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Abstract

This paper presents the ARAS simulator with which asynchronous instruction pipelines can be
modelled, simulated and displayed. ARAS allows one to construct instruction pipelines by prepar-
ing various configuration files. Using these files and a number of benchmark programs, performance
of the instruction pipelines can be obtained. The performance of asynchronous instruction pipelines
can also be compared to synchronous case. Thus, one can decide the optimal design for instruc-
tion pipelines in asynchronous or synchronous cases and explore the design space of asynchronous
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Simulation of Asynchronous Instruction Pipelines

Chia-Hsing Chien Mark A. Franklin
Washington University
St. Louis, Missouri

January 31, 1996

1 Introduction

This paper presents ARAS, an Asynchronous RISC Architecture Simulator which allows for easy
simulation of asynchronous instruction pipelines. The objectives of this paper include the illustra-
tion of the ARAS simulation architecture, the specification of the simulation models, the visualiza-
tion of simulation results, and the discussion of particular results of interest.

To achieve higher performance most contemporary computers use instruction pipelining tech-
niques. By employing pipelining techniques, a computer can overlap the execution of several in-
structions and obtain higher throughput. For example, Figure 1 shows the high level view of the
DLX [13, 18] instruction pipeline. The standard DLX instruction pipeline consists of five stages;
Instruction Fetch (IF), Instruction Decode (ID), Execution (EX), Memory Access (MA), and Write
Back (WB). An instruction, when executing, passes through each of the stages in a sequential
fashion (although not all instruction types will use all stages).

There are a number of factors which influence the efficiency of instruction pipelines. For ex-
ample, the stages will have higher utilization and the pipeline be more efficient if the workload
associated with each stage is roughly the same (i.e., the stages are balanced). Other efficiency
factors include reducing synchronization overhead and, where possible, exploiting instruction-level
paralielism by having multiple parallel pipelines. Various RISC processors incorporate these and
other techniques for improving overall instruction throughput and their effect on the performance
of instruction pipelines has been studied in [4, 5, 6, 8, 12, 13, 14, 15, 20].

Although the idea of asynchronous design has been explored since 1950’s, most digital systems
are currently clocked. However, as clock rates have increased, problems of clock skew control and

chip power levels associated with today’s CMOS based microprocessors have become increasingly
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Figure 2: Asynchronous DLX Instruction Pipeline

difficult to overcome. Researchers have therefore been studying the benefits resulting from using
asynchronous design techniques in microprocessors. With such techniques there is no clock skew,
there is the potential for lower power levels, and there is the possibility of an increase in the overall
instruction throughput [9, 10].

Consider the synchronous (clocked) DLX instruction pipeline of Figure 1. After an instruction
has finished its operation in the current block, it enters its successor block under the control of a
global clock. The clock frequency is selected so that every instruction is able to finish its operation
in the current block and is ready to move to its successor block within a clock cycle time. Thus, at
one level, clock rate in a synchronous system is governed by the longest operation time among the
blocks.

In the asynchronous DLX instruction pipeline shown in Figure 2, however, instruction progress
through the pipeline is controlled by a handshaking protocol. After an instruction has finished its
operation, the current block (block;) sends a request signal (Req) to its successor block (blockiy1).
If the block;y1 can accept the instruction, an acknowledgement signal (Ack) is sent back to block;.
The instruction then proceeds from the block; to block;y, for further processing. If block;4; is busy,
the instruction waits in the current block until the successor dlock;; can accept a new instruction.

The use of asynchronous modules in the design of processors goes back to the 1960’s with work

at Washington University in St. Louis [3]; however, an entire asynchronous microprocessor was not
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Figure 3: An Overview of the Simulation

developed until 1988 at the California Institute of Technology [16]. Later, an asynchronous version
of the ARM processor, AMULET1, was built at University of Manchester (UK) [11]. Currently,
SUN Microsystems Inc. is developing an asynchronous microprocessor called the CounterFlow
Pipeline Processor (CFPP) [19]. The performance advantages associated with asynchronous design
are discussed in more detail in [9, 10]

At the Second Working Conference on Asynchronous Design Methodologies (1995}, several ad-
ditional asynchronous machine designs were proposed although the performance of these machines
is still not clear [17, 1, 7]. The simulation tool ARAS is designed to help evaluated the performance
of alternative asynchronous architectures. Thus, evaluations can be obtained prior to implementing
the real machine.

Section 2 below presents an overview of the ARAS simulator and how it is used. Section 3
discusses the data structures associated with defining ARAS pipelines. This is followed by Section 4,
which considers an example instruction pipeline executing in asynchronous and synchronous modes
and shows simulation results for several performance metrics. The final section, Section 5, presents

conclusions.

2 ARAS: An Overview

Figure 3 shows the overall structure of the ARAS simulator. The pipeline structure is specified by

a set of configuration files (to be discussed later) developed by the user. A standard event-driven
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Figure 4: ARAS Display

simulation approach is used with the simulation being driven by a benchmark program assembled
into SPARC assembly language. The benchmark programs can be selected either from a library,
or can be user supplied. As the simulation progresses results are displayed dynamically using the
X-Window system and overall performance statistics are also presented.

As an example, consider the five stage DLX [13, 18] instruction pipeline shown in Figure 4. Each
rectangle in the display represents a pipeline block or stage. Each block executes a set of associated
micro-operations which have been set by the user to reflect operations which should take place in
that stage. Lines between blocks represent paths that instructions may take during execution. The
present of a dot in a particular block indicates that an instruction is being processed in that block
(e.g. IF, ID, MA, WB), otherwise the block is empty (e.g. EX). The movement of instructions
through the pipeline corresponds to the movement of dots from one block to another and can be
seen as a dynamic visualization of instruction processing. At the time an instruction moves from
one block to another, the lines between the blocks involved momentarily thicken. Though not
shown in this black and white representation, dots within the blocks are color-coded to reflect each
instruction type. In addition, the border of each block is color-coded to reflect changes in block
status. A block may be idle, busy, or blocked.

As the simulation progresses, the user can thus easily follow the progress of instructions through
the pipeline. In addition to the dynamic visual display, a designer can gather global system and local
block performance, including system throughput, execution time required for processed instructions,
number of processed instructions on a block or system level, throughput, and percent of idle,

busy, and blocked time associated with individual blocks. These results can be used to improve



Table 1: Content of Operation Delays File (Unit: ns)

| Operation | Function | Time / Value |
HAND.SHAKING.ACK | Acknowledgement Signal 1.0
HAND_SHAKING_REQ [ Request Signal 1.0
BUFFER_DELAY Buffer Delay 0.5
REG.ACCESS Register Access 3.0
MEMORY_HIT Memory Access If In Cache (a hit) 5.0
ASYN_MEMORY _MISS | Memory Access If Not In Cache (a miss) 20.0
ADD_BASE Addition Base for 1-bit of Addition 1.0
INS_ DECODE Instruction Decode 3.0
SIMPLAE_OP Simple Operations {e.g. Arithmetic Operations) 5.0
RCA Ripple-Carry Adder FALSE
SEL Carry-Select Adder TRUE
NUMBER_BLKS Block Number for SEL 8
FwW Data Forwarding FALSE
PURGE Instruction Purging (e.g. Branch Instructions) FALSE
CLOCK_MODE Clock Mode Simulation FALSE
CLOCK.TIME Clock Time When CLock Mode Is Selected 20.0
CLKS_MEMORY _MISS | Memory Access When a Miss Occurs in Clock Mode | 40.0
TIME_STEP Delay Factor for Display 50000

performance by redesigning the instruction pipeline.

The core of the simulator implements a standard discrete-event simulation algorithm. After the
simulator receives the benchmark program and the configuration files (see Section 3) the simulator
schedules events for each block following the operation times associated with the instructions in the
given block (Table 1) and the requirements of an asynchronous handshaking protocol. For example,
the delays associated with the two-phase request-acknowledge protocol used in the asynchronous
mode are shown at the top of Table 1.

When the instruction finishes the operations of a particular block, the simulator decides whether
this instruction may proceed to the next block depending on whether or not this next block is busy.
To make sure every model (more complex pipeline configurations than shown in the example can
be constructed) can be simulated properly, a standard score-boarding technique [13] is used to
prevent data hazards. The handshaking protocol automatically prevents resource hazards. While

the simulator schedules the instruction and its micro-operations in the proper sequence, out-of-



order execution is permitted after the Instruction Decode block. To enable this, the simulator has
been designed to handle control hazards resulting from branching instructions.

The configuration files include three files specifying the structure of simulated pipeline models
and a file (Table 1) denoting operation delays and other parameters of the pipeline. ARAS also
supports two asynchronous adders [10], the Ripple-Carry Adder (RCA) and the carry-SELect adder
(SEL), with the parameter NUM_BLKS used to specify the number of the blocks used to implement
SEL. The ARAS simulator can also simulate a clocked instruction pipeline if CLOCK_MODE is
selected. In this case, the clock rate is determined by the parameter CLOCK_TIME. Details of the
parameters in the operation delays file can be found in [2].

With ARAS, benchmark programs can be written in any programming language if these pro-
grams can be compiled as SPARC assembly code. However, before the benchmark programs are
fed into ARAS, they need to be translated from SPARC assembly codes into the ARAS format.
This is done with an interpreter which is part of the ARAS system.

Currently, there are two benchmark programs from SPECint92 (Espresso and Compress)
that are available as standard benchmark inputs. In addition, there are several other benchmark
programs which are available which have been developed locally. In this paper we consider only

the two SPECint92 benchmark programs.
3 Pipeline Structures

As shown on the left side of Figure 5, there are three steps needed in specifying an instruction
pipeline configuration. Corresponding to these steps is the development of associated configuration
files. While we discuss these steps in a sequential fashion, the designer must keep in mind all three
steps simultaneously since they interact with each other in determining the final pipeline design.
The designer first has in mind a rough pipeline idea which consists of a set of blocks, their
functions, and their interconnections. At the lowest level, the functions available for inclusion in
a blocks operation are specified in terms of a set of available micro-operations (see Table 2). In
addition, each SPARC assembly instruction will require the completion of a certain set of micro-

operations for its proper execution. This association of SPARC assembly instructions and micro-
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Figure 5: Generation of Instruction Pipeline Configurations and Files
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Table 2: Micro-Operation Identification Numbers and Operations

Micro-Operation ID Operation
11 Write PC value to instruction memory address register
12 PC update
13 Read instruction and store it in instruction register
21 Instruction decode
22 Operand fetch and branch process
31 Execution for ALU instructions
41 Memory access for memory instructions
51 Write back to register

operations is shown in Table 4.

Knowing the SPARC instruction set and associated micro-operations, the designer first deter-
mines those micro-operations which will be included in each pipeline block. This is defined in the
file block.dat which is shown symbolically in Figure 5 (top right). In this example, five blocks are
specified (0, 1, ..., 4) with block 1, for example, executing the micro-operations 21 (Instruction
Decode) and 22 (Operand fetch and branch processing).

The second step involves specifying which instructions will be processed by each block (file
conflicts.dat). Each entry in conflicts.dat corresponds to a SPARC assembly instruction, with the
entry (0 or 1) determining whether the instruction will require the use of the associated block. A
zero entry indicates instruction use of the designated block while a one entry indicates the block
will not be used.

For the DLX example, all the instructions require processing in all blocks (although for some
instructions the delay through the block may be negligible) thus all entries in Figure 5 are zero.
There are other pipeline structures, however, where this may not be true. Consider, the superscalar
architecture shown in Figure 6 where two instructions may be fetched from memory and subse-
quently executed in parallel. By permitting both parallel and out-of-order execution of instructions
(after decode), increased performance may be achieved. Consider, for example, the third stage of
the pipeline where there are three parallel block types. A load or store instruction type will use

the memory access block while an arithmetic type instruction will use one of the two other blocks.



Figure 6: A Superscalar Instruction Pipeline

Both instructions may executed in parallel at this stage and the associated instruction dependent
information will be stored in the conflicts.dat file.

The third step concerns describing the interconnection topology associated with the pipeline
(i.e., the pipeline architecture). This is done by specifying the contents of the file config.dat. Each
entry in config.dat {(bottom right of Figure 5) associates a block name with a block type (defined
in block.dat), determines connections to other block(s), determines at what stage (numbering from
left to right) the block should be located in the pipeline display, and determines the number of
parallel blocks of this type that should be present. For example, block 1 is labelled as the ID block,
is connected to block 2, is in the second position in the pipeline, and only a single block of this type
is present at that stage. Note that a -20 in column 3 of config.dat indicates that the associated
block is the last stage of the instruction pipeline.

With the completion of these three steps and specification of the associated files, definition of the
pipeline architecture is complete. The simulator uses these files to determine the proper sequence
of events to create in response to the instructions provided by the benchmark programs. In the

next section, an example will be presented which demonstrates operation of an ARAS simulation

and illustrates some typical results.
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140.000 ns

Figure 7: Display of Simulation
4 ARAS Simulation of Clocked & Asynchronous Pipelines

In this section, the DLX instruction pipeline discussed earlier is simulated using asynchronous and
synchronous timing methodologies. Operation delays used in the simulatior are shown in Table 1.
The clock rate has been selected to be longest operation time (assuming cache hit) among all blocks
in the pipeline. In this case, the ID block has the longest operation time (20 ns). Note that when
an instruction is not in the cache, a miss penalty is applied with the penalty being an extra clock
period time.

Figure 7 shows the simulation at the point when the first instruction of the benchmark is just
about to leave the last WB stage. The upper window is for asynchronous case and the lower window
is for the synchronous case. Notice that the asynchronous case requires 43 ns, but the synchronous
case needs 140 ns. This difference is due to a number of factors. In both cases, for example, there

is an initial memory cache miss associated with the IF stage. For the asynchronous case, however,
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Table 3: Simulation Results (MIPS)

Simulation Case Espresso | Compress || Simulation Case Espresso | Compres
DLX (Asynchronous) 55.8 58.8 || 6-Stage (Asynchronous) 55.6 59.0
DLX (Synchronous) 20.0 26.8 [ 6-Stage (Synchronous) 33.3 31.1

the miss penalty is 20 ns, while for the synchronous case it is 40 ns (adjusted so actions take place
on a clock tick). In addition, the first instruction for this benchmark is a branch and requires no
processing in the EX, MA and WB stages. The asynchronous design can take advantage of this
while the synchronous design, in our model, requires 2 minimum of 20 ns delay for each stage.

After executing the benchmark programs, the overall simulation results are obtained and shown
in Table 3. For the 5-stage asynchronous DLX instruction pipeline the mean throughput for the two
benchmark programs is 57 MIPS while for the synchronous case it is 28 MIPS. These differences
reflect a host of factors. One is the average versus worst case performance advantage associated
with agynchronous designs. Another is the relatively small asynchronous handshaking delays which
have been selected for simulation.

In addition to obtaining the overall system performance, a designer can also observe the per-
formance of each block. In the above example, the utilization of each block was found (in the
asynchronous case) to be IF = 97%, ID = 61%, EX = 28%, MA = 22% and WB = 23%. IF has
the highest utilization as expected since there are always instructions available to be fetched.

Taking the next highest utilized block, ID, it might be interesting to examine the effects dividing
its associated micro-operations across two sequential blocks thus constructing a 6-stage pipeline. In
this case, dividing ID into two sequential blocks results in the maximum block time being reduced
to 17 ns from 20 ns. The clock time for the synchronous implementation can now be somewhat
reduced. Note that basic functions are associated with micro-operations, and micro-operations are
not divisible. In this case, ID is composed of two the micro-operations 21 and 22 (see Table 2),
with operation 21 taking 3 ns, and 22 taking 17 ns. Thus, the ID block cannot be divided evenly.
This is a common architecture problem which is encountered when trying to balance stages in a

pipeline.
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The two timing methodologies can now be compared for this 6-stage case. As indicated in
Table 3, the synchronous MIPS rate is 32 (up from 28) and while the asynchronous MIPS rate
remains about the same. The increase in the synchronous case is due entirely to the increase in
clock rate. Note that the maximum MIPS rate that can be achieved is about 62 MIPS due to the
limitations associated with instruction fetching. This slight change in the pipeline thus has little

effect on the asynchronous rate which is already at about 57 MIPS.

5 Conclusions

In this paper, the ARAS simulator is presented and discussed. ARAS allows for the simulation
of both asynchronous and clocked instruction pipelines. The details of ARAS and its use are
explained. This includes the basic steps needed to develop and specify a pipeline topology, and
the development of driving benchmark programs. An example 5-stage pipeline is examined in
more detail and the results of using ARAS on this pipeline are presented. The 5-stage pipeline is
modified by dividing one of the stages into two stages. The restrictions associated with such a stage
division are discussed, and the performance of a resulting 6-stage pipeline are presented. It is shown
that, for the example considered, there is little performance gain associated with moving from a
5 to 6 stage pipeline. Overall the ARAS system permits users to develop and explore alternative
pipeline architectures and determine their relative performance in both a clocked and asynchronous

environment.
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Table 4: Instruction Set and Micro-Operations

Micro-Instructions Group 1

11 12 13 21 22 31 51

Micro-Instructions Group 2

111213 21 22

Micro-Instructions Group 3

11 1213 21 22 31 51

Micro-Instructions Group 4

111213 21 22 41 51

Micro-Instructions Group 5

1112 13 21 22 31 41 51

Ins Ins Micro Ins Ins Micro Ins Ins Micro
iD Name | Operations || ID | Name | Operations | ID | Name | Operations
0 |add Group 1 36 | sth Group 1 72 | bvs,a Group 2
1 | addce Group 1 | 37 | std Group 1l |[[ 73 | bve Group 2
2 | addx Group 1 | 38 | stb Group1l || 74 | bvc,a Group 2
3 addxc Group 1 39 | ba Group2 || 75 | ta Group 2
4 | taddce Group 1 40 | ba,a Group2 ([ 76 | tn Group 2
5 | taddcctv | Groupl ([ 41 | bn Group 2 || 77 | te Group 2
6 | sub Groupl | 42 | bn,a Group 2 78 | tne Group 2
7 | subce Group 1l || 43 | be Group 2 [ 79 | tl Group 2
8 |subx Group 1 44 | be,a Group 2 || 80 | tle Group 2
9 | subxce Group 1 || 45 | bne Group 2 || 81 | tge Group 2
10 | tsubcc Group 1 46 | bne,a Group 2 |[ 82 | tg Group 2
11 | tsubcctv | Group 1 || 47 | bl Group 2 || 83 | tlu Group 2
12 | mulsce Group 1 48 | bla Group 2 84 | tleu Group 2
13 | and Group 1 49 | ble Group 2 85 | tgeu Group 2
14 } andcc Group 1 50 | ble,a Group 2 || 86 | tgu Group 2
15 | andn Group 1 51 | bge Group 2 || 87 | tpos Group 2
16 | andncc Group 1 | 52 | bge,a Group 2 |[ 88 | tneg Group 2
17 | or Groupl | 53 | bg Group 2 [( 89 | tcs Group 2
18 | orce Group 1 54 | bg,a Group 2 90 | tcc Group 2
19 | orn Group 1 55 | blu Group 2 91 | tvs Group 2
20 | orncc Group 1 56 | blu,a Group 2 ({92 | tvc Group 2
21 | xor Group 1 || 57 | bleu Group 2 ([ 93 | wry Group 3
22 | xorce Group 1 58 | bleu,a Group 2 94 | save Group 4
23 | xnor Group 1 {f 59 [ bgeu Group 2 || 95 | restore | Group 4
24 | xnorcc Group 1 60 | bgeu,a | Group 2 || 96 | mov Group 5
25 | sl Group 1 61 | bgu Group 2 || 97 | sethi Group 3
26 | srl Group 1l | 62 | bgu,a Group2 (198 |rd Group 3
27 | sra Group 1 63 | bpos Group2 |99 | cmp Group 5
28 | Id Group 1 64 | bpos,a | Group 2 100 | jmpl Group 2
29 | Idub Group 1 65 | bneg Group 2 101 | call Group 5
30 | Idsb Group 1 ([ 66 | bneg,a| Group2 | 102 | jmp Group 5
31 | Iduh Group 1 67 [ bee Group 2 103 | clr Group 5
32 | ldsh Group 1 68 | becya Group 2 104 | ret Group 5
33 | ldd Group 1 69 | bes Group 2 105 | nop Group 2
34 | swap Group 1 | 70 | bes,a Group 2

35 | st Group 1 71 | bvs Group 2
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