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Abstract—Explicit and delay-driven congestion control pro-
tocols strive to preclude overflow of link buffers by reducing
transmission upon incipient congestion. In this paper, we explore
fundamental limitations of any congestion control with respect
to minimum queuing and loss achievable at highly multiplexed
links. We present and evaluate an idealized protocol where
all flows always transmit at equal rates. The ideally smooth
congestion control causes link queuing only due to asynchrony
of flow arrivals, which is intrinsic to computer networks. With
overprovisioned buffers, our analysis and simulations for differ-
ent smooth distributions of flow interarrival times agree that
minimum queuing at a fully utilized link is ����� �	� , where� is the number of flows sharing the link. This result raises
concerns about scalability of any congestion control. However,
our simulations of the idealized protocol with small buffers show
its surprising ability to provide bounded loss rates regardless
of the number of flows. Finally, we experiment with RCP (Rate
Control Protocol) to examine how existing practical protocols
compare with our idealized scheme in small-buffer settings.

I. INTRODUCTION

Smooth fair lossless transmission at high bitrates has been
an aspiration for many explicit [1]–[6] and delay-driven [7]–
[9] congestion control protocols. Smoothness of transmission
is particularly important for interactive multimedia and other
applications that would suffer from excessive queuing delays
at network links. However, since discovery of a fair sending
rate is fraught with packet bursts and other causes of link
queuing, smooth transmission conflicts with another goal of
responding promptly to changes in network conditions [10],
[11].

Smooth transmission is also relevant to link buffer sizing,
which recently attracted significant attention. In the context of
TCP (Transmission Control Protocol) congestion control [12],
[13], various proposals disagree on how to size the buffer with
respect to the number of flows sharing the link. Arguing that
aggregate oscillations of TCP traffic subside as the number of
flows increases, one view maintains that a small buffer suffices
for a highly multiplexed link [14]–[16], even if the buffer
accommodates only up to 20 packets [17]. However, since
TCP suffers from high loss rates and frequent retransmission
timeouts when the network path restricts each TCP flow to
less than few packets per round-trip time (RTT) [18], [19],

alternative guidelines prescribe keeping the buffer size propor-
tional to the number of flows in some network settings [20],
[21], i.e., argue for even larger buffers than the traditionally
recommended bitrate-delay product [22], [23]. Furthermore,
it has also been argued that different congestion control is
needed for networks with small link buffers [24]–[26].

The lack of agreement on many issues in congestion con-
trol has sound reasons. Whereas practical congestion control
protocols tend to be multimodal and complex, precise com-
prehensive analysis of their performance is hard. On the other
hand, experimental evaluations face scalability challenges.
In particular, while even a single packet-level simulation of
transient and steady states for a highly multiplexed link might
consume long time, congestion control studies rarely report
reliable results for more than few hundred flows [27].

In this paper, we present a model for investigating lower
bounds on queuing and loss under smooth congestion con-
trol with overprovisioned and small buffers. We consider an
idealized protocol where all flows always transmit at equal
rates. The ideally smooth transmission does not eliminate
queuing altogether because packets of different flows might
overlap at a link due to asynchronous arrivals of the flows.
For example, even if the constant-rate flows underutilize the
link on average, a queue arises when packets from multiple
flows arrive to the link simultaneously. The asynchrony of flow
arrivals constitutes the chief distinction of our model from the
perfect TDM (Time Division Multiplexing) which avails the
link to each packet immediately upon the packet arrival. Such
asynchrony is intrinsic to congestion control.

A prominent aspect of our model is its simplicity which
makes analysis tractable and experiments scalable. In par-
ticular, our simulation methodology captures the steady-state
queuing for 
 concurrent flows exactly by examining only� 
 packets. The low overhead enables us to assess expected
steady-state performance reliably by conducting extensive
simulations with up to 5,000 concurrent flows and repeating
each experiment 1,000 times.

With overprovisioned buffers, our analysis and simulations
for different smooth distributions of flow interarrival times
agree that minimum queuing at a fully utilized link is ���� 
�� .
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Fig. 1. Identical steady-state queuing in the overprovisioned buffer of a fully
utilized link under original and transformed arrival times of ������������� flows.
The flows originally arrive according to a Poisson process with average rate���� ���! , where "#�#$�� ms is the steady-state period. To highlight the longer
duration of the transient stage under original arrival times, the rate is chosen
lower than in the flow interarrival time distributions examined in this paper.

This finding implies that no congestion control protocol is able
to avoid packet losses with a constant buffer and arbitrarily
high number of flows. However, our studies of the idealized
protocol with small buffers abate the above concerns about
congestion control scalability by showing the surprising ability
of our protocol to provide bounded loss rates regardless of the
number of flows.

While the presented model yields fresh interesting insights
into queuing and buffer sizing at highly multiplexed links,
our main results are lower bounds. To examine how exist-
ing practical protocols compare with our idealized scheme,
we simulate RCP (Rate Control Protocol) [2] in ns-2 [28]
with small buffers and observe significantly larger loss rates.
Further studies are needed to establish whether the derived
lower bounds are achievable by practical congestion control
protocols, which might face synchronization of flows and other
extra sources of queuing.

The rest of the paper is organized as follows. Section II
clarifies our model. Section III shows that neither the link
bitrate nor the packet size affects the steady-state queuing
under our idealized protocol. Section IV derives bounds on
queuing in overprovisioned buffers. Section V supplements
the analysis with extensive simulations. Section VI reports
loss rates under our idealized protocol with small buffers. Sec-
tion VII presents our RCP experiments. Finally, Section VIII
concludes the paper with a summary of our findings.

II. MODEL

We model a steady-state scenario where 
 flows share a
bottleneck link with bitrate % and FIFO (First-In First-Out)
buffer. We denote arrival time of flow & as ')( , where &+*,.-0/1/0/2- 
 . Without loss of generality, we assume '435*76 . We
refer to time between arrivals of flows &98 , and & as :;( ::0(9*<'�(=8>'�(@?A3 / (1)

Average utilization of the link by the flows is B , where 6DCBFE , . Each flow transmits packets of size G periodically at
the same constant bitrate H equal to:

Distribution name Mean, I Variance, JLK
Uniform M N 3OQP M NSR K
Exponential M N P M N R K
Pareto, T	* �U/V, M N 3W;XVW ? K�Y P M NZR K

Fig. 2. Considered distributions of flow interarrival times.

H[* B]\;%
 /
(2)

Hence, subsequent packets within any flow are separated by
the same time interval ^ :^_* 
`\aGB]\a% * 
`\1bB (3)

where b is packet transmission delay, i.e., the amount of time
it takes to transmit one packet into the bottleneck link:bc* G% / (4)

The considered pattern of packet transmissions is the
smoothest possible under asynchronous congestion control
where distributed senders of different flows do not deliberately
schedule packets to arrive to a shared link at non-overlapping
times. Such smoothest congestion control is an idealized
protocol because any real protocol consumes time and creates
bursts in order to discover a new fair rate after a change in
network conditions. Once again, our rationale for examining
this idealized protocol is to uncover fundamental limitations of
congestion control with respect to minimum queuing and loss
achievable under any practically realizable congestion control
algorithm.

With the ideally smooth congestion control, queuing arises
due to asynchrony of flow arrivals and hence potential overlap
of packets from different flows. After the last flow arrives,
imperfect alignment of the flows creates a queue oscillation
pattern that repeats with period ^ . Figure 1 illustrates the
periodic queue oscillations in the steady state.

While the flow arrival process is clearly an important aspect
of our model, two factors make flow arrivals difficult to model
realistically. First, the problem of Internet load modeling is far
from being settled [29]–[32]. In particular, there is no universal
agreement on how to model flow arrivals in different Internet
applications [33]. Second, while any practical approximation
of our idealized congestion control will affect alignment of
packets on the shared link, it is hard to predict this impact
and reflect it accurately in our model. Our general approach
to handling this uncertainty is to consider a variety of flow
arrival distributions, with an emphasis on smooth distributions
because we are primarily interested in lower bounds on
queuing and loss.
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Distribution name Probability def&�� that the & -th packet Lower bound g min on the queue size for
encounters a queue size longer than g

top d packets top 1% packets top 5% packets

Uniform 3K h , 8>i0j�k hml OK ( gon=n prq l KO � 
 6 / sut � 
 6 / vmt � 

Exponential 3K h , 8+i1j)k h+wx K ( n=n p q � � � 
 ,u/ yzv � 
 6 / smy � 

Pareto, T|{ � 3K h , 8>i0j�k h l W;XVW ? K�YK ( gon=n prq l KW;X}W ? K~Y � 
 3�� �)�� W;XVW ? K�Y � 
 � � ���� W;XVW ? K~Y � 


Fig. 3. Lower bounds on queuing for top � packets in the overprovisioned buffer of a fully utilized link.

We consider three smooth distributions of flow interarrival
times: Exponential, Uniform, and Pareto. All three distribu-
tions have the same average value:I�* b B * ^
 - (5)

i.e., the 
 flows are expected to arrive over a time interval
which has the same duration ^ as the period of the steady-
state queue oscillations. What distinguishes the distributions
is their variances summarized in Figure 2:� Uniform interarrival times are distributed uniformly be-

tween 6 and
� I .� Exponential interarrival times are generated by a Poisson

process with average arrival rate 3� .� Pareto interarrival times follow the Pareto distribution
with mean I and index T_* ��/�,

. While the choice ofT	* ��/�, is due to our interest in smooth distributions, we
also report results for other values of T , including T|C � .

For the link buffer, we examine both overprovisioned and
small settings. While overprovisioned buffers are large enough
to store and forward all arriving packets without loss, packet
losses are possible with small buffers.

With overprovisioned buffers, the primary metric of perfor-
mance for flow & is queue size � ( measured in packets:� ( *�� (b (6)

where � ( is the queuing delay experienced by packets of the
flow in the steady state.

In small-buffer settings, we quantify performance with a
loss rate defined as a fraction of packets discarded in the
steady state due to buffer overflow.

III. LINK BITRATE AND PACKET SIZE

Bottleneck link bitrate % and packet size G are two param-
eters of our model that affect transmission delay b . As Equa-
tion 3 and Figure 2 reveal, b scales proportionally the flow
interarrival processes and period ^ between packets within
a flow. Consequently and in conformity with Equation 6,
changes in b do not modify the queue size encountered by
any packet. This leads us to our first conclusion:

Observation 1: Neither the link bitrate nor the packet size
affects the steady-state queuing.

An important practical implication from Observation 1 is
a possibility of congestion control where a constant buffer
suffices regardless of link capacities and packet sizes. In fact,
RCP and other recent proposals are close to maintaining the
perfect capacity scalability, i.e., independence of the steady-
state queuing from the bottleneck link capacity. As we show
later, the situation is different for scalability with respect to
the number of flows.

IV. ANALYSIS FOR OVERPROVISIONED BUFFERS

We conduct a stochastic analysis of steady-state queuing in
the overprovisioned buffer of a fully utilized link with 
 flows,
where 
 is at least 20. While Figure 1 deliberately stretches
expected arrivals of the 
 flows across interval � 6�� �U/ 6 y ^S�
in order to highlight differences between the transient and
steady states, all 
 flows with any of the arrival distributions
considered in our model are likely to arrive during interval� 6��)^S� . First, we formally show that number � of flows with
arrival times '�( within interval � 6���^Z� is close to 
 . Let �
denote a distribution of flow interarrival times :0� . The flow
interarrival times represent arrival time ' ( as:'�(�* (����93 :4� / (7)

Because 
 is large, and all :�� are from the same distribution� , the Central Limit Theorem establishes that '�( follows the
normal distribution with mean � and variance ��K :�>*_&!I and � K *<&�J K - (8)

where I and J K are respectively the mean and variance of
distribution � .

For the Exponential distribution of flow interarrival times,
we express the probability that ��C�
 , i.e., that a flow arrives
at time ^ or later, as:� � ��C�
#��* �¡ £¢¥¤ 
¦8§�� � ¨ (9)

where
¢

is an auxiliary variable defined as:
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(a) Uniform (b) Exponential (c) Pareto, T	* ��/�,
Fig. 4. One period of steady-state queuing in the overprovisioned buffer: ��� 1,000, ©D� 1, ª�� 100 Mbps, and «Q� 1,000 bytes ( "|� 80 ms).

¢ * ' ( 87¬ #^x ¬ ^ /
(10)

Since variable
¢

follows the normal distribution with mean 0
and variance 1,

� � ��C�
#��®_6 whenever
¯8°�� � ¤�± /
(11)

Under Constraint 11, �³²´
 if 
¥²¶µ .
Similar lines of reasoning for the Uniform and Pareto flow

interarrival processes also show that �·²´
 when 
¥²¶µ .
Based on the above, our subsequent analysis assumes that

differences between 
 and � are negligible, i.e., all 
 flows
arrive within time interval � 6���^Z� , and interarrival times of
packets within any steady-state period of duration ^ conform
to distribution � of flow interarrival times. Then, we express
queue size � ( encountered by the & -th packet of the steady-state
time interval � ^5� � ^Z� as:�0(9*]� 0 ¸ &L8 ' (b (12)

where � 0 represents the queue size at time ^ , & is the number
of packets arrived during time interval � ^5�)^ ¸ '�(�� , and ¹@ºMdenotes the number of packets transmitted into the link during
this interval � ^5��^ ¸ '�(f� . Whereas 
 packets that arrive during
any time interval of length ^ consume exactly time ^ to be
transmitted into the link, Equation 12 captures the steady-state
queue size exactly. Since we are primarily interested in lower
bounds, we assume � 0 *]6 .

Let d»@&�� denote the probability that the & -th packet en-
counters a queue size longer than g . Since '�( is normally
distributed, we use Equations 8 and 12 to derive:def&��¼* � � � ( {�g���* ,�§½ , 8+i1j)k ½ �g¾8+&���b ¸ &!IJL� � & ¿À¿ (13)

where i1j)k is the error function, and I and J are parameters
of interarrival time distribution � . Figure 2 contains particular
values of I and J for the three distributions of our model.
Taking into account these values with BÁ* , , we simplify the
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Fig. 5. Cumulative distributions of steady-state queuing in the overprovi-
sioned buffer of a fully utilized link with 1,000 flows.

above expression for d»@&�� as:def&��r* ,�ÃÂ , 8>i0j�k Â gÄÆÅ � &;Ç5Ç (14)

where
ÄZÅ

is a coefficient specific to interarrival time distri-
bution � . The following

ÄZÅ
values characterize the Uniform,

Exponential, and Pareto distributions respectively:Ä
Uni *ÉÈ �± - Ä Exp * � ��- and

Ä
Par *ËÊ �T=ÌTÍ8 � � / (15)

Figure 3 reports def&�� expressions for the three distributions.
Using d to represent the probability that the steady-state queue
size exceeds g , we express this probability as:dÍ* ,
 � (V�93 def&�� / (16)

Since de@&�� is a nonnegative increasing function, we boundd from below as follows:

d ¤ ,
 �(��ÀÎ!ÏÐ dÆ@&�� ¤ d P K O R± ¤ , 8>i0j�kÆ½ wÑ=Ò � Î�ÏÐ ¿Ó (17)
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To derive a lower bound on queuing for top d packets, we
define p q to be such thati1j)k Â prqzÈ ±� Ç * , 8 Ó d / (18)p 3�Ô ® 1.1 and p �4Ô ® 0.6 for top 1% and 5% packets
respectively. From Inequality 17, we express lower boundg min on the queue size for top d packets as:g min *<p�q Ä Å � 
 (19)

where p�q depends only on the fraction of packets, and
Ä Å

is
a coefficient associated with the interarrival time distribution.
Figure 3 presents the lower bounds on steady-state queuing
for top 1% and 5% packets under the Uniform, Exponential,
and Pareto interarrival time distributions. While deriving Equa-
tion 19, we have proved the following:

Theorem 1: Minimum queuing in the overprovisioned buffer
of a fully utilized link is ��!� 
+� , where 
 is the number of
flows sharing the link.

Theorem 1 has an important practical implication that no
congestion control protocol is able to avoid packet losses while
utilizing the bottleneck link fully with a constant buffer and
arbitrarily many flows.

Although our primary interest is in lower bounds, a similar
line of reasoning allows us to bound d from above:d�E�d»f
��ÕE , 8+i1j)k h wÑ=Ò x  n� /

(20)

Defining ÖZq to be such thati0j�k;ÌÖ q �¼* , 8 � d (21)

with Ö 3�Ô ® 1.6 and Ö �~Ô ® 1.15 for top 1% and 5% packets
respectively, we derive upper bound g max on the queue size
for top d packets as: g max *]Ö q ÄÆÅ � 
 / (22)

V. SIMULATIONS FOR OVERPROVISIONED BUFFERS

To validate the above analysis for overprovisioned buffers,
we conduct simulations within our model. The simplicity of
the model enables extensive simulations with firm results. To
improve efficiency of the simulations even further without
sacrificing any accuracy, we transform the arrival times of
flows as × (9*<'�(�Ø�ÙUÚ�^ (23)

where Ø�ÙUÚ is the modulo operation on real numbers. The
transformation compresses the transient stage into time interval
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Fig. 8. Cumulative distributions of the steady-state queue size in the overprovisioned buffer for various link utilizations and 1,000 flows.
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Fig. 9. Impact of the bottleneck link utilization on the steady-state queuing for the overprovisioned buffer and 1,000 flows.

� 6e�)^Z� and guarantees that the steady state ensues already at
time ^ . With the transformed arrival times, a simulation run
needs to examine only

� 
 packets, or 2 packets per flow. The
first packet of flow & arrives at time

× ( in accordance with
the used distribution and Equation 23. The second packet of
flow & arrives at time

× ( ¸ ^ , and its queuing delay � ( is used
to compute steady-state queue size � ( according to Equation 6.

Note that unlike the analysis which makes simplifying as-
sumptions, our simulation methodology captures steady-state
queuing in the model exactly. Figure 1 illustrates queuing with
original and transformed flow arrival times. The plot confirms
that the transformed arrival times yield the same queuing
during time interval � ^5� � ^Z� as the steady-state queuing that
emerges with the original arrival times only after time ^ .

For each examined set of parameter settings, we perform
1,000 experiments and report average steady-state queue sizes
with high certainty. Unless explicitly stated otherwise, the
parameters take the following default values: 
Û* 1,000, BÁ*
1, %Ü* 100 Mbps, and GË* 1,000 bytes. In these settings,
period ^ equals 80 ms. Figure 4 illustrates typical patterns of
steady-state queuing under the default parameter settings.

Figure 5 plots cumulative distributions of the queue size for
different flow interarrival processes, including two additional
Pareto distributions with smaller index TÉ* 1.8 and larger

index T	* 2.5. All five distributions of flow interarrival times
exhibit qualitatively similar profiles of steady-state queuing:
while the queue size rises persistently across the spectrum,
top percentiles experience sharp increases in the queue size.
Queuing is the smoothest under the Uniform distribution. As
intended, our main Pareto distribution (with T[* �U/V,

) also
produces smooth queuing: in comparison to the Exponential
distribution, queue sizes are larger for top percentiles but lower
for bottom percentiles.

To evaluate the dependence of the steady-state queuing on
the number of flows, we vary 
 in our experiments from
100 to 5,000. Figure 6 unveils that varying the number of
flows preserves the qualitative profile observed for cumulative
distributions of the queue size in Figure 5. Figure 6 also shows
that larger values of 
 consistently produce longer queues. In
particular, while bottom 5% packets experience no queuing at
all with 100 flows, queue sizes for this percentile can be as
large as 10 packets with 5,000 flows.

Since function de@&�� rises quickly toward its maximum def
+� ,
we expect the minimum steady-state queue size for top d pack-
ets to be much closer to upper bound g max than lower boundg min, which are given in Equations 22 and 19 respectively.
To check this expectation, Figure 7 reports the analytical and
experimental results for the queue size encountered by top
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Fig. 10. Steady-state loss rates with different numbers of flows and small buffers at fully utilized links.
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Fig. 11. Impact of the bottleneck link utilization on the steady-state loss rates with 1,000 flows and small buffers.

1% packets. For the Uniform and Exponential flow interarrival
time distributions, the simulation results are remarkably close
to the upper bound. For one subrange of 
 under the Uniform
distribution, the steady-state queue size exceeds g max slightly
because our derivation of the bounds assumes � 0 *Ý6 and
thus underestimates the steady-state queuing. With the Pareto
distribution, the simulated queue sizes are mostly below the
span predicted by our bounds. We are unsure why our analysis
overestimates queuing under the Pareto distribution and will
explore this issue in future work. However, our experimental
results for all three flow interarrival time distributions are gen-
erally consistent with the theoretical conclusion that minimum
queuing in the overprovisioned buffer of a fully utilized link
is ��!� 
Þ� .

The ��!� 
Þ� dependence means that no congestion control
protocol is able to avoid packet losses at a fully utilized link
with a constant buffer and arbitrarily many flows. The result
also justifies the current practice of overprovisioning backbone
links. Such overprovisioning moves bottlenecks to access links
where flows are less numerous and thus induce shorter queues.

Now, we explore whether reduced utilization of the bot-
tleneck link mitigates the above concerns about scalability
with respect to the number of flows. In the next set of

experiments, B varies from 0.05 to 1. Figure 8 demonstrates
that decreasing the utilization subdues the steady-state queuing
substantially. For instance, bottom 80% packets experience no
queuing at all with 50% utilization. Figure 9 quantifies the
superlinear reductions of the queue size as B decreases. With
95% utilization, the minimum queue size for top 1% packets
is 25, 49, 75 packets under the Uniform, Exponential, Pareto
flow interarrival times respectively. Decreasing B to 75% and
further to 50% reduces the queue size to 9, 20, 34 packets
and 2, 5, 5 packets respectively. The graphs also reveal that
utilization decreases help most dramatically under the Pareto
distribution. Our experimental results for the link utilization
justify the common practice of operating network links with
average utilization of at most 50% [34].

VI. LOSS RATES WITH SMALL BUFFERS

Our derived and validated ���� 
�� lower bound on achiev-
able queuing reveals that no congestion control protocol is
able to avoid packet losses with a constant buffer at a fully
utilized link if the number of flows is arbitrarily large. In
this section, we evaluate how our ideally smooth congestion
control performs with small buffers. Figure 10 plots steady-
state loss rates for fully utilized links that have 10-packet and
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20-packet buffers. The number of flows in these experiments
varies from 100 to 5,000. As 
 starts to grow, the loss rates
increase quickly. Surprisingly, the loss rates stabilize and even
decrease slightly after 
 grows beyond 1,000. The bounded
nature of the loss rates opens an exciting prospect that a
practical congestion control protocol might also be able to
bound loss rates at fully utilized links with small buffers.

The loss rates reported in Figure 10 are higher with the
Exponential and Pareto flow interarrival time distributions and
stabilize with both distributions around 3% and 5% for the 10-
packet and 20-packet buffer respectively. If one deems these
specific values as too high, reducing the link utilization helps
once again. Figure 11 shows prompt dramatic reductions in
the steady-state loss rates as the link utilization reduces from
100% to 50%.

Another avenue for reducing the minimum achievable loss
rate is to increase the link buffer size. Figure 12 quantifies
how the steady-state loss rates decrease under our idealized
protocol as the buffer size grows from 5 to 50 packets. In
particular, reduction of the loss rates to 1% requires about 20,
40, and 50 packets with the Uniform, Exponential, and Pareto
flow interarrival time distributions respectively.

VII. COMPARISON WITH PRACTICAL PROTOCOLS

To examine how modern practical protocols compare with
our idealized scheme, we conduct ns-2 [28] simulations for
RCP [2], an explicit congestion control protocol that strives to
transmit smoothly in the steady state. The core bottleneck link
of a simulated single-bottleneck dumbbell topology has a 10-
packet buffer, 200-Mbps bitrate, and 30-ms propagation delay.
RTT for each flow is 90 ms. All flows arrive according to a
Poisson process and use packets sized to 1000 bytes. Based
on 10 runs for each experimental setting, Figure 13 reports
the steady-state loss rates for various link utilizations as the
the number of flows increases from 100 to 600. The loss-
rate profiles are qualitatively similar to the reported for the
ideally smooth scheme: the loss rates are low for small 
 ,
then undergo prompt dramatic increases, and remain almost
stable for larger 
 . However, the actual values of the stabilized
loss rates are significantly larger under RCP, around 30%.
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Fig. 13. Steady-state loss rates under RCP with various link utilizations and
10-packet buffer.

Interestingly, reducing the targeted utilization from 100% to
85% does not help RCP to lessen the losses.

We trace the large loss rates at highly multiplexed links
to unstable load under RCP in the steady state. While the
default RCP strives to maintain the load of 1 (i.e., 100%
utulization and no queuing at the bottleneck link), Figure 14
shows that as the number of flows increases from 100 to
300 to 600, the actual load on the bottleneck link starts to
oscillate widely, causing frequent overflows of the small 10-
packet buffer. Our experiments suggest that modern congestion
control protocols still have large headroom for improving their
steady-state performance with small buffers.

VIII. CONCLUSION

In this paper, we presented an idealized congestion control
protocol where all flows always transmit at equal rates. The
ideally smooth transmission causes link queuing only due to
asynchrony of flow arrivals, which is intrinsic to computer net-
works. While realistic modeling of Internet flow arrivals is still
an open problem, we considered three smooth distributions of
flow interarrival times.

The practical utility of our model is in exposing lower
bounds on queuing and loss achievable at highly multiplexed
links by any congestion control protocol. In particular, we
established that the minimum steady-state queue size experi-
enced by a fixed fraction of packets in the overprovisioned
buffer of a fully utilized link is �� � 
Þ� , where 
 is the
number of flows sharing the link. The ���� 
�� lower bound
implies that no congestion control protocol is able to avoid
packet losses at a fully utilized link with a constant buffer and
arbitrarily many flows.

While a prominent aspect of our model is its simplicity, our
simulation methodology captured the steady-state queuing for
 concurrent flows exactly by examining only

� 
 packets.
The low overhead enabled us to assess the steady-state perfor-
mance with high certainty through extensive experiments with
up to 5,000 concurrent flows and 1,000 runs per experimental
setting. For overprovisioned buffers, the simulation results
are generally consistent with our theoretical conclusion that
minimum queuing at fully utilized links is ���� 
�� . The
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Fig. 14. Instability of the steady-state link load under RCP that strives to fully utilize the bottleneck link with the 10-packet buffer.

simulations also showed that reducing the bottleneck link
utilization alleviates the concerns about scalability with respect
to the number of flows.

The experiments for fully utilized links with small buffers
revealed bounded steady-state loss rates under our ideally
smooth congestion control. This result opened an exciting
prospect that a practical protocol might also be able to bound
loss rates. To examine how modern protocols compare with
our idealized scheme, we simulated RCP in ns-2, observed
significantly larger steady-state loss rates at highly multiplexed
links, and traced the large loss rates to instability of load
under RCP. Our experiments suggested that modern congestion
control protocols still have large headroom for improving their
steady-state performance with small buffers.

Beside the fresh perspective on fundamental limitations of
any congestion control in terms of minimum queuing and
loss, our paper justified common practices in network capacity
planning. Specifically, our results support the practices of
operating network links with average utilizations of at most
50% and overprovisioning backbone links in order to move
bottlenecks to access links.
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