subgradient since it involves

a hinge loss and it is non-differentiable whenever the term
inside [.]+ is zero. Therefore: when

[1 + D2
M(xi,xj)−D2

M(xi,xl)] < 0, (32)

∂E2

∂xk
is 0; otherwise, we have:

∂E2

∂xk
=

∑

k,j;k

∑

l

(1− ykl)M(xl − xj)

+
∑

i6=k,k;i,l

(1− yil)M(xk − xi)

−
∑

i,k;i

(1− yik)M(xk − xi) (33)

Then, according to (29), for d = 1, · · · , D, we have

∂E

∂hd
=

∑

k

[

(1− µ)
∂E1

∂xk
+ µ

∂E2

∂xk

]T
∂xk

∂hd
(34)

where ∂xk

∂hd
=

[

0, · · · , ∂φc,d(xk)

∂xk
, · · · , 0

]T

is a column vector,

where φc,d(xk) is the KDML feature value for the dth di-
mension and class c of xk. Use the entropy feature in (9) as
an example, we know

φc,d(xk) = ln

∑

i∈Tc
exp(− (xk,d−xi,d)2

2h2

d

)

∑

i∈T exp(− (xk,d−xi,d)2

2h2

d

)

. (35)

Algorithm 1 Optimization for KDML-LMNN learning

1: Initialize h using (26)
2: repeat
3: compute the feature matrix Φh

4: call LMNN to optimize M ⊲ under fixed h & Φh

5: for d = 1 to D do ⊲ under fixed M
6: if xd is a numerical variable then
7: hd ← hd − γ ∂E

∂hd
⊲ gradient descent

8: end if
9: end for

10: until h converges
11: output h and M

We now compute
∂φc,d(xk)

∂hd
. Let rd = −1/(2h2

d), we have:

∂φc,d(xk)

∂rd
=

∑

i∈Tc
[(xk,d − xi,d)

2 · exp(rd(xk,d − xi,d)
2)]

∑

i∈Tc
exp(rd(xk,d − xi,d)2)

−
∑

i∈T [(xk,d − xi,d)
2 · exp(rd(xk,d − xi,d)

2)]
∑

i∈T exp(rd(xk,d − xi,d)2)

(36)

and

∂φc,d(xk)

∂hd
=

1

h3
d

∂φc,d(xk)

∂rd
. (37)

Summarizing things together, we can get the closed form
of ∂E

∂hd
by assembling (34), (31), (33), (36), and (37). The

closed form of ∂E
∂hd

seems complex but in fact can be effi-

ciently computed. ∂E
∂hd

has two parts, ∂E1

∂hd
and ∂E2

∂hd
. ∂E1

∂hd

has a simple form and only involves pairs of neighboring
points satisfying j ; k or k ; j.

For ∂E2

∂hd
, it is important to note that it is a subgradi-

ent. For E2 in (28), for each point i, we only need to con-
sider those “active” l that are invading the neighborhood of
i so that the corresponding [.]+ term is positive. There are
typically few invaders. This is observed and exploited in
LMNN to speed up its gradient computation [23]. In [23], it
is found that the k target neighbors and the invaders do not
change frequently over each iteration. The LMNN package
maintains such information in a data structure for efficient
updates during the optimization process. This data struc-
ture is adapted in our implementation to support efficient
computation of ∂E

∂hd
.

Let h to the vector of all those hd for numerical attributes
xd, d = 1, · · · , D. We show our optimization algorithm for
training KDML+LMNN in Algorithm 1. It contains two
levels of optimization: an outer loop which optimizes h using
subgradient descent, and an inner loop which learns M using
the original LMNN package under fixed h.

In the outer level, at each iteration, the feature matrix
Φh composed of φc,d(xk) is updated based on the new h. If
a variable xi is categorical, its feature is computed by (19).
For a numerical variable xd, we use the kernel density esti-
mation in (20) to compute its feature. Then, entering the
inner level, we use the original LMNN package to learn the
M that minimizes E(M) in (25) under fixed h and Φh. Fi-
nally, we optimize h for numerical attributes by performing
descent along the subgradient direction in (34) based on the
validation set. We use a line search with the Armijo rule to
choose the step size γ.

As Algorithm 1 learns M and h, there are no other hyper-
parameters to tune for KDML-LMNN.

5. RELATED WORK
A number of prior works on metric learning have focused

on learning a linear transformation in the original input
space [5, 9, 11, 19, 23, 24]. They achieved great success in
improving the performance of learning algorithms by ob-
taining better Mahalanobis distance measures. The concept
of distance metric learning was first proposed by Xing et
al. [24]. Their objective is to learn a Mahalanobis matrix
such that similar points are clustered together subject to
the constraints that distances between dissimilar points are
larger than a lower bound. Inspired by this general idea,
many works have been developed.

LMNN [23] identifies the local target neighbors in the orig-
inal space for each point and learns a Mahalanobis matrix
such that the non-target neighbors for each point are en-
couraged to be far away from all its target neighbors with
a large margin. ITML [5] assumes that there exists a bijec-
tion between the Mahalanobis distance and a single multi-
variate Gaussian distribution. It minimizes the KL diver-
gence between a prior distribution and the distribution im-
plies by the Mahalanobis distance, subject to upper bound
constraints on the distance between similar points and lower
bound constraints on the distance between dissimilar points.
The SEPAPH [17] approach also relies on a mapping from
the Mahalanobis distance to a probability distribution but
extends to semi-supervised metric learning based on regu-
larization.

Neighborhood components analysis (NCA) [11] maximizes
a softmax function that smooths the leave-one-out accuracy
of kNN classification. However, it has a nonconvex objective
function and suffers from local minima. Maximally collaps-
ing metric learning (MCML) [9] constructs a convex objec-
tive based on the same softmax function to characterize the
distribution. It minimizes for each point the KL divergence
between a“bi-level”distribution and the desired distribution
under the Mahalanobis distance, where the bi-level distri-
bution is zero for similar points and non-zero for dissimilar
points.

All the above methods look for a linear transformation.
However, the linearly transformed features fail to have sat-
isfactory expression on many cases, such as the example in
Figure 1. Another example is the case when the two classes
of data form two concentric circles [23], which we will illus-
trate in Section 6. Hence, there are also work on nonlinear
distance metric learning.

One nonlinear extension is to kernelize existing methods
and use the Representer’s Theorem to represent the nonlin-
ear transformation using the kernel matrix elements [3, 10,
21]. However, these methods have not replicated the success
of linear methods and out-of-the-box packages based on such
kernelization are lacking. In general, direct kernel methods
are sensitive to hyper-parameters and their utility is limited
inherently by the sizes of kernel matrices [13].

Another nonlinear approach, MM-LMNN [23], uses mul-
tiple metrics for different clusters of data to achieve global
nonlinearity, where the clusters are obtained by the k-means
algorithm. However, the transformation is locally linear
with respect to each cluster and the cross-cluster distances
cannot be easily learned. Two other nonlinear methods are
proposed in [13]. χ2-LMNN uses a nonlinear χ2 distance

!" # " # !"
!"

#

"

#

!"

! " # $ %
&'

$

'

$

&'

! " ! #"
$

"

$

%

&

'

!"# ! $"# $ $"# ! !"#
!"#

!

$"#

$

$"#

!

!"#

! " # $ %
!&

%

&

%

!&

(a) original data (b) iteration 1 (c) iteration 2

(e) iteration 4(d) iteration 3

error:100% error:45% error:16%

error:13% error:0%

Figure 2: A toy example with two circles in two classes, marked in different colors. a) shows the original data;
b) - e) show the data mapping and kNN classification error after each outer-loop iteration of Algorithm 1
which tunes h. The classification error quickly decreases to zero as h is optimized using subgradient descent.

measure. It is intended for histogram data and can only
be applied when all the data lie on a simplex SD = {x ∈
RD|x ≥ 0, xT 1 = 1}. KDML has much wider applicabil-
ity than χ2-LMNN since it can process any input, into his-
tograms for categorical data and probability densities for
numerical data. GB-LMNN uses a set of gradient boost-
ing regression trees with different heights and optimizes the
objective function of LMNN. GB-LMNN is shown to per-
form better than its linear counterpart LMNN and MM-
LMNN [13].

6. EXPERIMENTAL RESULTS
We conduct extensive experiments to evaluate the KDML-

LMNN approach in Algorithm 1, or KDML for short in this
section. We evaluate KDML with φP , φS, or φE features
(denoted as KDMLP , KDMLS , and KDMLE, respectively).
Note that KDML can be applied to datasets with numerical,
categorical, and mixed attributes.

For comparison, we also evaluate two state-of-the-art lin-
ear metric learning algorithms including LMNN [22] and
ITML [5]. We also evaluate a nonlinear metric learning algo-
rithm MM-LMNN [23], which first groups data into clusters
and then uses multiple linear mappings for different clusters
to achieve globally nonlinear mapping. Both LMNN and
MM-LMNN are obtained from their website1. ITML code
is obtained from http://www.cs.utexas.edu/∼pjain/itml/.
We also evaluate using the original Euclidean distance as
a baseline.

We implemented the KDML algorithm inside the LMNN

1http://www.cse.wustl.edu/∼kilian/code/lmnn/lmnn.html

package, which is implemented in Matlab. For full replicabil-
ity of the experiments, our KDML code is made available on-
line at http://www.cse.wustl.edu/∼chen/kdml/. All exper-
iments are performed on a desktop computer with 2.67GHz
CPU and 8G memory running Mac OS X 10.7.

6.1 Illustrations on toy cases
For sanity check and illustration, we first test on a simple

example in Figure 1a). This data cannot be correctly sepa-
rated by any linear metric learning algorithm. Since KDML
maps the data to a higher dimensional space, to visualize the
mapping in 2-D, we extract a 2-D transformation L ∈ R2×D

from M using eigendecomposition. Such dimensionality re-
duction is in fact another main utility of metric learning and
already implemented in LMNN. Figure 1b) shows the 2-D
mapping result by KDML, which clearly separates the two
classes. Figures 1c) and 1d) show that linear transforma-
tions cannot separate the two classes.

We also test another toy example shown in Figure 2a).
It contains two concentric circles of data from two different
classes. It is a very difficult case since the nearest neigh-
bor of any given data point is from the other class. It is a
well-known example as no linear transformation can sepa-
rate these two classes [13].

Figures 2b) to 2e) illustrate the process of KDML-LMNN
in Algorithm 1 which automatically tunes the kernel band-
width h. For better visualization, the results in Figures 2b)
to e) are obtained by applying Algorithm 1 and extract-
ing a 2-D mapping using eigendecomposition of M at each
outer-loop iteration. We can see that the kNN classification
error quickly decreases from 45% after the initial KDML

Type Dataset N C Dn Dc

Numerical
Glass 214 7 10 0
Wine 178 3 13 0

Mixed
Contraceptive 1473 3 2 7
Statlog Heart 270 2 6 7

Categorical
Hayes-Roth 160 3 0 5

Balance Scale 625 3 0 4
Car 1728 4 0 6

Table 1: The number of instances N , number of
classes C, number of numerical features Dn, and
number of categorical features Dc of the tested UCI
datasets.

mapping to 0% in just four major iterations of optimizing h
using subgradient descent.

6.2 Results on numerical datasets
We test all the algorithms on benchmark datasets from

the UCI repository [6]. We choose datasets mostly with
multiple (≥ 3) classes since kNN has salient advantages over
other methods such as SVM on multiway classification. For
each dataset, we run a 10-fold cross validation with 90/10
splits and report the average results. We use k = 3 for kNN
classification on all the cases.

Table 1 lists the main characteristics of the tested datasets.
We can see that there are datasets with numerical, categor-
ical, and mixed attributes.

Table 2 compares kNN classification errors of various al-
gorithms on the numerical datasets. We observe that all
KDML algorithms, with three different kinds of feature map-
pings, consistently perform significantly better than other
algorithms in most cases.

6.3 Results on categorical and mixed datasets
Another major advantage of KDML is its ability to natu-

rally handle categorical variables. We also evaluate our al-
gorithms on datasets with categorical attributes and mixed
data types from the UCI repository.

To deal with a categorical attribute x, KDML transforms
x into numerical features defined as φP (x), φS(x) or φE(x)
before. For other algorithms, we use a typical multinomial
encoding to handle categorical variables. For each categori-
cal attribute x that has m different categories, we transform
it into m numbers with only one of the numbers being 1 and
the others being 0.

Table 2 also lists the kNN classification results on datasets
with categorical attributes. We observe that all KDML al-
gorithms, with different features, again consistently perform
much better than other algorithms on all the cases. KDMLE

is the overall winner with the best performance on all the
categorical and mixed datasets, except for the Statlog Heart
dataset where it is only slightly (well within one standard
error) worse than ITML.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we have proposed a novel kernel density

metric learning (KDML) framework for nonlinear distance
metric learning. KDML is fundamentally different from the
previous metric learning algorithms since it introduces a
nonlinear mapping from the original input space into a prob-
ability density space, based on Nadaraya-Watson kernel den-

sity estimation. We have shown that the nonlinear mapping
in KDML embodies established distance measures between
probability density functions, and leads to correct classifi-
cation on datasets on which linear metric learning methods
would fail. KDML can be used as a preprocessing step and
combined with existing metric learning algorithms. We have
integrated KDML with the LMNN algorithm. Under this
framework, we have derived the closed form of the subgra-
dients of the objective function with respect to the kernel
bandwidths. We have then derived an integrated optimiza-
tion algorithm for learning the Mahalanobis matrix and ker-
nel bandwidths. Extensive results on real-world numerical
and categorical data show that, KDML gives significantly
better kNN classification quality than other linear and non-
linear metric learning algorithms. Unlike previous metric
learning algorithms, KDML can naturally handle both nu-
merical and categorical data. It is also easy to use and offers
good off-the-shelf usability. These advantages make KDML
an attractive general approach for metric learning.

Our ongoing work is focused on combining the nonlinear
features in KDML with more expressive parametric forms
of the distance function such as that in χ2-LMNN and KL-
divergence, instead of the simple Euclidean ℓ2 form. The
flexibility in both feature mappings and distance functions
may enable us to construct superior distance/similarity mea-
sures for a wide range of applications.

Acknowledgment
This work is partially supported by the CNS-1017701 and
CCF-1215302 grants from the National Science Foundation
of the United States, a Microsoft Research New Faculty Fel-
lowship, and a Barnes-Jewish Hospital Foundation grant.

8. REFERENCES
[1] C. M. Bishop. Pattern Recognition and Machine

Learning. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 2006.

[2] S. H. Cha. Comprehensive survey on
distance/similarity measures between probability
density functions. International Journal of
Mathematical Models and Methods in Applied
Sciences, 1:300–307, 2007.

[3] R. Chatpatanasiri, T. Korsrilabutr,
P. Tangchanachaianan, and B. Kijsirikul. A new
kernelization framework for mahalanobis distance
learning algorithms. Neurocomput.,
73(10-12):1570–1579, June 2010.

[4] S. Chopra, R. Hadsell, and Y. LeCun. Learning a
similarity metric discriminatively, with application to
face verification. In Proceedings of the 2005 IEEE
Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’05) - Volume 1 -
Volume 01, CVPR ’05, pages 539–546, Washington,
DC, USA, 2005. IEEE Computer Society.

[5] J. V. Davis, B. Kulis, P. Jain, S. Sra, and I. S.
Dhillon. Information-theoretic metric learning. In
Proceedings of the 24th international conference on
Machine learning, ICML ’07, pages 209–216, New
York, NY, USA, 2007. ACM.

[6] A. Frank and A. Asuncion. UCI machine learning
repository, http://archive.ics.uci.edu/ml, 2010.

Data set Euclidean ITML LMNN MM-LMNN KDMLP KDMLS KDMLE

Glass 32.25± 5.08 32.75 ± 10.17 30.39± 4.47 29.48±8.69 22.45± 4.93 26.16± 7.56 28.03± 6.32
Wine 28.63 ± 3.33 6.14 ± 4.94 3.33± 3.04 3.92±3.15 4.51±3.20 3.95±3.21 2.84±2.86

Contraceptive 51.19±3.03 51.33 ± 3.39 50.65±1.81 52.41±3.66 50.37±2.27 50.44±2.53 50.37±3.34
Statlog Heart 38.15±7.81 22.22±8.38 24.44±4.22 26.30±6.85 25.56±1.55 26.67±4.46 22.96±3.84
Hayes-Roth 32.50±3.56 19.38±6.01 21.88±7.97 18.13±4.07 18.75±3.13 18.13±2.61 17.50±1.71

Balance Scale 28.80±2.99 18.40±4.42 21.76±3.94 12.64±10.33 17.12±2.44 14.56±2.22 10.88±2.81
Car 15.92±2.17 13.96±6.52 3.12±1.25 3.30±1.04 3.13±1.24 3.30±0.79 3.07±0.93

Table 2: KNN classification error (in %, ± standard deviation) of various methods on the UCI datasets,
averaged over 10-fold 90/10 training-testing splits. Best results are shown in bold.

[7] C. Galleguillos, B. McFee, S. J. Belongie, and
G. R. G. Lanckriet. Multi-class object localization by
combining local contextual interactions. In CVPR,
pages 113–120. IEEE, 2010.

[8] D. Gavin, W. Osward, E. Wahl, and J. Williams. A
statistical approach to evaluating distance metrics and
analog assignments for pollen records. 60:356–367,
2003.

[9] A. Globerson and S. Roweis. Metric learning by
collapsing classes. In Proc. NIPS, 2005.

[10] A. Globerson and S. T. Roweis. Visualizing pairwise
similarity via semidefinite programming. Journal of
Machine Learning Research - Proceedings Track,
2:139–146, 2007.

[11] J. Goldberger, S. Roweis, G. Hinton, and
R. Salakhutdinov. Neighbourhood components
analysis. In Proc. NIPS, pages 513–520, 2004.

[12] P. Jain, B. Kulis, J. V. Davis, and I. S. Dhillon.
Metric and kernel learning using a linear
transformation. Journal of Machine Learning
Research, 13:519–547, 2012.

[13] D. Kedem, S. Tyree, K. Weinberger, F. Sha, and
G. Lanckriet. Non-linear metric learning. In Proc.
NIPS, 2012.

[14] S. Kullback and R. Leibler. On information and
sufficiency. Ann. Math. Statist., 22:79–86, 1951.

[15] K. Matusita. Decision rules, based on the distance, for
problems of fit, two samples, and estimation. Ann.
Math. Statist., 26:631–640, 1955.

[16] E. Nadaraya. On estimating regression. Theory of
Probability and its Applications, 9:141–142, 1964.

[17] G. Niu, B. Dai, M. Yamada, and M. Sugiyama.
Information-theoretic semi-supervised metric learning
via entropy regularization. In Proceedings of the 29th
international conference on Machine learning, ICML
’12, 2012.

[18] K. Pearson. On the criterion that a given system of
deviations from the probable in the case of a
correlated system of variables is such that it can be
reasonably supposed to have arisen from random
sampling. Phil. Mag., 50:157–172, 1900.

[19] N. Shental, T. Hertz, D. Weinshall, and M. Pavel.
Adjustment learning and relevant component analysis.
In Proceedings of the 7th European Conference on
Computer Vision-Part IV, ECCV ’02, pages 776–792,
London, UK, UK, 2002. Springer-Verlag.

[20] B. W. Silverman and P. J. Green. Density Estimation
for Statistics and Data Analysis. Chapman and Hall,
1986.

[21] L. Torresani and K. chih Lee. Large margin
component analysis. In B. Schölkopf, J. Platt, and
T. Hoffman, editors, Advances in Neural Information
Processing Systems 19, pages 1385–1392. MIT Press,
Cambridge, MA, 2007.

[22] K. Weinberger, J. Blitzer, and L. Saul. Distance
metric learning for large margin nearest neighbor
classification. In Proc. NIPS, 2005.

[23] K. Weinberger and L. Saul. Distance metric learning
for large margin nearest neighbor classification.
Journal of Machine Learning Research, 10:207–244,
2009.

[24] E. P. Xing, A. Y. Ng, M. I. Jordan, and S. J. Russell.
Distance metric learning with application to clustering
with side-information. In Proc. NIPS, pages 505–512,
2002.

	Kernel Density Metric Learning
	Recommended Citation
	Kernel Density Metric Learning

	tmp.1415131658.pdf.CHHnW

