Metadata, citation and similar papers at core.ac.uk

Provided by Washington University St. Louis: Open Scholarship

Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-01-44

2001-01-01

Legends as a Device for Interacting with Visualizations

Mihail E. Tudoreanu and Eileen Kraemer

Users and developers of visualization tools must deal with the problem of specifying what
information to show and how to represent it. Typically, the user's focus of interest will change
over time, and the specifications must change with the user's interests. Techniques for the
simple, direct, and intuitive creation and refinement of these specifications can be useful. In this
paper we show how legends, a natural element of graphical displays, may be used as a direct
and unobstrusive interaction device through which users may interactively specify new
visualizations and animations.

... Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

b‘ Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

Tudoreanu, Mihail E. and Kraemer, Eileen, "Legends as a Device for Interacting with Visualizations" Report
Number: WUCS-01-44 (2001). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/278

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://core.ac.uk/display/233234541?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F278&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F278&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F278&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F278&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F278&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F278&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F278&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/278?utm_source=openscholarship.wustl.edu%2Fcse_research%2F278&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/278

Legends as a Device for Interacting with Visualizations

Mihail E. Tudoreanu and Eileen Kraemer

Complete Abstract:

Users and developers of visualization tools must deal with the problem of specifying what information to
show and how to represent it. Typically, the user's focus of interest will change over time, and the
specifications must change with the user's interests. Techniques for the simple, direct, and intuitive
creation and refinement of these specifications can be useful. In this paper we show how legends, a
natural element of graphical displays, may be used as a direct and unobstrusive interaction device
through which users may interactively specify new visualizations and animations.

https://openscholarship.wustl.edu/cse_research/278?utm_source=openscholarship.wustl.edu%2Fcse_research%2F278&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/278?utm_source=openscholarship.wustl.edu%2Fcse_research%2F278&utm_medium=PDF&utm_campaign=PDFCoverPages

Legends as a Device for Interacting with
Visualizations

Mihail E. Tudoreanu and Eileen Kraemer

WUCS-01-44

December 2001

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

St. Louis MO 63130

Legends as a Device for Interacting with Visualizations

Mihail E. Tudoreanu
Department of Computer Science
Washington University
St. Louis, MO 63130

ABSTRACT

Users and developers of visualization tools must deal with
the problem of specifying what information to show and
how to represent it. Typically, the user’s focus of interest
will change over time, and the specifications must change
with the user’s interests. Techniques for the simple, direct,
and intuitive creation and refinement of these specifications
can be useful. In this paper we show how legends, a natural
element of graphical displays, may be used as a direct and
unobtrusive interaction device through which users may
interactively specify new visualizations and animations.

Keywords
Visualization, direct manipulation, legend, interaction
device.

INTRODUCTION

Visualization, the use of images to convey meaningful
information, encompasses sub-fields such as scientific,
information, process, and software visualization, In each of
these types of applications, the user of a visualization tool
may be faced with the problem of what to show, how to
show it, and where to start. The developers of these tools
must face the problem of how best to permit the user to
specify their initial interest and to then refine these
specifications. In this paper we present legends as an
interactive device through which users may interact with
visualizations to dynamically alter the specification of what
data to collect and how to present it.

Legends are appealing because of their familiarity and
simplicity, and the potential for direct and natural
manipulations. Legends are found on many maps and
graphical displays. Automatic data presentation tools such
as APT[l] and SAGE[3] include legends in the
visualizations they generate. Through repeated exposure to
these dispiays, most people understand legends and can
divine their meaning for a given display. Further, legends
are simple, a mapping of pictorial elements to data.
Interactions with legends may also prove to be simple.
Thus, this kind of interaction may prove suitable for
computing devices that are windowless or have small
displays, such as PDAs. Legends provide a way of adjusting
the appearance of visualizations by acting upon the
visualization itself. There is no need to switch to other
windows or tools, and users avoid the process of iteratively

Eileen Kraemer
Department of Computer Science
The University of Georgia
Athens, GA 30606

altering an indirect representation, invoking a compiler, and
then switching to the picture to check the result. Instead,
interaction with the visualization itself produces an
immediately observable change that can then be reversed,
continued, or otherwise modified, a style of interaction is
well-suited for design and exploration tasks. Legend
interaction can be integrated with other tools that facilitate
interactions with visualizations, like Visage[2], a system
that supports manipulation of data across multiple
visualizations displays.

Legends can evolve along with the data set they represent,
and in this way provide the user with an appropriate set of
interaction choices for the current state. Animation
characteristics can also be specified, through legends in
which the temporal dimension and its mapping to graphical
attributes is made explicit. As a motivating example we
consider a scenario in which a user, through visualization
and interaction, is exploring the behavior of a distributed
genetic algorithm.

Gene

Fitness

deme id

Size

array of individuals

(row, column) of the grid

Table 1: Variable types and relation,

INTERACTION STYLE
In this section we illustrate the types of manipulations users
may perform through legends and attempt to give the reader
an idea of the gestural language available to users. We
present a sample visualization session, and describe how a
hypothetical user analyzes the execution of a distributed
genetic algorithm. A genetic algorithm is used to
approximate the maximum (or minimumy) value of a cost

fdivichsd

finasy

individuals

Figure 1: The fitness of all individuals.

function and to obtain a solution, a member of the function's
domain that yields the approximated maximum. A number
of potential solutions, called chromosomes or individuals,
are distributed at the nodes of a network, in this case with a
grid-tike topology. A group of individuals local to a node
form a deme. From time to time, individuals are exchanged
{migrate) between adjacent demes. Each node processes its
deme in steps known as generations. The population of one
generation is obtained from the previous generation through
a process similar to natural selection: individuals that are
most fit, as determined by the cost function, are most likely
to pass on their encoding to the next generation.

The visualization system produces displays based on the
state of the computation, With each change in state in the
computation, the visualization system updates the display.
The system has knowledge of the type of variables in the
state as well as the relationships between them. This
knowledge is either embedded in the computation code by a
programmer or exfracted by code analysis or
instrumentation tools. Variables and relations for the
genetic algorithm are presented in Table 1. The member
relation identifies the deme each individual belongs to,
while send and recv correspond fo the sending and receiving
demes of a migrating individual.

e 1
3

Figure 2: The evolution of deme sizes.

Initially, the visualization system constructs, either
automatically or with user's guidance, the four ‘simple'

visualizations of Figure 1, Figure 2, Figure 3 and Figure 9.
Each visualization has a legend that provides insight into
the meaning of the graphical elements of the picture, A
legend consists of keys, each describing a specific visual
element. The legend in Figure 2 has four keys: one conveys
that a sphere represents a deme. Another conveys the
relation between the radius of a sphere and the deme size.
The coordinate axes, useful in understanding the
correspondence between the data they encode and the
location of elements in the picture, are also considered
keys.

= modurns

[damz

Figure 3: The position of the demes on the network grid.

Keys can be classified in two categories based on the type
of information they present. One category of keys, object-
entity keys, shows how entities of the program, such as
demes or individuals, are related to the types of graphical
objects in the picture. Such keys appear in the visualization
as a rectangle that holds an image of the graphical object
and the name of the entity (left on Figure 2). The other
category of keys, attribute-scale keys, show how properties
of data entities are encoded visually with attributes of their
graphical object. These keys (right on Figure 2) depict the
graphical object and attribute and the name of the data
property and show a list of graphical values and the
corresponding list of data values of the property. The values
appear as dots, or ticks, on a thread. Special representations
are assigned to keys describing textual labels and to
coordinate axes. Textual labels do not have the two lists of
values ner the threads. Coordinate axes consist of an arrow
with ticks, the data values corresponding to these marks,
and the name of the data attribute.

deme id
fvia mamber}

Wﬁ&

b s
] i
2 E

G:ég
thy <}

piitvidunt

fitrmsn 2 4 8 8 1

Bor. L
é@iﬁ“ Eardivieisls

i R e e
5 k{5 2% 24

Figure 4: Individuals are moved to the y-position of their deme id.

Typically, the ticks, values of visual attributes and data that
are displayed in a key, are automatically chosen at a fixed
distance from one another based on the range of data and
graphical values of each thread. The range is determined by
the minimum and maximum values of the elements
displayed in the picture. If a small aumber of values are
encoded by a key, all values appear as ticks. If too many
values need to be displayed, the key shows only a few
samples. The tick marks corresponding to selected elements
appear when the user selects graphical objects in the
visualization,

We now describe a scenario in which the user concentrates
on the visualization of Figure 1. The user will interact with
the legends of the visualizations to group individuals by
deme, to move the objects corresponding to individuals to
positions based on deme, and to animate the migration of
individuals between demes. For simplicity of presentation
in this paper, the number of individuals was reduced.

First, the user wishes to mark each individual depending on
the deme they belong to. To do so, the deme id key, the y-
axis, is dragged from Figure 2. A dragging gesture copies
selected elements to a target and is interpreted as a request
to modify the target. In this case the y-axis of Figure 2 is
dropped on the visualization of Figure 1 with the result that
the visualization receives not only the graphical attribute of
the key but also the data values that already exist on the y-
axis, deme ids A, B and C. The graphical objects of the
picture now exhibit a new visual property. The system is
able to associate individuals to deme-ids through the
member relation, and thus to y-locations. The result is that
the bar object of each individual now has its bottom aligned
with the y-position corresponding to its deme. The member
relation, which was used by the system to associate deme

ids and individuals, becomes part the name of the key:
“deme id (via member)” (Figure 4). If additional deme-
individual relations were defined, the user could cycle
through the available relations by clicking on the “member”
label. After a click, the visualization would change to
reflect the current relation.

The current visualization (Figure 4) has individuals of the
same deme scattered along the x-axis. The user decides that
it is better to have them grouped by deme. This can be done
by sorting their x-axis values on the deme id. To do so, the
user drags the vertical coordinate, which is the key that
encodes the deme id, to the x-axis. As a result, the x-axis
becomes a key that encodes the same data values as before
(e.g. individuals 1 through 23), but in an order specified
first by the deme id, then by the individual number. In
general, this type of operation leaves unchanged a key
whose graphical attribute is inherently unordered for human
perception such as text, shape and texture. However, the
label of the new key is always changed to show the attribute
on which it is ordered, as shown in Figure 5.

In the remainder of the scenario, the user wishes to put the
individuals at their actual positions on the map and animate
their migration. To achieve this, the user drags the
coordinates of the map (Figure 3) to the current
visualization (Figure 5). A conflict occurs, as the
visualization already has x and y axes. The system
highlights the keys involved to bring the conflict to the
user’s attention. Conflicts can be resolved by eliminating
one of the conflicting keys or by changing its graphical
attribute. In our scenario, the user chooses to eliminate the
former x-axis and to change the deme id enceding to color.
Individuals are thus moved to the map position that
corresponds to their demes (via member relation). The user

dams i
{via rombor)
&

LB individusts

R R e A R R e R R AR i

PR

pinke

(ordarsd by deme &)

Figure S: The x-axis is ordered by deme id.

can cycle through the available graphical attributes for a
key by clicking the representation of the current attribute, or
the arrow in the case of a coordinate. One of the possible
values is an empty graphical attribute which has the effect
of deleting the key from the visualization. The deletion is
promptly reflected in the visualization, but the key remains
for a while to give the user a chance o continue moving
through the available graphical attributes.

[X 11

Sopid A B W@ Hrness

Figure 6: Individuals of a deme are overdrawn af the
same grid position.

At this point, all indjviduals of a deme are drawn on top of
each other, at the same x-y location (Figure 6). This
happens because the typical behavior of the visualization is
to map one data value to a single graphical value, However,
the user has the option to assign a range of graphical values,
henceforth termed a band, to the same data value. Graphical
objects in a band have the same data value, but are
automatically spread out so they can be individually
examined by the user. For this reason, the creation of a
band can be thought of as the “opening' of an attribute
value. The gesture is a double click on the tick that

corresponds to the value to be opened. The dot is replaced
by a cylinder whose width is chosen by the system with the
goal that all graphical objects with the specified value are
distinguishable. However, if a large number of objects with
the opened value exists, the system assigns a smaller band
than needed, with the result that the objects may still partly
overlap. The user can then adjust the value of 2 band by
pulling its ends. The spacing between bands is preserved.

SEERNN

e

Rt el

Figure 7: Individual at the same column are
distinguished upon.

In our scenario, the user next selects a bar object, which
results in that individual's x-location being shown on the x-
axis as a mark. The user then double clicks on that mark to
separate the objects at that position. After this operation, all
the ticks on the data thread of that key become highlighted
for a short period of time. The user clicks on one of the
highlighted elements to request that the system perform the
same operation for all values of the graphical attribute, with
the result that objects no longer overlap on the x-axis
(Figure 7).

As an aside, we note that a user may choosc to aggregate
the elements of a band into a single element. This is
accomplished by moving one end of a band on top of the
other and has the result that one bar object appears in the
visualization for each x-position. The other attributes of the

bar are also aggregated. For numeric atfributes such as
position, height or radius, the value of the aggregate is the
average or the sum of the attributes of the compenents. For
colors and textures, the system can present each of the
colors and textures in a portion of the aggregated object.
Shapes typically overwrite one another. When a small
number of elements is involved, text labels can be
aggregated using the first character of the label of each
component.

Returning to our scenario, we see that one problem with the
current visualization is that individuals are too close
together in both the x and y dimensions. The height, which
encodes the fitness, causes the individuals to overlap due to
lack of space on the y-axis. On the x-axis the user finds it
difficult to distinguish between members of adjacent demes.
Both problems require that the spacing between positional
values be increased. The user accomplishes this by ‘pulling
the end of each axis until a satisfactory spacing is achieved
(Figure 8).

o
@ 2%

8.8 o)LL

4%

-

A T

dedizEan

Figure 8: Grid positions are spaced from each other,

In general, the values of a key or coordinate axis can be
regarded as marks on a rubber/elastic thread. Increasing the
length of the thread has the effect of increasing the relative
distance between marks. Most keys have two threads, one
for graphical values and one for data values. A data value
corresponds to the graphical value directly above it. In the
scenario, by ’stretching' the data threads of both axes, the
user controls the distance between members of different
demes. A thread can be pulled from either an end-point or
an inside point. If pulled from an inside point, the end-
points remain fixed and consequently one part of the thread
widens and the other shrinks and the linearity of the
mapping of data to graphics is altered. Note that a band is
considered a single mark, so its size does not change
through this interaction. The size of the band can be
modified by manipulating its ends.

Animation

Time provides another dimension through which
information can be presented. Thus, the manner in which a
graphical change is animated is another attribute for which
a key may be included in the legend. Animation keys have a
similar appearance to graphical attribute keys and are
subject to the same manipulation gestures. However, they

are conceptually different from graphical keys, and the
semantics of some operations differ.

deme id
L1

HEA A P §iprurmasy
drchvidal fraoed

Figure 9: Sending and receiving individuals between
demes.

Animation is dependent on logical time, determined by the
evolution of the program, and incremented when the state
changes. Logical time is a key that appears in all
visualizations either explicitly, as in Figure 9, or implicitly
as in Figure 8. In the latter case, time can be considered as
appearing on a z-axis perpendicular to the screen. Frames
depicting previous states can be regarded as a stack, with
the most recent frame visible. The time key resembles the
controls of a VCR with controls that start, stop or step
through the process of time advance.

Animation is performed by smoothly varying one or more
attributes of graphical objects over a period of time,
Attributes are assumed to have one dimension imposed by a
total ordering of their values. Initial, final and possibly
intermediate values for each attribute are specified. These
values, termed interpolation points, are the values of the
attribute at given logical time points; i.e., in certain states,
The attribute is interpolated from the previous point to the
current point in real time. The interpolation is not
necessarily linear; speed may vary during interpolation.

R e R

cletpie it £
i

chrmier i {raey)

Figure 10: Example of animation key

An example of an animation key is given in Figure 10. In
the upper region, the type of object invelved in the
animation is presented. A sample object is animated in an
infinite loop, starting with an initia] value of the attribute,
and smoothly changing to a final value. The object briefly
stops at each interpolation point. The values of the
interpolation points for the sample object are chosen by the
system based on the type of graphical object and animated
attribute.

In the middle region, the interpolation points and the
relative distance between them are shown by means of a
thread. A second thread is used to display the duration and
the speed at the interpolation peints. The tick marks on the
upper thread indicate interpolation points. A user may
interact to add or remove points by clicking on the desired
lacation of the thread. The lower thread represents time
and, in addition to tick marks, has a slider that moves from
one end of the thread to another. The slider takes one
second from one tick to the next, independent of the
spacing between ticks. The slider movement changes the
appearance of the object(s) in the upper region of the key.
At any given time the value of the animated attribute is the
value shown above the slider. So, the closer the tick marks
on the time thread, the lower the animation speed. In Figure
10, it takes 2 seconds to move from the injtial interpolation
point to the next one, In the first second, the individual
moves quickly, but in the next the individual moves more
slowly.

The lower region is used to depict the keys that supply
values for an interpolation point. Only two points need to
be defined; the value of others can be inferred. It is
practical to require that the final point be explicitly
specified before the animation of an object ends. If the end
point is not known for an object, that object does not
perform the last two interpolations. This permits the
specification of the final value in a later state, after the
object has started the animation. The second to last value
serves as a temporary destination.

To create an animation key, the user selecis the objects to
be animated from an existing key and the attributes that will
change from other keys. These keys are dropped on the
time key that appears in each visualization. A new
animation key is added for each attribute. By defauit, the
interpolation has two unassigned points and the speed is
constant. The user can add new points and change the time
thread. Values must be assigned to at least two points for
the animation to begin.

In our user’s scenario, the circle objects of Figure 9 and the
coordinate axes of the current visualization (Figure 8} are
used fo create new animation keys, with the result that the
sending of individuals between demes is animated along the
coordinates. For the rest of the discussion, we will focus on
the animation on the x-axis. Animation of the y-axis is
sirmilar.

The user adds two more interpolation points: one past the
middle of the upper thread and the other close to the end.
The desired animation effect is for the individual to move
more than half way towards the destination deme, but to
complete the movement only after the destination deme has
actually received the individual. The initial and the third
points are set when an object starts the animation, that is,
when it is sent. The second point is awtomatically
computed, while the last point will be set when the object is
received,

To specify the starting point, the user selects both the y-axis
of Figure 9 and the key that associates spheres with sends.
Int this manner, only the deme ids corresponding to send
events are considered. The selection is then dragged and
dropped on the initial interpolation point of the animation
key (Figure 10). Next, the key showing the label of the
circles, the actual destination, is dropped on the third point.
Note that once the deme id is known, the x-position on the
grid can be easily determined.

The system can now search for bar objects to be animated.
The individuals associated with these objects are
represented as spheres in Figure 9, as those were the objects
used to create the animation key. The system takes the
values of both the deme id on the y-axis and the deme id in
the label of those spheres and initializes the interpolation
values for the corresponding bar objects. Those objects
start the animation. However, none can finish yet (neot even
individuals that were actually received) because the system
does not know the final interpolation point.

To specify the final point, the bex objects and the y-axis of
Figure 9 are first selected. They are dragged to the final
interpolation point. The system can now search to find bars
that have already started the animation and are also boxes in
the visualization of Figure 9. The ones that are found finish
the animation because their final interpolation point
receives the value of the deme id of the box. To prevent
finishing the animation for an object that was received from
one deme and then sent to another, a box is considered
related to an animated bar only if it exists at a logical time
later than the time corresponding to the beginning of the
animation of that bar.

While new send objects appear in Figure 9 the
corresponding bars begin the animation process. Similarly,
new receive objects lead to the end of animation for the
corresponding bar objects.

DISCUSSION

The gestural language for visualization manipulation
requires a pointing device and the ability to click, or touch,
and to drag components of the visualization. The
components that can be manipulated, the available gestures,
and the semantics of operations are presented in Table 2.
After an operation is performed for a tick or band, the key

Component | Gesture Semantics

Graphical Selection Ticks and bands

object corresponding to the

selected objects are shown

Ticks Double click | Changes to a band

Band Double click | Changes to a tick
Move end | Modifies the range of
points graphical values associated

to the band.
If range is zero, request
aggregation,

Thread Grab and | Stretches or shrinks the
pull on a|thread or parts of it
point Applicable to all threads

except interpolation thread.

Coordinate Click Displayed as a regular

axis thread

Animation Click Adds or removes ticks.

key threads

Attribute of | Click Cycles through available

a key graphical attributes.

Data label of | Click Cycles to the next available

a key data attribute.

Relation Click Cycles to the next available

label of key relation.

Key Drop on a ! Added to that visualization.
visualization

Attribute- Dropped on | Orders the target key if

scale keys a graphical | possible.

key

Dropped on
temporal key

Creates an animation key

Entity-object
key

Dropped on
an attribute-
scale key

Changes the graphical
object of the target. All
objects of the dragged type
receive a new attribute

Table 2: Summary of interaction gestures

remains hightighted for a period of time to permit users to
perform the same operation for all values of the key with a

single gesture.

The visualization system must have knowledge of both the
underlying data and of the characteristics of the graphical
elements that are employed in the visualization. From the
underlying data, the system needs to link properties of
related entities in order to support the transfer of the keys
among visualizations, Information about graphical
attributes, such as the difference between values that is
distinguishable for a human viewer or whether the attribute
is continuous or discrete, helps the system decide what
values to include in the keys. The characterization of the
attributes, based on autematic data presentation techniques
(1] [3]), can be also employed to choose the order in which
the available atiributes are presented to user. The attribute
best-suited for presenting the data property is shown first.

Limitations

Although legends can be used to refine visualizations and to
obtain quite different views of the data, they are not helpful
in building visualizations from scratch. An initial set of
visualizations that is rich enough to ensure the reachability
of other interesting visualizations must be defined.

Changing graphical objects and attributes as well as
modifying the relations that associate a property of an entity
to another entity are potentially ‘hard to do’ when the
system is complex and numerous visual elements exit.

Another limitation is that interpolation points for an
animated object must be associated with the object in some
existing visualization so that the necessary key exists.

REFERENCES

1. Mackinlay, JD. Automating the design of graphical
presentations of relational information. ACM
Transactions on Graphics2, 5 (April 1986), 110-141.

2. Roth, S.F et al. Visage: A User Interface Environment
for Exploring Information. Proceedings of I[EEE
Information Visualization (San Francisco, October
1996), 3-12.

3. Roth, 8.F., and Mattis, J. Automating the Presentation of
Information. Proceedings IEEE Conference on Al
Applications, (Miami Beach, FL, February 1991), 90-
97.

	Legends as a Device for Interacting with Visualizations
	Recommended Citation
	Legends as a Device for Interacting with Visualizations

	tmp.1439916845.pdf._lfR4

