
Washington University in St. Louis Washington University in St. Louis 

Washington University Open Scholarship Washington University Open Scholarship 

All Computer Science and Engineering 
Research Computer Science and Engineering 

Report Number: WUCSE-2006-37 

2006-01-01 

Sliver: A BPEL Workflow Process Execution Engine for Mobile Sliver: A BPEL Workflow Process Execution Engine for Mobile 

Devices Devices 

Gregory Hackmann, Mart Haitjema, Christopher Gill, and Catalin-Gruia Roman 

The Business Process Execution Language (BPEL) has become the dominant means for 

expressing traditional business processes as workflows. The widespread deployment of mobile 

devices like PDAs and mobile phones has created a vast computational and communication 

resource for these workflows to exploit. However, BPEL so far has been deployed only on 

relatively heavyweight server platforms such as Apache Tomcat, leaving the potential created by 

these lower-end devices untapped. This paper presents Sliver, a BPEL workflow process 

execution engine that supports a wide variety of devices ranging from mobile phones to desktop 

PCs. We discuss the design decisions that allow... Read complete abstract on page 2. Read complete abstract on page 2. 

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research 

 Part of the Computer Engineering Commons, and the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Hackmann, Gregory; Haitjema, Mart; Gill, Christopher; and Roman, Catalin-Gruia, "Sliver: A BPEL Workflow 
Process Execution Engine for Mobile Devices" Report Number: WUCSE-2006-37 (2006). All Computer 
Science and Engineering Research. 
https://openscholarship.wustl.edu/cse_research/188 

Department of Computer Science & Engineering - Washington University in St. Louis 
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Washington University St. Louis: Open Scholarship

https://core.ac.uk/display/233234567?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F188&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F188&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F188&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F188&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F188&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F188&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F188&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/188?utm_source=openscholarship.wustl.edu%2Fcse_research%2F188&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx


This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/188 

Sliver: A BPEL Workflow Process Execution Engine for Mobile Devices Sliver: A BPEL Workflow Process Execution Engine for Mobile Devices 

Gregory Hackmann, Mart Haitjema, Christopher Gill, and Catalin-Gruia Roman 

Complete Abstract: Complete Abstract: 

The Business Process Execution Language (BPEL) has become the dominant means for expressing 
traditional business processes as workflows. The widespread deployment of mobile devices like PDAs 
and mobile phones has created a vast computational and communication resource for these workflows 
to exploit. However, BPEL so far has been deployed only on relatively heavyweight server platforms such 
as Apache Tomcat, leaving the potential created by these lower-end devices untapped. This paper 
presents Sliver, a BPEL workflow process execution engine that supports a wide variety of devices 
ranging from mobile phones to desktop PCs. We discuss the design decisions that allow Sliver to operate 
within the limited resources of a mobile phone or PDA. We also evaluate the performance of a prototype 
implementation of Sliver. 

https://openscholarship.wustl.edu/cse_research/188?utm_source=openscholarship.wustl.edu%2Fcse_research%2F188&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/188?utm_source=openscholarship.wustl.edu%2Fcse_research%2F188&utm_medium=PDF&utm_campaign=PDFCoverPages


Department of Computer Science & Engineering

2006-37

Sliver: A BPEL Workflow Process Execution Engine for Mobile Devices

Authors: Gregory Hackmann, Mart Haitjema, Christopher Gill, Gruia-Catalin Roman

Corresponding Author: ghackmann@wustl.edu

Web Page: http://mobilab.wustl.edu/projects/sliver/

Abstract: The Business Process Execution Language (BPEL) has become the dominant means for expressing
traditional business processes as work&#64258;ows. The widespread deployment of mobile devices like PDAs
and mobile phones has created a vast computational and communication resource for these work&#64258;ows
to exploit. However, BPEL so far has been deployed only on relatively heavyweight server platforms such as
Apache Tomcat, leaving the potential created by these lower-end devices untapped. This paper presents Sliver,
a BPEL work&#64258;ow process execution engine that supports a wide variety of devices ranging from mobile
phones to desktop PCs. We discuss the design decisions that allow Sliver to operate within the limited
resources of a mobile phone or PDA. We also evaluate the performance of a prototype implementation of
Sliver.

Type of Report: Other

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160



Sliver: A BPEL Workflow Process Execution
Engine for Mobile Devices

Gregory Hackmann, Mart Haitjema, Christopher Gill, and Gruia-Catalin
Roman

Dept. of Computer Science and Engineering, Washington University in St. Louis

Abstract. The Business Process Execution Language (BPEL) has be-
come the dominant means for expressing traditional business processes
as workflows. The widespread deployment of mobile devices like PDAs
and mobile phones has created a vast computational and communica-
tion resource for these workflows to exploit. However, BPEL so far has
been deployed only on relatively heavyweight server platforms such as
Apache Tomcat, leaving the potential created by these lower-end devices
untapped. This paper presents Sliver, a BPEL workflow process execu-
tion engine that supports a wide variety of devices ranging from mobile
phones to desktop PCs. We discuss the design decisions that allow Sliver
to operate within the limited resources of a mobile phone or PDA. We
also evaluate the performance of a prototype implementation of Sliver.

1 Introduction

In today’s world, there is an ever-growing need for collaboration among teams
of people on complex tasks. Groupware is a special class of systems that support
and facilitate these collaborative activities. The workflow model offers a powerful
representation of groupware activities. This model is defined informally as “the
operational aspect of a work procedure: how tasks are structured, who performs
them, what their relative order is, how they are synchronized, how information
flows to support the tasks and how tasks are tracked” [1]. In other words, work-
flow systems coordinate and monitor the performance of tasks by multiple active
agents (people or software services) towards the realization of a common goal.

Many traditional business processes — such as loan approval, insurance claim
processing, and expense authorization — can be modeled naturally as workflows.
This has motivated the development of Web standards, such as the Business
Process Execution Language [2] (BPEL), which describe these processes using a
common language. Each task in a BPEL process is represented as a service that
is invoked using the Simple Object Access Protocol [3] (SOAP). A centralized
BPEL server composes these services into complex processes by performing an
ordered series of invocations according to the user’s specifications. Because BPEL
builds on top of standards like XML and SOAP that are already widely deployed,
it has been accepted readily in business settings.



The ubiquity of inexpensive mobile and embedded computing devices, like
PDAs and mobile phones, offers a new and expanding platform for the deploy-
ment and execution of collaborative applications. In 2004, over 267 million Java-
capable mobile phones were deployed worldwide, and Sun estimates that up to
1.5 billion will be deployed by the end of 2007 [4]. Though each device is indi-
vidually far less powerful than a standalone server, their aggregate computation
and communication potential is remarkable, and has yet to be fully realized.
Examples of applications that could incorporate such devices advantageously
include:

– Wireless sensors are attached to inventory items in a warehouse and form a
mesh network. An embedded device like a Stargate [5] exposes the sensors’
readings to the local 802.11b network in the form of a service. The ware-
house’s security team carries mobile phones which make decisions based on
these readings (e.g., notify the the fire department if smoke is detected).

– A complex construction job requires workers to carry out certain tasks in a
specific order. The job is modeled as a workflow, which is divided into a series
of distributed processes [6]. Each process is distributed to the corresponding
worker’s PDA; as each process executes, it tells the worker the next task
that must be completed.

– A bank goes through a series of checks and assessments during its loan ap-
plication process, and may require the manager’s approval for some loans.
While the manager is away on a business trip, her mobile phone is equipped
with a simple service which asks her to approve or disapprove new applica-
tions. This service is invoked as part of a loan application workflow.

Mobile applications like the ones described above can benefit greatly from Web
standards like BPEL and SOAP. By defining a common language for inter-service
interactions and data flow, these standards encourage the composition of simple
services into powerful distributed applications.

Unfortunately, these applications pose several important challenges that the
current state-of-the-art in SOAP and BPEL systems cannot meet. First, typical
mobile devices feature severely constrained hardware requiring a very lightweight
software infrastructure. Second, in the absence of a stable Internet connection,
it may be impossible, impractical, or too expensive for mobile devices to con-
tact centralized servers. Finally, wireless network links among mobile devices
may be disrupted frequently and unpredictably. These challenges necessitate a
lightweight, decentralized Web service middleware system which can perform
on-the-fly replanning, reallocation, and/or reconfiguration in the face of network
failure. Addressing these issues is a significant software engineering challenge.

In this paper, we describe Sliver, our first milestone in this long-term effort.
Sliver supports the execution of SOAP services and BPEL processes on mobile
devices like mobile phones and PDAs. Because Sliver builds on existing Web
standards, it can be used in conjunction with a wide array of existing develop-
ment tools. We emphasize that Sliver is not intended to replace existing SOAP
and BPEL middleware: rather, it extends the Web services paradigm to new



devices which did not previously support it. In Section 2, we discuss the funda-
mental characteristics of mobile devices that compel a new kind of middleware.
Section 3 provides an overview of the engineering challeges we faced in designing
and implementing Sliver. The resulting prototype implementation is evaluated
in Section 4. Finally, we discuss work on related middleware systems in Section
5, and give concluding remarks in Section 6.

2 Problem Statement

Today, developers can choose from a wide variety of support platforms for SOAP
services and BPEL processes. SOAP services are typically developed using a Web
service middleware platform, like Apache Axis [7]. BPEL execution engines, such
as ActiveBPEL [8], WebSphere Process Server [9], and Oracle BPEL Process
Manager [10], host the BPEL processes that invoke these services. These SOAP
services and BPEL execution engines are then deployed on top of Java appli-
cation servers, such as Apache Tomcat [11] and JBoss Application Server [12].
These general-purpose application server platforms provide developers, users,
and system administrators with a wide variety of common services, such as
event logging, execution monitoring, and load balancing.

Unfortunately, there are several practical issues that prevent existing SOAP
and BPEL middleware packages from being deployed on mobile devices. The
first issue is the combined footprint of the middleware and its support layers. For
example, Apache Tomcat 5.5.17 (including the requisite Java Standard Edition
1.4.2 runtime) consumes 78 MB of disk space and 20 MB of RAM even before a
single application has been deployed. Installing the ActiveBPEL engine increases
this footprint to 92 MB of disk space and 22 MB of RAM; deploying BPEL
processes on ActiveBPEL will consume even more resources. These requirements
are reasonable for desktop computers and servers, where gigabytes of hard disk
space and hundreds of megabytes of RAM are standard. However, only a handful
of the highest-end mobile phones and PDAs have enough storage space and RAM
to support these systems. Mobile devices also typically have far less powerful
CPUs than standard PCs; even if it were possible to deploy an application of
this scale on these devices, its runtime performance would be a concern.

The second issue is that these middleware frameworks and their support
layers are often designed with Java 2 Standard Edition (J2SE) in mind. Runtimes
which support this standard are widely available for many desktop and server
platforms, but are not generally available for mobile devices. Instead, mobile
device manufacturers include a more limited Java runtime, such as one based
on the Mobile Information Device Profile (MIDP) standard, on the device’s
firmware. Such runtimes support only a fraction of the features provided by a
full J2SE runtime. For example, the MIDP 2.0 standard, which is supported by
virtually all modern mobile phones, has only 145 classes in its public API; in
comparison, there are 2,723 classes in the J2SE 1.4.2 public API. Among other
features, MIDP 2.0 does not offer most of J2SE’s abstract data structures; its
support for runtime reflection is minimal; and it features a unified API for file



and network I/O that is incompatible with J2SE’s I/O APIs. Existing SOAP
and BPEL middleware systems depend directly on these missing and altered
APIs for their core functionality, and hence could not operate on most currently
available mobile devices even if the hardware was sufficiently powerful.

Finally, existing BPEL systems typically use HTTP for all communication
between hosts. However, this protocol is not a reasonable choice for many mobile
devices. Because of network restrictions, many mobile devices (such as most mo-
bile phones) cannot accept incoming TCP/IP sockets, and hence cannot serve
HTTP requests. Incoming requests are often restricted to less-conventional trans-
ports, such as SMS messages, which current systems do not support.

Thus, if a SOAP or BPEL execution engine is to be deployed on mobile
devices, it must embody three major traits: (1) it must have a suitably small
storage and memory footprint, including all the libraries on which it depends;
(2) it must depend only on the Java APIs that are available on all devices;
and (3) it must support a wide variety of communication media and protocols
flexibly. In the next section, we discuss how these traits influenced our design
and implementation of Sliver.

3 Design and Implementation

Sliver’s architecture features several characteristics motivated by the traits iden-
tified in Section 2. First, Sliver provides a clean separation between communi-
cation and processing. Communication components can be interchanged with-
out affecting the processing components. Second, Sliver only depends on two
lightweight external libraries, which themselves were designed with mobile de-
vices in mind. This minimizes Sliver’s footprint and ensures that Sliver can be
deployed on a broad range of devices. Third, Sliver’s SOAP components do not
depend on its BPEL components. Developers can deploy SOAP services on mo-
bile devices without needing Sliver’s full BPEL engine, further reducing Sliver’s
footprint.

The resulting architecture is shown in Figure 3. At the lowest level of the
architecture, the transport layer wraps various network media and protocols with
a consistent interface. The transport layer exchanges message objects in the form
of serialized XML strings. These strings are converted to and from Java objects
by the XML and SOAP parser layers.

The SOAP server layer wraps user-provided Java services with a Web service
interface. When deserialized messages arrive from the XML and SOAP layers, the
SOAP server directs them to the corresponding service. The service’s response
is serialized by the XML and SOAP layers, and is then sent over the network by
the transport layer.

Many of these layers are re-used by Sliver’s BPEL server. The XML parser
layer, in conjunction with the BPEL parser layer, converts user-provided BPEL
documents into concrete executable processes. The BPEL server layer hosts the
processes that these layers produce. Like the SOAP server, the BPEL server



XML Parser

SOAP Parser

SOAP 
Service

SOAP Server

Transport

BPEL Parser

BPEL Server

BPEL 
Process

Provider by userSliverThird-party library

BPEL Documents

Fig. 1. The architecture of the Sliver execution engine

consumes the requests that arrive from the transport layer and routes them to
the appropriate process.

In the remainder of this section, we discuss the design of these layers in further
detail. We focus specifically on the design decisions that allow Sliver to meet the
three traits identified in Section 2: small footprint, narrow API dependencies,
and flexible communication. We also provide a brief analysis of the trade-offs
made by this design.

3.1 Transport Layer

The transport layer is responsible for the transmission of messages produced by
the upper layers. As we discussed in Section 2, BPEL and SOAP engines typically
transmit messages using HTTP. However, HTTP is overly complex for some
purposes, and devices which serve HTTP requests must have a publicly-routable
IP address. Thus, it is not always reasonable to use HTTP on mobile devices. In
fact, each device may support a unique set of communication protcols and media.
For example, though MIDP’s I/O framework defines 12 basic protocols, vendors
are only required to support two (HTTP and HTTPS) [13]. Worse, MIDP devices
are not required to serve incoming HTTP and HTTPS requests: they must only
be able to create outgoing requests. Moreover, Sliver targets a wide range of Java
runtimes and API specifications, ranging from PCs (J2SE) to mobile phones
(MIDP)1. Because these runtimes have incompatible communication APIs, no
single communication codebase can support both kinds of devices.

Sliver addresses these issues by using a transport layer with pluggable com-
munication protocol support. When “tranditional” protocols like HTTP are not
feasible, Sliver can use whatever protocols are available, like SMTP or SMS. This
1 Sliver also supports many devices, like PDAs, which have capabilities in-between

mobile phones and PCs. Some of these devices use a MIDP runtime; others feature
a runtime which resembles an older version of J2SE.



design is inspired by the pluggable protocol layers used by TAO [14] and Apache
Axis 2.0 [15]. Mobile devices support a wide array of communication mediums
and protocols. So, Sliver’s transport layer is specifically designed to facilitate the
support of new protocols. If a developer wishes to support a new protocol, he
must implement only two public interfaces with a total of eleven public methods.
Currently, Sliver supports raw TCP/IP sockets on J2SE and MIDP devices, as
well as HTTP on J2SE devices.

Channel
+ close()
+ isClosed() : boolean
+ sendObject(object)
+ receiveObject() : Object
+ sendElement(element)
+ receiveElement() : Element

Transport
- listener: TransportListener
+ open()
+ close()
+ isClosed() : boolean
+ openChannel(endpoint) : Channel

TransportListener
+ newConnection(Channel)

creates !

notifies "

Fig. 2. Channel and Transport class diagrams

The Channel interface, shown in Figure 2, wraps an underlying communica-
tion medium/protocol with methods for sending and receiving messages. As we
discuss in Section 3.2, Sliver represents these messages in two different forms.
Sliver provides simple helper methods which feed both forms of messages into
the XML and SOAP parser layers, converting these messages to and from SOAP-
encoded strings. Implementing the send and receive methods thus only involves
invoking the appropriate helper method, and then transmitting the result over
the network. The Channel interface also mandates a method for closing the un-
derlying communication protocol, which often simply calls the protocol’s own
close method(s).

The Transport interface, also shown in Figure 2, acts as a factory for cre-
ating Channels; each Channel type has a corresponding Transport type. The
openChannel method creates a new connection to a remote host, as described by
the provided endpoint object. The type and contents of this endpoint object are
specific to each type of Transport; e.g., an HTTP provider may use URLs en-
coded as strings to describe its endpoints. Users may provide the Transport with
a TransportListener object, which is notified of incoming connections. Like the
Channel interface, the Transport interface provides a means for opening and
closing the entire transport, which is again generally trivial to implement.

3.2 XML/SOAP Parser

Because Sliver leverages standards like SOAP and BPEL, all messages exchanged
over the transport layer are encoded in XML form. Sliver uses the third-party



kXML [16] package to parse XML documents. kXML is designed with mobile
devices in mind: it has a small footprint (11 KB of storage space on MIDP
devices) and can operate on most available Java runtimes.

kXML implements the XML Pull Parser [17] (XPP) API, which breaks the
XML into a stream of tokens that represent each tag. kXML also includes the
kDOM package, which collects these tokens into nested Element objects. These
objects describe each tag’s name, attributes, children, etc.; Elements are nested
in a way that mirrors the original XML document’s structure. kXML also sup-
ports the serialization of tokens and Element objects back into XML strings.

As we discussed at the beginning of Section 3, Sliver encodes its messages
according to the SOAP protocol. Sliver uses the third-party kSOAP [18] library
to encode and decode messages. kSOAP sits on top of kXML’s XPP API and
converts Java objects to and from SOAP-encoded XML documents. Like kXML,
kSOAP’s small footprint (under 47 KB when combined with kXML) and careful
use of the Java API make it ideal for deployment on mobile devices.

In the interest of brevity, we do not discuss here how SOAP encapsulates
data in XML form; the interested reader may consult [3] for more information.
However, it is worth noting that, like many other object-oriented languages,
SOAP constructs objects out of primitive types (integers, strings, etc.) and other
well-known objects. Each type of object has an associated name and namespace.
SOAP namespaces are used to differentiate between different types with the same
base name, and are roughly analagous to Java packages or C++ namespaces.

kSOAP maps name/namespace combinations to Java classes. It automati-
cally recognizes a handful of types included with Java (Integer, String, etc.).
It also provides a SoapObject class, which service providers can extend to cre-
ate their own custom message types. Figure 3 shows an example of a custom
addResponse type.

public class AddResponse extends SoapObject {
public AddResponse() { this(0); }
public AddResponse(Integer value) {

super(“http://example.com/SomeNamespace”, “addResponse”);
addProperty(“value”, value);

}
public Integer getValue() {

return (Integer)getProperty(“value”);
}

}

Fig. 3. Code for a custom SOAP type

To minimize kXML’s code size and runtime overhead, it performs very little
validation on the documents that it parses. Specifically, kXML ensures that the
document is structurally sound (e.g., that all tags are closed), but not that it is



semantically sound (e.g., that tags appear in a specific order). As we discuss in
Section 3.4, this is a reasonable trade-off: for our purposes, semantic validation
is often unneeded at runtime, and can be performed manually where required.

3.3 SOAP Server

The SOAP protocol provides a standard for remote procedure calls (RPC) in
addition to message encoding. Sliver’s SOAPServer class implements the RPC
portion of the SOAP protocol. Again, in the interest of brevity, we do not discuss
in detail how these RPC calls are encoded. We note that requests and responses
are encapsulated as SOAP objects, and that these objects contain the call’s
parameters/return values as nested children. Like any other SOAP object, these
requests have an associated type name and namespace, which are used to route
requests to the appropriate service.

SOAPServer

+ SOAPServer(transport)
+ registerService(namespace, handler)
+ deregisterService(namespace)
+ start()
+ stop()

Fig. 4. SOAPServer class diagram

The SOAPServer hosts Web services on top of the transport, XML, and
SOAP layers. It has five methods relevant to the user, as shown in Figure 4.
The constructor, start method, and stop method are self-explanatory. The
registerService method allows the user to deploy SOAP services, and the
deregisterService method subsequently disables these services.

As noted above, requests are handled according to their name and names-
pace. In the interest of simplicity, Sliver uses a simple policy to map these re-
quest types onto Java method calls. Each namespace is associated with one
Java class, and each request type within the namespace is associated with one
method in that class. The user specifies the namespace-to-class mappings using
the registerService method. On J2SE devices, Sliver’s MethodCallHandler
class automatically directs requests to the method that shares the same name
and parameter types. Figure 5 shows an example of a complete SOAP service
provider, which provides the add SOAP service within the namespace http:
//example.com/SomeNamespace.

Unfortunately, the MIDP API lacks the features necessary to direct requests
to the correct methods automatically. On these devices, each service handler
must implement an invoke method in addition to its services. When a request
arrives, Sliver will pass the service’s name and parameters to the correspond-



ing class’s invoke method; the invoke method must direct the request to the
appropriate method. An example of this procedure is provided in Figure 6.

public class SampleServiceJ2SE {
public static AddResponse add(int in1, int in2) {

return new AddResponse(in1 + in2);
}

}
public class SOAPServerExample {

public static void main(String [] args) throws Exception {
Serialization.registerClass(“http://example.com/SomeNamespace”,

AddResponse.class);
Transport transport = new SocketTransport(9000);
SOAPServer server = new SOAPServer(transport);
server.registerService(“http://example.com/SomeNamespace”,

new MethodCallHandler(SampleServiceJ2SE.class));
server.start();

}
}

Fig. 5. Code for a simple SOAP service on J2SE

public class SampleServiceMIDP implements SOAPServiceProvider {
public static AddResponse add(Integer in1, Integer in2) {

return new AddResponse(in1 + in2);
}
public Object invoke(String methodName, Object [] params) throws Exception {

if(methodName.equals(“add”)) {
Integer in1 = (Integer)params[0], in2 = (Integer)params[1];
return add(in1, in2);

}
throw new Exception(“No service named ” + methodName + “ found”);

}
}

Fig. 6. Code for a simple SOAP service handler on MIDP

3.4 BPEL Parser

BPEL workflows are treated as highly-specialized SOAP services: they are in-
voked using exactly the same protocols as other services. Unlike standard SOAP
services — which are generally stand-alone entities implemented in any of a



wide variety of languages — BPEL processes use a standarized XML schema
to describe interactions among other SOAP services. Sliver uses the XPP API
described in Section 3.2 to parse these process descriptions.

Sliver represents each tag in the BPEL specification with a corresponding
Java class; e.g., the <assign> tag is handled by the Assign class. Each class
has a constructor which takes in an XmlPullParser object provided by the
kXML library. The XmlPullParser maintains an internal “cursor” which points
to the start of the next unparsed tag. Each constructor is responsible for parsing
everything between the corresponding start and end tags, including recursively
constructing the classes for any child tags. Figure 7 shows a simplified version
of the Assign class’s constructor.

Assign(parser, scopeData) {
parser.require(START TAG, “assign”)
// Require <assign> opening tag
parser.nextTag()
// Move cursor to start of first child

copies ← ∅
while parser.getName() = “copy”

copies.add(new Copy(parser, scopeData))
// As long as there are more child <copy> tags, parse them

if copies = ∅
throw “<assign> must have at least one <copy>”

// Validate that there’s at least one child

parser.require(END TAG, “assign”)
// Require </assign> closing tag
parser.nextTag()
// Move cursor to start of next tag

}

Fig. 7. Pseudo-code for Assign’s constructor

This policy has three major advantages. First, parsing a BPEL document
is very straightforward. An entire document can be parsed simply by creating
an XmlPullParser from the document’s contents and invoking the appropriate
constructors. Second, tags are represented as self-contained entities which can
be added to Sliver incrementally. Because BPEL is a complex and evolving stan-
dard, Sliver does not yet fully support the entire BPEL language. However, as
is shown by our evaluation in Section 4, Sliver can already parse and execute
many useful BPEL processes. Third, each class’s constructor can make local
decisions which verify the BPEL document’s validity. For example, the Assign
class’s constructor throws an exception if the <assign> tag does not have any



nested <copy> tags, as required by the BPEL specification. These local decisions
eliminate much of the need for a heavyweight, fully-validating XML parser.

BPEL tags fall into one of two basic categories. Activity tags represent an
actual action that can be executed — receiving a request from a client, ma-
nipulating variables, invoking SOAP services, etc. Other tags create or modify
a scope. Scopes contain state information that is not executed directly, such as
variable declarations, links (explicit dependencies among activities), and partner
links (communication links to clients or SOAP services). Conceptually, BPEL
scopes are much like scopes in traditional programming languages: constructs
declared in one scope are only exposed to activities nested within that scope,
and scopes can be nested within other scopes.

The ScopeData class encapsulates all the information known about each
scope at parse time. As the document is parsed, a reference to the current
ScopeData is passed to each class’s constructor. Because these constructors re-
cursively pass their own ScopeData to their children, all objects in the same scope
will share the same ScopeData information. When a BPEL process declares a
new nested scope (e.g., using the <scope> tag), the corresponding class copies
the current ScopeData and operates on this copy instead. This way, changes to
the new ScopeData are not propagated to objects outside of the new scope.

Note that the ScopeData only contains information that is known statically
at parse time. For example, ScopeData contains information about the names
and types of variables used by the process, but not their values. Sliver maintains
runtime information in a seperate InstanceData class. Each time the process is
executed, a new InstanceData object is created; it tracks variable values, link
status information, and partner link bindings.

Sliver also includes an abstract Activity class which supports runtime
execution of activity tags. All classes which represent activity tags extend
the Activity class. Activity provides two important methods: execute and
executeImpl. execute waits for the activity to be ready to execute (i.e., to en-
sure that all of its predecessors have completed successfully) and then invokes the
executeImpl method. executeImpl is overridden by each activity class so that
it actually carries out the specific action; e.g., Invoke.executeImpl performs
a SOAP call. Each activity is responsible recursively for invoking its children’s
execute method when necessary. As activities execute, they update the provided
InstanceData object as needed (e.g., to change a variable’s value). Hence, the
entire process is executed by simply creating an empty InstanceData and pass-
ing it to the first activity’s execute method.

3.5 BPEL Server

The BPELServer class hosts the BPEL processes that the BPEL parser generates.
BPELServer extends SOAPServer to invoke these processes in place of SOAP
services. It also adds several additional methods to its public API, shown in
Figure 8.

The addProcess method creates a BPEL process in the specified namespace;
it reads the processs BPEL specification from the provided InputStream. This



BPELServer

+ BPELServer(transport)
+ addProcess(namespace, in)
+ bindIncomingLink(link, 
requestNamespace, requestType)
+ bindOutgoingLink(link, endpoint)

SOAPServer

Fig. 8. BPELServer class diagram

method invokes the BPEL parser described above, which encapsulates the entire
workflow in a Process object.

In the interest of being transport-agnostic, the BPEL specification does not
define how to assign actual communication endpoints to each partner link. Thus,
BPELServer offers the bindIncomingLink and bindOutgoingLink methods. The
former method maps the names of incoming partner links to the kinds of mes-
sages that they accept as input. The latter method maps the names of outgoing
partner links to concrete endpoints. Figure 9 shows how these methods are used
to implement a complete BPEL process.

public class BPELServerExample {
public static void main(String [] args) throws Exception {

String namespace = “http://example.com/ExampleWorkflow”;
Transport transport = new SocketTransport(9001);
BPELServer server = new BPELServer(transport);
server.addProcess(namespace,

new FileInputStream(“ExampleWorkflow.bpel”));
server.bindIncomingLink(“ClientLink”, namespace, “executeWorkflow”);
SocketAddress endpoint = new SocketAddress(“127.0.0.1”, 9000);
server.bindOutgoingLink(“ExternalSOAPServiceLink”, endpoint);
server.start();

}
}

Fig. 9. Code for a simple BPEL process

As processes execute, the BPELServer also assists each process with sending
and receiving SOAP messages. Unlike the SOAPServer, the BPELServer parses
these messages using the kDOM parser, i.e., as nested Element objects. As noted
in Section 3.2, this approach preserves the requests’ structural value, but ignores
their semantic value. We do this because the BPEL process is effectively a mid-
dleman between SOAP services: it does not care about the semantic meaning of
the data that it handles. However, BPEL processes are allowed to query struc-
tural information about variables; e.g., part of a process may repeat until a



variable has a certain value. Keeping the variables in Element form is ideal for
this, since this allows us to query the variables’ structure in a generic way.

Unfortunately, this approach has one drawback: the BPELServer cannot en-
sure the validity of the messages that it handles. Many processes receive messages
from remote services and eventually forward them to other services. If such a
process receives a malformed message or a message of the wrong type, then it
will blindly forward this invalid message to another service. According to the
BPEL specification, the BPEL process should instead generate an error as soon
as a non-conforming message is received.

However, we argue that this drawback is not a major concern. Web services
are advertised using the Web Service Description Language [19] (WSDL), and
their message formats are described using the XML Schema [20] (XSD) language.
Many existing BPEL engines use these advertisements to verify that incoming
messages are well-formed and of the correct type. However, WSDL and XSD are
complex standards; it is impractical to deploy a WSDL or XSD parser on most
mobile devices, let alone to deploy a verifier on top of such a parser. Fortunately,
most verification can be done statically at design time rather than dynamically
at run time. BPEL design tools like JDeveloper BPEL Designer [10] can verify
statically that a process will never forward messages between two incompatible
services. In effect, Sliver shifts the burden of verification to more capable devices
(i.e., the process designer’s workstation). This allows Sliver to be deployed on
devices which cannot be expected to perform these verification steps.

Sliver cannot yet handle cases that must be verified at runtime (e.g., when a
Web service sends a message that contradicts its advertisement). Again, we argue
that this is not a major practical problem. Sliver’s behavior and the “correct”
behavior have the same end result: the process fails. However, Sliver will generate
a failure when the malformed message is rejected by its ultimate destination,
rather than when the process first receives the message; this is not compliant
with the BPEL standard. In future work, we will consider how to provide an
optional, lightweight verification process which would handle these cases.

4 Evaluation

In its current state, Sliver supports BPEL’s core feature set and has a total
code base of 114 KB including all dependencies (excluding an optional HTTP
library). Sliver supports all of the basic and structured activity constructs with
the exception of the compensate activity, and supports basic data queries and
transformations expressed using the XPath language [21]. Sliver also supports
the use of BPEL Scopes and allows for local variables and fault handlers to be
defined within them. However, Sliver does not currently support some of BPEL’s
most advanced features, including Serializable Scopes, Compensation, and Event
Handlers. In future work, we will extend Sliver to support these features.

In order to provide an adequate evaluation of Sliver, it is important not only
to benchmark its performance against an existing BPEL engine, but also to
demonstrate to what extent the expressive power of BPEL is preserved under



Sliver’s present implementation. A framework has been proposed which allows for
the analysis of workflow languages in terms of a set of 20 commonly reoccurring
workflow patterns [22]. A study of the BPEL language in terms of this framework
shows that BPEL can support in full 16 of these 20 workflow patterns [23]. Sliver
presently supports all but 2 of these 16 patterns. As part of our evaluation, we
implemented and tested these patterns as BPEL processes using the solutions
described in [23]. For consistency, all of the basic activities in these processes are
represented by the invocation of a trivial Web service which adds two numbers
and returns the result. These example processes also provide a convenient test
suite with which to benchmark Sliver’s performance.

Our benchmark consists of 12 of the 20 patterns listed in [22]. The Multi-
Merge, Discriminator, and Arbitrary Cycle patterns are excluded because BPEL
does not support them. Sliver also does not presently support all of the BPEL
features used by two of the Multiple Instances patterns. Additionally, some of the
patterns supported by Sliver were excluded, as their implementation in BPEL is
either redundant or is implicitly included in our solution for other patterns. For
example, the Implicit Termination pattern is included in all other patterns with
the exception of Cancel Case. Finally, the patterns Deferred Choice, Interleaved
Parallel Routing, and Milestone are non-deterministic and therefore do not make
practical benchmarks.

0

50

100

150

200

250

300

350

400

450

500

S
eq

ue
nc

e

Pa
ra

lle
l S

pl
it

Sy
nc

hr
on

iz
at
io
n

Ex
cl
us

iv
e 
C
ho

ic
e

S
im

pl
e 
M
er

ge

M
ul
ti-

C
ho

ic
e

Sy
nc

hr
on

iz
in
g 
M
er

ge

Im
pl
ic
it 

Te
rm

in
at
io
n

M
I 
(D

es
ig
n-

Ti
m
e)

M
I 
(A

 P
ri
or

i)

C
an

ce
l A

ct
iv
ity

C
an

ce
l C

as
e

Pattern

T
im

e
 (

m
s
)

ActiveBPEL (PC)

Sliver (PC)

Sliver (PDA)

Fig. 10. The cost of executing BPEL patterns; all results are the mean of 100 runs

In Figure 10 above, we compare Sliver’s execution of these 12 patterns versus
that of ActiveBPEL 2.0.1.1 and Apache Axis 1.4, popular open source engines



for BPEL and SOAP respectively2. Our test platform for this comparison is a
desktop computer equipped with a 3.2 GHz Pentium 4 CPU, 512 MB of RAM,
Linux 2.6.16, and Sun Java 1.5.0 07. Both ActiveBPEL and Apache Axis are
hosted on Apache Tomcat 5.5.15. Additionally, this figure shows Sliver’s perfor-
mance running these processes on a Dell Axim X30 PDA which is equipped with
a 624 MHz XScale CPU, Windows Mobile 2003, and IBM WebSphere Micro
Environment 5.7. To isolate the cost of process execution from network delays,
the BPEL process and SOAP service are colocated.

105 runs of each benchmark were used to generate Figure 10. The first few
runs of each benchmark have unusually high costs (often 5 to 10 times the mean)
due to class loading, etc. For this reason, we discarded the first 5 runs of each
benchmark and computed the mean of the remaining 100 runs. The error bars
indicate the standard deviation of these runs.

0

5

10

15

20

25

30

35

S
eq

ue
nc

e

Pa
ra

lle
l S

pl
it

Sy
nc

hr
on

iz
at
io
n

Ex
cl
us

iv
e 
C
ho

ic
e

S
im

pl
e 
M
er

ge

M
ul
ti-

C
ho

ic
e

Sy
nc

hr
on

iz
in
g 
M
er

ge

Im
pl
ic
it 

Te
rm

in
at
io
n

M
I 
(D

es
ig
n-

Ti
m
e)

M
I 
(A

 P
ri
or

i)

C
an

ce
l A

ct
iv
ity

C
an

ce
l C

as
e

Pattern

M
e
m

o
r
y
 U

s
a
g

e
 (

m
e
g

a
b

y
te

s
)

ActiveBPEL Heap

Sliver Heap

ActiveBPEL Non-Heap

Sliver Non-Heap

Fig. 11. The peak memory usage of each BPEL pattern

In addition, we used Sun’s Java Management Extensions [24] (JMX) API
to track the memory consumed while executing each pattern. Figure 11 illus-
trates the peak memory usage of ActiveBPEL and Sliver on our desktop PC.
Unfortunately, we were unable to accurately monitor memory usage on the Dell
Axim, because IBM WebSphere Micro Environment does not currently support
2 We once again emphasize that Sliver is not intended to replace feature-rich SOAP

and BPEL engines on capable hardware, but rather to support the execution of
BPEL processes on resource-limited devices. Our comparison is only intended to
provide a metric for acceptable performance.



JMX. We expect that it will have significantly reduced memory usage compared
to the desktop platform. In particular, the non-heap memory usage (which con-
sists largely of loaded classfiles) will be greatly reduced on mobile devices, since
they will use Java runtimes with much more compact class libraries. These run-
times may also garbage-collect more aggressively when deployed on devices with
reduced memory capacity, further reducing peak consumption.

We draw two important conclusions from our benchmark results. First, Sliver
consistently outperformed ActiveBPEL on comparable hardware. Sliver also con-
sumed approximately 7%–13% as much heap memory as ActiveBPEL, and ap-
proximately 66%-73% as much non-heap memory on our desktop computer. The
increase in performance and decrease in memory usage over ActiveBPEL can be
primarily attributed to the extra overhead incurred by ActiveBPEL’s validation
and administrative services, such as real time graphical status display of active
processes. The results of Sliver’s execution on the Dell Axim PDA show that
while Sliver’s performance is naturally lower than on our desktop, it is neverthe-
less feasible to deploy BPEL processes on such limited hardware.

Second, BPEL process execution often has negligible cost. Even on the
resource-limited PDA platform, the cost of carrying out most processes is on
the order of 100 ms. (The only exceptions are the Multiple Instances patterns,
which contain loops that make them inherently slower than the other patterns.)
As noted above, in order to isolate the costs of the BPEL engine, we evaluated
processes which invoke a trivial SOAP service located on the same host. Realisti-
cally, the cost of executing non-trivial SOAP services (including network delays)
is expected to dwarf the cost of supporting the BPEL process in Sliver.

5 Related Work

In [25], Gehlen describes a rule-based, peer-to-peer middleware targetted for
mobile devices. Like Sliver, Gehlen’s middleware system is based on the SOAP
protocol, features pluggable communication providers, and can be deployed on
MIDP devices like mobile phones. Sliver uses its SOAP provisioning layer to host
traditional BPEL processes. In constrast, [25] supports reactive, context-aware
applications described by the RuleML [26] language. Because these two systems
feature such vastly different programming models, they are suited for different
classes of applications, and are not directly comparable.

[6] proposes a partitioning scheme to support the execution of BPEL pro-
cesses on mobile devices. This scheme divides large BPEL processes into multi-
ple, smaller processes. This way, complex applications can be distributed across
multiple mobile devices, even if no single device is powerful enough to host the
entire application. Sliver is complementary to this effort; it provides a platform
on which these simple processes can be hosted.

[27] describes an effort to support Web service integration in pervasive net-
works using BPEL and mobile agent technology. The BPEL process is executed
by a mobile agent rather than a centralized BPEL engine. This agent may clone
itself and migrate directly to the devices on which services are hosted. It may



also carry “packed” copies of the service along with it as it migrates. The current
prototype system relies on the proprietary Bee-gent [28] mobile agent framework,
which is not suitable for mobile devices because it uses parts of the Java API
not supported by MIDP. However, many of the concepts described in [27] could
be reimplemented on top of light-weight middleware framework such as Sliver.

6 Conclusion

In this paper, we have presented Sliver, a middleware engine that supports BPEL
process execution on mobile devices. Our design flexibly supports many different
communication protocols and media, while still maintaining a minimal footprint.
Sliver uses a series of small, hand-written parsers in place of a heavyweight,
fully-validating XML parser. These parsers keep Sliver’s code size and runtime
overhead suitably low for deployment on even the most resource-limited mobile
devices. In its current implementation, which is available as open-source software
at [29], Sliver can host many useful processes on hardware ranging from mobile
phones to desktop computers. In future work, we plan to address the remaining
BPEL compliance issues and consider ways to further modularize Sliver.

The development of middleware engines like Sliver is an important step to-
ward the long-term goal of bringing groupware to mobile devices. Other impor-
tant challenges — including task allocation, data distribution, and user interface
design — still remain. Nevertheless, Sliver’s runtime performance demonstrates
that today’s mobile devices are already capable of hosting sophisticated group-
ware applications, and that this ultimate goal is practical as well as desirable.

References

1. Wikipedia: Workflow. http://en.wikipedia.org/wiki/Workflow (2006)
2. OASIS Open: OASIS web services business process execution language (WSBPEL)

TC. http://www.oasis-open.org/committees/tc home.php?wg abbrev=wsbpel

(2006)
3. Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., Mendelsohn, N., Nielsen, H.F.,

Thatte, S., Winer, D.: Simple object access protocol (SOAP) 1.1. Technical Report
08 May 2000, W3C (2000)

4. Ortiz, C.E.: J2ME technology turns 5! http://developers.sun.com/techtopics/
mobility/j2me/articles/5anniversary.html (2004)

5. PlatformX: Stargate. http://platformx.sourceforge.net/ (2006)
6. Maurino, A., Modafferi, S.: Partitioning rules for orchestrating mobile information

systems. Personal Ubiquitous Comput. 9(5) (2005) 291–300
7. Apache Software Foundation: Webservices - axis. http://ws.apache.org/axis/

(2005)
8. ActiveBPEL LLC: ActiveBPEL engine. http://www.activebpel.org/ (2006)
9. IBM: WebSphere process server. http://www-306.ibm.com/software/

integration/wps/ (2006)
10. Oracle: Oracle BPEL process manager. http://www.oracle.com/technology/

products/ias/bpel/index.html (2006)



11. Apache Software Foundation: Apache tomcat. http://tomcat.apache.org/

(2006)
12. JBoss, Inc.: JBoss application server. http://www.jboss.com/products/jbossas

(2006)
13. Ortiz, C.E.: The generic connection framework. http://developers.sun.com/

techtopics/mobility/midp/articles/genericframework/ (2003)
14. Kuhns, F., et. al.: The design and performance of a pluggable protocols framework

for corba middleware. In: Proceedings of the Sixth International Workshop on
Protocols for High Speed Networks (PfHSN ’99), Kluwer, B.V. (2000) 81–98

15. Apache Software Foundation: Axis 2.0 - axis2 architecture guide. http://ws.

apache.org/axis2/1 0/Axis2ArchitectureGuide.html (2006)
16. Haustein, S.: kXML 2. http://kxml.sourceforge.net/kxml2/ (2005)
17. Slominski, A.A.: XML pull parser (XPP). http://www.extreme.indiana.edu/

xgws/xsoap/xpp/ (2004)
18. Haustein, S., Seigel, J.: kSOAP 2. http://ksoap.org/ (2006)
19. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web services de-

scription language (WSDL) 1.1. Technical Report 15 March 2001, W3C (2001)
20. Fallside, D.C., Walmsley, P.: Xml schema part 0: Primer second edition. Technical

Report 28 October 2004, W3C (2004)
21. Clark, J., DeRose, S.: XML path language (XPath) version 1.0. Technical Report

16 November 1999, W3C (1999)
22. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:

Workflow patterns. Distributed and Parallel Databases 14(1) (2003) 5–51
23. Wohed, P., van der Aalst, W.M.P., Dumas, M., ter Hofstede, A.H.M.: Pattern based

analysis of BPEL4WS. Technical Report FIT-TR-2002-04, Queensland University
of Technology (2002)

24. Sun Microsystems, Inc.: Java management extensions (JMX). http://java.sun.

com/products/JavaManagement/ (2006)
25. Gehlen, G., Mavromatis, G.: Mobile web service based middleware for context-

aware applications. In: Proceedings of the 11th European Wireless Conference
2005. Volume 2., Nicosia, Cyprus, VDE Verlag (2005) 784–790

26. Boley, H., Tabet, S., Wagner, G.: Design rationale of RuleML: A markup lan-
guage for semantic web rules. In: Proceedings of the first Semantic Web Working
Symposium (SWWS’01). (2001) 381–401

27. Ishikawa, F., Yoshioka, N., Tahara, Y., Honiden, S.: Mobile agent system for
web service integration in pervasive networks. In: 1st International Workshop on
Ubiquitous Computing. (2004) 38–47

28. Toshiba Corp.: Bee-gent multi agent framework. http://www.toshiba.co.jp/

rdc/beegent/index.htm (2005)
29. Hackmann, G.: Sliver. http://mobilab.wustl.edu/projects/sliver/ (2006)


	Sliver: A BPEL Workflow Process Execution Engine for Mobile Devices
	Recommended Citation
	Sliver: A BPEL Workflow Process Execution Engine for Mobile Devices

	tmp.1418149444.pdf.RS5ck

