Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-97-13

1997-01-01

EUPHORIA Reference Manual

T. Paul McCartney and Kenneth J. Goldman

EUPHORIA is a user interface management system that enables end-users to create direct
manipulation graphical user interfaces (GUIs) through interactive drawing. Used in conjunction
with The Programmers' Playground, a distributed programming environment, end-users can
dynamically create and associate GUI components with an underlying application without
programming, This document describes EUPHORIA's functionality.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

6‘ Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

McCartney, T. Paul and Goldman, Kenneth J., "EUPHORIA Reference Manual" Report Number: WUCS-97-13
(1997). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/430

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F430&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F430&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F430&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F430&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F430&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F430&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F430&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/430?utm_source=openscholarship.wustl.edu%2Fcse_research%2F430&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

EUPHORIA Reference Manual

T. Paul McCartney, Kenneth J. Goldman

WUCS-97-13

February 1997

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

Saint Louis, MO 63130-4899

EUPHORIA

Reference Manual

T. Paul McCartney and Kenneth J. Goldman

Revised for EUPHORIA v3.13
February 1997

Euarlier version published as
Washington University technical report WUCS-95-19.

Copyright (c) 1993-1997 by
Distributed Programming Environments Group

Washington University
Campus Box 1045
One Brookings Drive
Saint Louis, MO 63130-4899

Abstract

EUPHORIA is a user interface management system that enables end-users to create direct manipulation graphical user
interfaces (GUIs) through interactive drawing. Used in conjunction with The Programmers’ Playground, a distributed
programming environment, end-users can dynamically create and associate GUI components with an underlying
application without programming. This document describes EUPHORIA’s functionality.

Table of Contents

1 Introduction “ ., |
2 Basic Drawing ... eissssnssasens 2
Drawing Shopesiiirniiiieiieeeeeeernrsrennes w2

To change the color of shapes or DUCKGrOUNAccrverriniersnessssssssesssssassssssssssssessersssssesas 2

To hide the tool palette and datad DOURAATY ..o e rre s s ssssrsaessrassens e ssses s nns 2

2.1 Selection & Handles .. iicienmrnssesenscemsessssssssesssssssarssesssesssessasssassssensssssssesssssas sns 3

TO ARICLE @ SRAPE ..o vee s e ctesee s srressse e s tenrns sssa s s s s e senssa e res b es s arns b e ssaasbsasesbnb st snsnas 3

2.2 LAYCIINE tciriiiiccaeerrerecreasesssses s ssssssasssssssesessstsssessnssssssossssssesassssssansesessusisnssbostassnstesssnsnnssssanasans 3

2.3 COOTUINALE SYSIEM tierrrrrrrrearrrrsesssresesmsmssssrissessesssasssesssessasessesesesastssessssssosons iessassssssissensasmissosane 3

To change the origin or $Cale Of @ AYAWING ccocevrcvirceinecsree ettt ereae e seeeeee e s ereenee e 4

3 DataBoundary ... S 4
To disable/enable external COMMUNICAHONeovuveereesscereseeesreseinessisssvese e ssssassssess st sasssemssnsessascon 5

3.1 PUDIShEd VAIIADBIES ...cocecererrrreesiveinessessrmissessssessasssinsssssssssssssnsssessssessnssssensaosssssssssassosessns 5

To publish a Graphics QUHIIDUIEeeiierecorererirsericrasrinssesessssesssn e ssassssssassssssessssssssassssess tesssstsnsssesses 5

To delete or reRame @ VATIADIE ..ttt ertsre s srs s sress s s et s eassasabt s e sessrseans 5

3.2 Variable AUTIDULES WINAOW ..ooviriiceirctetrictnrne s scrrcrnescrsstssestssssetsnssssssessasssssasssessessosasanssansrse 5

3.3 Add Variables WINAOW ..ivieiciiiiiinriresssssssesesssssssesssssssssssssesssssssssssssssssssssssassesssenssns 6

To create a Lser-defined TUPLE EYPE et sr e ettt st st e et st sesas s s s emnmstrmnns 7

To create a user-defined Qrray Of HPIES IVPE v vererriinereeeiasseceeresnssssnesssssensssesesssssssssssssssssasressarnsss 7

4 Constraints 7
4.1 ANChOL CONSIIANLIS .uiicirersrissssrsisrssssssarunsssssosssssiorisnssssassessassssasensssessesesssessasesesesssessassssnsrsssones 7

4.2 Equality CONSITAINLS .iiiceisriiessssiionssimmsisionioossssesssosssssrsesssssssssrsesssessssssssesssssesssess sresssesses 8

4.3 Conversion CONSITAITILS ...ueueeisissiersierssmisrmsssssrassorsssieisssssesessaseisssestssesssssesssssresseassessssssessssrassnes 8

4.4 Formula CONSITANLS ..ccoereteeessirieirrsesriaesssssssersserseserssssssssssessassssssessissessresassasssssssssssessasersrssesnns 9

T0 create @ fOrmula CORSIPAIRE ... ceeierees et estas st e et ta s s semsamee s em e e s e eenemenmessmeeeatrmnmreeseeernenn 9

4.5 Constraint SIENZHNS .ovivimiisieriiiieneriesenrersseeresissesesssestesssatsssssess asasasssasasssssssssssstesssssssanes 9

4.6 Constraint Visualization and EAING ...vcccveeecvinneneceernssessessesiesssassssssssssssssssssessssessssssssenss 10

T0 €At CONSIFAINLScorcreeverrreresrscrrererssssssseraressessassesarnesesasansssessss sasasanses st aseas sssns snessmsasssnsssesensanes 11

T view Biden CORSITAIALS ..ciccniintineie e ceeeereeieeeseeeresseeesessssassasssaserasssasssssssssantrssssannsessasmssnenn 1

To view collapsed and “Crowded” CORSITAINLS ... evrrieeererereesressesineasssseeraseseseess stssaes stebsesases 14

5 Advanced Drawing - . - e 11
5.1 MOVIES woiiriiiiciccnsmsincsssscssese e esesesestsanssbosssssesessssesssesesssatsssanasas suns s sensssssnassssasassasssssressssssesis 11

5.2 IMAZINary ODJECS wiveroroicccrecierisresmrrsnersrissssestersssarssssssssessssssesatnisssessesiesssssensrsessessssssssssasessssene 12
USing IMAGINATY OBJECLS oot eeetnne st se s stsas st saaa s et s es s st e st smnem s senane s e am s anem 12

3.3 ABIMAIIVES tiivitsrisissisirisisinissineseninesesasassesssesessssesssesssssarssesssessmsasssatssssassssstanessatassssnsnsassnssnssses 13

S WIAZELS iiiiiisiiissiieiserensincenrcsssesass s nsrsssstsasts s ssssseses st sessessanssassenssistessssnsessssnsasses versereneennasas 13

To defing @ WIIZE! ..coceooeiriceceeinececem s sevsrerss s sre st snsnsmsnssrs s esssessessasessnssssssessssssnsssarstsronesrns .3
TO UEE @ WIAGEE «nvvvraremscissesesnscs st sr s s e s bbb bt et et et eham s rraratonasesasasn e sesaseraresssevaeasanan 13

5.5 Aggregale MapPDINES .o.ueeiiimmiieiisniereseoes sasessssssssssessssesasesssentossses sbesssssssssssssasesssessssas 14
To define an QgEregale MAPPINGcoecrersieernsrrinmeressrerereasassasssmmsssssassasesssssssssssssssesssssassessssnsesssans 14
SPeCIfVIngG R AgETEGaLE JHIET oottt ern s s s eer e ssses s arseasssessertsasaranares 15
JOINING AGETEGULE JIEITS «.eveeieeeeeenete et ettt st sn s st st s e ss s bbb bb e aa bbb e sa b bin nrsben 15

6 SeflIP .cnvvcrserisressersssrsanes “ 16

6.1 Command LiNe ATZUIMEIIS ...evevererisrrirsessenisssarsesisssrsssesssessassersssessssssssssssssesssssssessessssssssass 16
0.2 PersSonal DITECIOLY .uviesiessmsrsserseimarmsesssasssssssssssesssassasssssssssesssesassssssessssassssstssssnsssssssesassses 17

7 Predefined Types ...ccmrinnessensaorns w18

8§ Common Questions easeesrees 19

Glossary w20

Acknowledgments wee21

Rl erenCeS.cuneeemnrsenrreresersssaeras ertrressstsaeasnraarrriserare 21

i -

EUPHORIA Reference Manual 1 Introduction

1 Introduction

The Programmers’ Playground is a software library and run-time system for creating distributed
muliimedia applications [1], [2]. Playground is based on /O abstraction, a programming model
for distributed systems that provides a separation of communication and computation. A distrib-
uted application consists of a set of communicating modules, wiitten as C++ programs, using spe-
cial data types from the Playground library. Varables declared using these data types can be
published, making information available to external modules. The communication structure among
the modules of a Playground application is defined by a set of logical connections among published
variables of the modules. Communication among modules of a distributed system oceurs implic-
itly; when a published variable is modified, the new value of the variable is automatically sent to its
comnected varjables. In this way, each module can be created independently of the modules with
which it communicates.

This document summarizes the features of EUPHORIA, a user interface management system for
Playground. With EUPHORIA, end-users can create direct manipulation graphical user interfaces
(GUIs) interactively through the use of an intuitive graphics editor. EUPHORIA, implemented as a
Playground module, can be connected to other modules of a distributed application through the use
of a visual configuration language [3]. This has the effect of associating an end-user GUI with its
underlying application.

+ Updates to published variables in external modules can change the properties of the
end-user drawing in EUPHORIA.

+ Manipulation of graphics components in EUPHORIA can change published variables,
sending changes to external modules.

Figare 1: External modules configured to EUPHORIA.

For cxample, Figure 1 shows three modules configured to form a distributed application:
MODULE1, MODULEZ, and EUPHORIA. Whenever variable N or Y is changed in MODULE! or
MODULE2, the changes are sent to EUPHORIA, possibly resulting in animation within the end-
user’s GUI. Similarly, whenever variable B or C is modified in EUPHORIA, these changes are sent
to MODULE1 and MODULE2.

EUPHORIA Reference Manual 2 Baslc Drawing

2 Basic Drawing

BUPHORIA's graphics editor consists of four parts (Figure 2): tool palette, data boundary, main
drawing area, and alternatives palette (not shown). Drawing in EUPHORIA is much like drawing in
other graphics editors such as MacDraw or FrameMaker. With the tool palette, users can select
shapes to be drawn, change the color of shapes, and perform other operations through the menus.

tool
palette separator
data
boundary
Bt separator
| ——

3 . -
separator -—+ main drawing area

Figure 2: EUPHORIA graphics editor, displaying an interactive maple syrup factory GUI,

Drawing shapes

Once a drawing tool is selected, the shape corresponding to that tool may be drawn in the main
drawing area. When drawing is complete, the drawing tool becomes vnselected. Double clicking
on a tool causes it to remain selected after the first drawing. In this way, users can conveniently
draw multiple shapes. When finished, clicking on a selected tool unselects it.

EUPHORIA is meant to be controlled by a three button mouse. Throughout this document, when-
ever the words “click” or “drag™ are used, the left mouse button is implied.

To change the color of shapes or background

The color of a shape can be selected by clicking on the appropriate color entry below the shape pal-
ette. Clicking on a color entry changes the color of the selected graphics shapes in the main draw-
ing window and sets the color for all future drawings. Double clicking on a color entry changes the
background color of the main drawing area.

To hide the tool palette and data boundary

The EUPHORIA window is divided into a number of panes (see Figure 2). The size of the panes can
be adjusted by dragging the separator line of the pane. This is useful for hiding the tool palette and
data boundary when a GUI is completed. When a GUI is saved/loaded, the associated pane sizes are

also saved/loaded.

EUPHORIA Reference Marnual 2.1 Selection & Handles

2.1 Selection & Handles

In the main drawing area, clicking on a graphics object causes it to become selected. When no
drawing tools are selected, dragging a selection box in the main drawing area will select all graph-
ics shapes within the box. All previously selected graphics shapes become unselected when drag-
ging a selection box.

¢ Clicking on a selected shape again causes it 1o become unselected.

+ Mnultiple graphics shapes can be selected at the same time; selecting a graphics object
does not nnselect other graphics shapes.

¢ Clicking in the main drawing area’s background causes all selected shapes to become
unselected.

fop-left_ height top-right

width

bottom-left
Figure 3: Selected graphics shapes and their handles.

“bottom-right

Figure 3 shows the selection handles of rectangle and text graphics shapes. As with other graphics
editors, most of these handles can be dragged to change the attributes of their graphics shape. The
color of each handle represents the type of information that it represents. For example, real number
values such as width and height appear in blue; “point” x,y coordinate values appear in green.
These handles are used not only for direct manipulation, but also for forming consiraints among
graphics shapes, as described in Section4. Some handles are exclusively nsed for forming con-
straints. For example, the handle in the boliom middle of a text object is used to connect to its
string attribute (see Section 4.3).

To delete a shape

Pressing the backspace or delete key will delete all selected shapes in the main drawing area. Cur-
/_/E rently there is no way to undo a delete operation.

22 lLayering

To control the order in which graphics shapes are drawn, each shape has an associated layer
attribute. When a shape is first created, it is set to the {ront-most layer. This means that it is to be
drawn on top of all other shapes. A selected shape’s layer can be changed with the Layer menu, by
choosing either Bring to Front or Send to Back.

2.3 Coordinate System

The main drawing area’s coordinate system is oriented with the x-coordinate axis increasing to the
right, and the y-coordinate axis increasing downward. By default, the origin is at the top-left comner
of the main drawing area. An origin controller provides a means to set the coordinate system of a
drawing to convenient local coordinate units of an external application rather than raw pixel values.
Users can change the position of the origin and the scaling factor of the x and y axes.

_3.

EUPHORIA Reference Manual 3 Data Boundary

X Axis -

SIXY A

o
origin

W]

Figurc 4: Coordinate system and origin controller.

To change the origin or scale of a drawing

The origin controller (see Figure 4) is invoked by choosing Origin Controller from the Edit menu.
Dragging the mouse within the drawing area sets the position of the origin to the mouse position.
Clicking on an axis allows one to enter a new coordinate value. The entered coordinate value is
used to determine a new scaling factor for the axis. For example, setting a value on the x axis to a
high number increases the scaling factor, making all graphics shapes in the main drawing area

shorter.

3 Data Boundary

BUPHORITA's set of published variables is known collectively as the data boundary (also known as
the “presentation™). As described in Section 1, EUPHORIA's published variables can be used to
establish communication between a drawing’s components and external distributed application
modules. This allows external modules to both modify graphics shapes and to receive updates from
end-user direct manipulation. As a result, interactive, animated graphical displays may be created
by the end-user. Figure 5 shows the graphical representation of the data boundary that appears as

the left portion of the EUPHORIA window.

-f— External Update Control

Published Variables

MEW |-sf——New Variable Area

Figure 5: Data boundary.

EUPHORIA Reference Manual 3.1 Published Varlables

To disable/enable external communication

The top portion of the data boundary contains an “External Update Control” button. Clicking on
this button toggles between Input/Output and Frozen modes, allowing users to enable or disable
communication between EUPHORIA and exiernal modules. It is sometimes useful to tum off com-
munication for a period of time in order to make it easier to modify graphics shapes.

3.1 Published Variables

A published variable represents a value that is shared with external Playground modules. When a
variable is changed in an external module, Playground sends the change out to all connected mod-
ules, including EUPHORIA. Similarly, when a graphics shape is modified (e.g. moved by the user),
this change may also be sent out to external Playground maodules, according to the published vari-
ables and the logical connections between variables (see Section 1). Figure 6 shows the visual
appearance of a few different types of published variables. As with handles, the color of a pub-
lished variable represents its data type.

Real Tuple Exposed Tuple Array

Figure 6: Publishied variables.

To publish a graphics attribute

A graphics shape handle can be published, meaning that the attribute that it controls is connected to
an externally readable or writable published variable. This is achieved by dragging, with the mid-
dle mouse button, a connection line from a graphics object handle to the “New Variable Area” of
the data boundary. This has the effect of creating a visual representation of a published variable,
informing the Playground environment of the variable, and forming a constraint (see Section 4)
between the handle’s graphics shape attribute and the published variable.

To delete or rename a variable

Clicking on a published variable selects or unselects it. Pressing the backspace or delete key
removes selected variables from the data boundary. Double clicking on the name of a variable
allows the name to be edited.

A Pressing backspace deletes both selected variables and selected graphics shapes. Be careful that
shapes are not selected before deleting a variable.

3.2 Variable Attributes Window

Double clicking on a variable opens a dialog box for viewing and changing its properties (see
Figure 7). Users can change the name, strength, protections, and other variable attributes.

A variable’s strength affects how the system interprets updates from external applications. The
strength represents the relative importance of its external updates in relation to connected con-
straints and user interactions. For example, by default, user actions such as dragging a graphics
shape take precedence over updates from a published variable (i.e., a variable that is connected to

5.

EUPHORIA Reference Manual 3.3 Add Variables Window

ST Varlanie AQTIbutes . |
Name:

Strength:]weaker

Type: point

Playground:

Read World
X Write World
Skip Values

1

Figure 7: Variable atiributes window.

the graphics shape). If the vaniable’s strength is set sufficiently high in relation to other system
strengths (Section 4.5), updates from the variable take precedence over user actions.

Each vartable has protections that control the read/write permissions of the variable to external
modules [3]. Note that having only write world protection is treated as a special case which allows
external updates to the variable to be processed in the internal constraint network more efficiently.

If the variable's Skip Values attribute is enabled {defanlt), some intermediate values of the variable
may be disregarded. This happens when external modules transmit values to EUPHORIA faster than
it can process the values, causing the Playground run-time system to quene multiple values for a
single variable. The Skip Values attribute skips all old values in the queue and only uses the most
recent value.

3.3 Add Variables Window

Double clicking on the “New Variable Area” of the data boundary shows the “Add Variables” win-
dow (see Figure 8). Any data type listed in this window can be published by selecting the type,
entering a name, and pressing the Add button.

PR cineacotAdd Variables

- File Types

2

weaal
integer

shaing Remove ||
momerryalock
modint

mnge

i ‘
Name: [v |

Figure 8: Add varlables window.

-6-

EUPHORIA Reference Manual 4 Constralnts

User defined tuple data types can be created that consist of multiple fields of data, including other
tuples. User defined arrays of tuple data types may also be created.

To create a user-defined tuple type

Choosing Capture Tuple Type from the Types menu of the Add Variables window creates a new
tuple type uvsing the currently displayed data boundary variables as the tuple fields and the entered
name as the type name. This new type is inserted into the list of available types.

Variables of a vser defined tuple can be published by pressing the Add button just as with other
types. When published into the data boundary, a tuple appears in green with a small triangle to the
left. This triangle is used to expose or hide the fields of the tuple (see Figure 6}.

To create a user-defined array of tuples type

Choosing Create Array Type... from the Types menu of the Add Variables window brings up a
window for creating static array types. Within this window, one can specify the tuple element type
and array size. Types created this way are added to the Add Variables window list of types.

Variables of a user defined array can be published by pressing the Add buiton just as with other
types. When published into the data boundary, an array appears in orange with two small triangles
to the left. These triangles are used to expose or hide the dimensions and field type of the array (see

Figure 6).

4 Constraints

A constraint is a persistent relationship to be maintained among graphics shape attributes. Users
can establish constraints among the graphics shapes attributes and/or published variables. Once a
constraint is formed, the system is responsible for maintaining the relationship when changes are
made to graphics shapes or published variables. For example, one could consirain the width and
height of a rectangle to be equal, constraining it to be a square; manipulating the height of the rect-
angle causes the width to also change, maintaining the constraint relationship.

Four types of constraints are supported: anchor, equality, conversion, and formula.

4.1 Anchor Constraints

An anchor constraint is used to set a graphics shape attribute constant, so that it cannot be changed
accidentally. For example, one can anchor the top-left and bottom-right of a rectangle to prevent it
from being moved.

i Clicking on a handle with the right mouse bution causes the corresponding attribute of the graphics
shape to become anchored. Clicking with the right mouse bution on the handle a second time
releases the anchor constraint.

EUPHORIA Reference Manual 4.2 Equallty Consfraints

4.2 Equality Constraints

An equality constraint can be established by dragging a connection line between two graphics
o shape handles of the same type with the middle mouse button.

Figure &: Inscribing an oval within a rectangle,

For example, an oval can be inscribed within a rectangle through the use of two equality constraints
(see Figure 9). A constraint is formed between the top-left handles of the oval and rectangle, caus-
ing the shapes to “snap together” (established constraints are shown here as lines). A second con-
straint is formed between the bottom-right handles, resulting in the oval changing shape to fit into
the rectangle. Since these relationships are persistent, resizing or moving either of the shapes
canses the other to also change.

Equality constraints can also be formed between graphics object handles and published variables.
Constraints to published variables are a means for visualizing and interacting with the vahie of a
published variable. For example, one can form an equality constraint between the top-left handle of
a rectangle and a point type published variable. Whenever the point variable is changed externally
(i.e., from a separate module that is connected to the variable) the change is communicated to the
rectangle, moving the rectangle to the appropriate position in the window. Similarly, whenever the
rectangle is moved through direct manipulation, ils updated position is sent out to the connected,
external Playground modules.

4.3 Conversion Constraints

Equality constraints can be made between handles or published variables of different types. These
types of constraints are known as conversion constraints, since some kind of type conversion is
necessary. For example, a real handle such as the width of a rectangle can be connected to an inte-
ger published variable. This results in a rounding operation when the real value is communicated to
the integer published variable. Table I lists the supported connection types. Note that only a subset
of these conversion operations are available for making connections among Playground modules.

Table 1: Supported equality (E) and conversion (C) constraints.

wed frdeger b shrdng mg?:? farpde
rosi E c ¢
ingeger c E G
(o)
stivg ¢ c E
Y E
Bimek
tuple EG

EUPHORIA Reference Manual 4.4 Formula Constraints

* Conversion from siring to boolean translates the following strings as having a boolean
value of fulse: 0, £, F, false, False, FALSE. Every other string is interpreted as having a
boolean value of true.

* Tuples are compatible based on the number and types of the tuple fields (recursively).
For example, a tuple with two real fields is compatible to a tuple with two integer ficlds.
A tuple with two real fields is not compatible with a tuple with three real fields.

4.4 Formula Constraints

With a calculator object one can specify a constraint relationship among graphics shapes in terrns
of an arbitrary algebraic formula. A multi-way constraint graph [4] is constructed from the for-
mula, providing a means to compute any of the variables dynamically in terms of the others. After
construction is completed, the calculator can be made imaginary (i.c., hidden, see Section 5.2).

Figure 10: A calculator object for converting between temperatre scales.

For example, a calculator object could be vsed to convert between scales of measurement, such as
Celsius and Fahrenheit temperatures (see Figure 10). The calculator maintains the mathematical
relationship between these two variables, computing degrees Celsins when the thermometer is
manipulated or computing degrees Fahrenheit when a new Celsius value is entered.

To create a formula consiraint

Selecting New Calculator from the Constralnts menu creates a new calculator in the main drawing
area. Dragging from graphics shape handles with the middle mouse button io the calculator’s
“New" area (see Figure 10) creates both calculator variables and equality constraints between the
variables and the corresponding graphics shape attributes. A formula constraint is created by enter-
ing an algebraic equation in terms of the caleulator variables and pressing Return.

* Clicking in the calculator’s New area reveals a pop-up menu that can be used to create
variables.

¢ A variable may be renamed by double-clicking on its name.

4.5 Constraint Strengths

It is not always possible fo satisfy every constraint in a series of constraints. Conflicting or cyclic
constraint relationships may be specified, forcing the constraint solver to leave some constraints
unsatisfied. To help the constraint solver how to decide which constraints will be satisfied and
unsatisfied, each constraint is assigned a preference level called a strengeh. Strengths can vary from
weakest 10 strongest, and can be set by the user in order to customize behavior within EUPHORTA.

_9.

EUPHORIA Reference Manual 4.6 Constraint Visuallzatlon and Editing

S R T
New Equal Constraints: |strongest

New Anchors: medium

New Variables: weaker I

Dragging Objects: weak

Resizing Cbjects: lweak
Reset Defaulis

Figure 11: Strengths window

Figure 11 shows the “Default Strengths” window, activated by choosing Set Default Strengths...
in the Constraint menn. In addition to user defined equality and anchor constraints, the system
also uses constraints internally in propagating incoming Playground variable values and manipulat-
ing graphics shapes. By changing the sirengths on these operations results in different interactive

behavior in EUPHORIA.

For example, by default, anchor constraints are stronger than variable and dragging constraints.
With these settings, if a shape’s position is anchored then the position cannot be changed by drag-
ging or external updates from Playground variables. However, one could change the strength of a
published variable connected to the shape’s position to make its strength stronger than the anchor.
The result would be that changes from external modules would change the shape’s position but user
dragging would still not affect the position.

4.6 Constraint Visualization and Editing

Constraints can be visualized and edited. In the Ceonstraint menu, choosing Show Constraints
enables constraint visualization of selected graphics shapes and published variables.

anchor

equality

anchor

equality (collapsed)
Figure 12: Constraint visualization.

Figure 11 shows an example of constraint visualization with three rectangles. Equality constraints
are shown as flashing arrows between the handles of selected objects andfor published varizables.
The direction of the arrow represents the constraint’s computation direction (i.e., which attributes
are computed from which other attributes). When handles overlap, the visnalization of an equality
constraint is collapsed to a circle around the corresponding handles. Anchor constraints are shown

as squares.

-10-

EUPHORIA Reference Manual § Advanced Drawing

* Unsatisfied constraints are shown as dashed shapes.

*+ A visualization arrow can represent multiple constraints, in the case of tuples. Double
headed arrows are used to show the mixed computation directions.

To edit constraints

7 A visualized constraint may be deleted by clicking on it with the right mouse button. Clickingona
constraint with the middle mouse button reveals a pop-up menu that can be used to change the
strength of the constraint,

To view hidden constraints

By default, certain constraints are not shown. This includes constraints to imaginary objects (see
Section 5.2), and constraints in which at least one endpoint is not visible within the window.
Choosing Show Hidden Constraints from the Constralnts menu will show all constraints.

To view collapsed and “crowded” constraints

Sometimes different handles and constraints may be packed close together and thus difficult to
visualize. By choosing Taffy Pull Mode from the Consfralnts menu, users can view constraints by
stretching apart constrained graphics shapes. In this mode, graphics shapes move as if there were
no constraints imposed, allowing users to freely manipulate them. However, the constraints are still
visualized as described above. When the mode is disabled, all graphics shapes snap back into place
according to the established constraint relationships. As a short-cut to choosing the menu item,
users can pull apart graphics object in the same way while holding down the Shift key.

5 Advanced Drawing

BUPHORIA supports a number of high level mechanisms for constructing GUIS, including imagi-
nary objects, alternatives, widgets, and aggregate mappings.

5.1 Movies

The movie tool in the toolbar (Figure 13) represents the creation of a movie graphics shape. A
movie consists of a series of numbered frames (i.e., images), with one frame displayed at any given
time. When drawn, a movie is initially empty and is shown as a gray box. The movie’s data handle
can be published to the data boundary as an image tuple (Section 7), allowing external modules to
send frames to the movie.

When a new image value is received by a movie, the image’s “ID” field is used to determine
whether 2 new movie frame should be created or to replace an existing movie frame (i.e., if an
image arrives at the movie with ID=x, it will replace frame #x if it exists). The movie’s frame #
handle is vsed to specify the ID of a movie frame to display.

-11-

EUPHORIA Reference Manual 5.2 Imaginary Objects

5.2

A\

Movie
Toof

.
Data A
Handle
Figure 13: Movies

Frame #
Handle

It is usually necessary to disable the “Skip Values” attribute of the image published variable asso-
ciated with a movie (see Section 3.2). Otherwise, some image frames may be skipped and will not
arrive at the movie,

Imaginary Objects

Constraints are an intuitive way of establishing direct relationships (e.g., equality) among graphical
attributes. However, many times it is necessary to create indirect relationships among graphics
attributes where there are one or more intermediate computations involved in relating the attributes.
BUPHORIA's imaginary objects mechanism allows end-users to define relationships among graph-
ics shapes through the vse of intermediate, invisible graphics shapes, serving as an abstraction for
defining indirect constraint relationships.

"hob” and “cold” rects Imaginary rect “cald" rect height Imaginary rect
are created. is created. constrained to is hidden.
imaginary rect height.

Figure 14: Using imaginary obfects to construct a temperature controller.

For example, an imaginary object can be used to create a temperature controller (Figure 14) that
displays the proportion of “hot” (shown as a red rectangle, left) to “cold” (shown as a blue rectan-
gle, right). The desired behavior is that the red rectangle height should move inversely to the blue
rectangle’s height (e.g., dragging the red rectangle taller should resnlt in the blue rectangle becom-
ing shorter). Figure 14 shows the stages in creating the controller. First, the red and blue rectangles
are created and anchored to the bottom portion of the controller (established equality constraints are
shown here as lines; anchors are shown as squares). Second, an imaginary rectangle is created and
is constrained to be positioned between the red rectangle’s top and the controller’s top. Third, the
height of the blue rectangle is constrained to be equal to the imaginary rectangle’s height. Finally,
the imaginary rectangle is hidden. Manipulating either the red or blue rectangles’ height has the
effect of changing the other’s height through the imaginary object.

Using imaginary objecits

A selected graphics object can be made imaginary by choosing Set Imaginary from the Layer
menu. Imaginary graphics shapes can be shown (which is useful for editing) or hidden by selecting
Imaginarles Shown from the “Layer” menu. A shown imaginary object can be made non-imagi-
nary by choosing Unset Imaginary from the Layer menu.

-12 -

EUPHORIA Reference Marnual 5.3 Alternatives

5.3 Alternatives

A user GUI can have multiple representations which are called alternatives. For example, a simula-
tion GUI might consist of an alternative which shows the simulation state graphically, allowing
direct manipunlation, and an alternative that shows expanded information in a more “text and but-
ton” type representation. Alternatives are often used in the development of widgets (see

Section 5.4).
=L

Figure 15: Alternatives pane.

At the bottom of the EUPHORIA window is a hidden pane for specifying alternatives; this pane can
be exposed by dragging up the bottom divider (see Figure 15). A table lists each alternative as a
box with an associated alternative ID. Clicking on an alternative box causes it to become selected,
displaying its contents in the main drawing area (only one alternative is displayed at a time). Any
drawing in the main drawing area becomes incorporated into the currently selected alternative. Ini-
tially, there is only one alternative, with ID = 0. Pressing the New... button creates a new alternative
based on a supplied alternative ID.

54 Widgets

A widget is an encapsulated grouping of graphics shapes with a data boundary of exposed
attributes. The attribute values in a widget’s data boundary are the only means of controlling or
viewing the state of the widget externally. As with other graphics shapes, the external attributes of
a widget can be viewed as handles which can be used in forming connections to the widget. The
graphics shapes within a widget are in a separate coordinate system (see Section 2.3), allowing the
widget to be defined in terms of meaningful, real-world values rather than actual raw pixel values.

To define a widget

First, a drawing is made in the main drawing area as described in Section 2. This can also include
constraint relationships among graphics shapes. Second, the graphics shape attributes in the draw-
ing that are to be exposed, are published as described in Section 3.3. All other graphics attributes
will be encapsulated within the widget. Third, the drawing is saved to a file.

To use a widget

Choosing Load As Widget... from the Widget menu creates a widget from the saved specification.
The graphics shapes of the drawing are grouped within the widget; the published attributes appear
as handles. The widget has a number of default handles for controlling its attributes, such as width
and height. Also, cach widget has an alternative ID handle that is used to control which widget
alternative is currently being viewed.

For example, a thermometer widget can be constructed as follows. First, the component shapes of
the thermometer are drawn and constraints among the shapes are formed (Figure 16a). A scaling
factor for the widget space is set using the Origin Controller (Section 2.3} so that the top of the ther-
mometer represents 300 degrees Fahrenheit. This allows external applications to interact with the
thermometer in terms of real world values rather raw pixels. Second, the data boundary of the wid-
get is defined by publishing the height of the mercury (i.e., the temperature, Figure 16b). The data

-13-

EUPHORIA Reference Manual 5.5 Aggregate Mappings

"5 EUPHORIA -

T AN IPBT

—?—ﬁ— | NEW . alternative
handle
()

(b} o

Figure 16: Creating a thermometer widget.

boundary specifies that only the temperature attribute will be exposed from the widget when it is
used. The specification of the widget is saved, and the widget can then be used within a GUI

(Figure 16¢).

55 Aggregate Mappings

An aggregate mapping is a mechanism for visualizing and manipulating the elements of an aggre-
gate. BUPHORIA supports aggregate mappings of static arrays (see Section 3.3 for instructions for
creating array types). End-users can define an aggregate mapping by specifying a single graphics
shape, called the prototype instance and its relationship (i.e., constraints) to the aggregate’s element
type. A copy of the prototype instance is created for each aggregate element according to the spec-
ified relationship, resulting in an interactive visualization of each aggregate element. The prototype
instance becomes imaginary after the aggregate mapping is established.

To define an aggregate mapping

Given an array in the data boundary (Section 3.3), expose the array’s element type by clicking on
the triangle pointing to the element type label. Create a prototype instance that will represent each
aggregate element either by drawing a simple shape or loading 2 widget (Section 5.4). Form con-
straints between the array’s element type fields and the prototype instance. When finished, select
both the array and the prototype instance and choose Deflne Aggregate Mapping from the Edit
meniL.

@

Figure 17: Addregate mapping of a verices array.
For example, the vertices of a graph can be visualized using an aggregate mapping. Figure 17a

shows an array with a tuple representative element (i.e., Vertex) and a prototype instance (i.e., a
vertex widget). In Figure 17b, the end-user defines constraints among the fields of the representa-

14 -

EUPHORIA Reference Manual 5.5 Aggregate Mappings

tive element and the prototype instance. The LN field is connected to the widget’s text handle, the
SN field is connected to the widget’s alternative handle, and the pos field is connected to the wid-
get’s center handle. Defining the aggregate mapping has the effect of creating a copy of the vertex
tuple for each element of the array, with constraints created between each array element and each
copy of the widget.

Filtered Aggregate Mappings

It is often is desirable to view only a subset of an aggregate’s elements. Filtering out extraneous
elements results in a simplier display that is easier to comprehend. An aggregate filter mechanism
that allows the end-user to filter the displayed elements based on a predicate. For example, one
counld specify the predicate of “FN < 100” on Figure 17's aggregate mapping, having the effect of
only displaying vertices whose FN field is less than 100.

Specifying an aggregate filter

Filtering is achieved by creating a calculator object (see Section 44) and making comnections
among the representative element’s fields and the calculator (this should be done before the aggre-
gate mapping is defined). The calenlator should be selected along with the prototype and the aggre-
gate when Define Aggregate Mapping is initiated.

Joined Aggregate Mappings

Many times, single aggregates do not contain all of the relevant information needed to make a
desired aggregate mapping. Instead, information may be spread among multiple aggregates from
external sources. With a joined aggregate mapping, the data of multiple aggregates is coordinated
within an aggregate mapping based on a matching operation between key fields (currently, only
integer key fields are supported).

Joining aggregate fields

Join operations of an aggregate should be specified before the aggregate mapping is defined. Drag-
ging with the middle mouse button from a key field of the destination aggregate to a key field of the
source aggregate creates a virtual representation of the source aggregate's element type in place of
the key field of the destination aggregate.

Figure 18: Jolning Edges and Vertices aggregates.

- 15 -

EUPHORIA Reference Manual § Setup

For example, the graph visualization example uses an aggregate mapping to display the edges of
the graph. To properly display an edge, it is necessary to know the positions of the edge’s two asso-
ciated end-points. However, the Edges aggregate does not explicitly store this information (see
Figure 18). Instead, it stores a set of paired ID numbers v1 and v2 of the end-points; the vertex
position information is stored separately in the Vertices aggregate. Joining the v1 and v2 key
fields of Edges to the id key field of Vertices creates virtual representations of the Vertex tuple
within the Edges aggregate that can be used in establishing an aggregate mapping of edges. Note
that the Vertices aggregate still remains after forming the join, and can be used in forming a
separate aggregate mapping.

6 Setup

6.1 Command Line Arguments
Optional command line arguments allow users to customize the execution of EUPHORIA.

Table 2: Optional command line arguments.

argument default description
-bufer 580x400 Size of offscreen buffer, used for screen updates.
-colorDeita 200 Maximum color approximation distance in RGB space.
-display no default X windows display name [5].
-file no default Saved EUPHORIA file to load on start-up.
-geometry 580x400-0+0 | Position and size of the EUPHORIA window [5).
-InvalldAreas 3 Number of invalid rectangles maintained.

-personalDir home directory | Location of *.euphoria” directory to be created/used.
-pollDuration 50 Event polling time before drawing, in msecs.
-poilSteep 10 Sleep time while polling for events, in msecs.
~title EUPHORIA Title of EUPHORIA window and module name.
-url no default WWW address of a EUPHORIA file to load.

For example, to start EUPHORIA with specific display and a small buffer:

PGeuphoria —-display kite.cs.wustl.edu:0.0 -buffer 200x200

Double Buffering

Double buffering is used for smooth, flicker free, graphics rendering. This means that a resource
called a “pixmap” must be allocated to buffer intermediate drawing results. The size of the pixmap
is determined by the —buf fer argument. Setting this value to a large size can result in more effi-
cient drawing. Unfortunately, large pixmaps use a lot of memory; setting this value too large can
cause EUPHORIA not to start due to lack of memory, giving an X-windows error.

-16-

EUPHQORIA Reference Manual 6.2 Personal Directory

Color Allocation

Workstations that have a limited number of colors (e.g., § bit depth or 256 simultaneous colors) can
have problems managing how colors are allocated. EUPHORIA controls how color is allocated, and
can approximate a requested color to an already allocated color. Color approximation degree is set
by the —colorDelta option. Color delia is the maximum distance in RGB space in which two
colors can be considered equivalent. Setting this value lower will tend to match the requested val-
ues more exactly (e.g., setting color delta to O disables color approximation}.

Invalidation

Multiple “invalid areas” can be maintained for the EUPHORIA window. These areas determine
which portions of the window need to be redrawn when the appearance of window itemns change.
Having more invalid areas is likely to make drawing more efficient if the buffer is small or many
sparsely positioned, disconnected graphics items change sporadically. On a workstation with fast
graphics capabilities, fewer invalid areas may result in more efficient drawing.

Event Loop

EUPHORIA’s event loop is timed according to the —pollSleep and —pollDuration argu-
ments. Before drawing is performed in an iteration of the event loop, the system first polls for
events and updates from the Playground environment. The polling time is determined by poll dura-
tion. This allows the system to gather many changes to draw simultaneously, rather than drawing
each change separately. The duration effectively determines the maximum “frames per second”
update rate of the drawing. The default setting allows for at most 20 updates per second; setting
this value higher can result in more efficient, but “jumpier”, drawing. During the polling loop,
EUPHORIA repeatedly sleeps for a period of time (determined by loop delay) to wait for new events
and to give other processes a chance to run. Setting value this lower can result in faster drawing.
However, this can cause EUPHORIA to monopolize the workstation's CPU.

6.2 Personal Directory

BUPHORIA uses a “personal directory” to store preferences and other information. The -per-—
sonalDir command line argument is used to specify where the personal directory is located. If
the personal directory cannot be found, EUPHORIA creates one automatically in the user’s home
directory called “.euphoria” Currently, two items are used from the personal directory: a
euphoria_home file and a download directory.

The euphoria_home file should contain a single line with the full pathname of the main EUPHO-
RIA directory. The main EUPHORIA directory contains shared files used by multiple users. For

5 example, the tool icons of Figure 2 are loaded from this directory; if you do not set the
euphoria_home file with the correct path, you will use an alternative tool palette.

The download directory is used to store files which are loaded from the World Wide Web with the
Load URL... file command or the —url command line option.

-17 -

EUPHORIA Reference Manual 7 Predeflned Types

7 Predefined Types

Currently, EUPHORIA supports two predefined compound data types: point and image.

PGint
PGint
PGint
PGint
PGmemoryBlock
PGmemoryBlock

Figure 19: Predefined tuple types.
The point tuple represents an (x, y) Cartesian coordinate.
A PGimage C4+ class is available that implements the image tuple.

The image tuple represents a single image with ID = id (see Section 5.1) and dimensions of
width by height pixels. The options field is currently unused; for upward compatibility,
modules should set this field to (). The pixels field stores the image pixels in uncompressed in
“row-major” order, using one byte per pixel. Each pixel value is an index into a color table stored
as the colors field. Given a color index n, the color value is stored in colors at byte indices
3*n (red), 3*n + 1 (green), and 3*n + 2 (blue).

-18 -

EUPHORIA Reference Manual 8 Common Questlons

8 Common Questions

Q: Why do graphics shapes sometimes change shape during dragging or external updates?

A: BEUPHORIA uses a constraint solver not only for end-user constraints, but also for direct manip-
ulation and external updates. A set of constraints can be underconstrained, causing these types of
problems. This means that the constraint solver may make arbitrary choices on how to satisfy a set
of constraints. Usually this can be solved by adding more constraints. For example, adding anchor
constraints to the width and height of a shape,

Q: Why does EUPHORIA occasionally ignore some of the constraints?

A: In general, it is not always possible to solve all constraint relationships. A set of constraints can
be overconstrained if two or more constraints conflict with each other. In the event of conflicts, one
or more constraints may be left unsatisfied. Also, cyclic relationships of constraints may cause
constraints to be unsatisfied. Unsatisfied constraints are shown as dashed lines in when visualized
(see Section 4.6). The solution to overconstrained constraints is to simplify the constraint relation-
ships between graphics shapes or io change the strengths of some of the constraints {(Section 4.5).

Q: How can [make EUPHORIA run faster?

A: Table 2 lists a number of options for fine tuning the execution of HUPHORIA. In designing a
GUI, one should take into account the speed of the hardware on which it is run and the user percep-
tion of change. That is, attempting to update a GUI at faster rate than the hardware can handle or
faster than a user can perceive, can result in a GUI that runs slowly. It must be remembered that
EUPHCRIA is part of a distributed system; if the BUPHORIA module monopolizes the CPU, external
modules on the same processor will mn slower which, in turn, will make EUPHORIA run slowly.
Also, if other modules update their variables repeatedly at a rate faster than the update rate of
EUPHORIA, time is still spent dealing with the infermediate valuves of the variables even though the
values may be “skipped over.” External modules should ntilize Playground’s PGsleep [3] to
adjust their speed to a reasonable rate, and should avoid resending redundant information.

Q: I'm updating the position of an object on the screen from an external module. Why does the
object “hop,” first moving on the x-axis and then on the y-axis?

A: The problem is that the external module should be using Playground’s atomic step mechanism
[3]. This ensures that changes to the x coordinate and the v coordinate occur together. Another
way to make drawing more efficient is to have all changes for an iteration within an atomic step,
eliminating redundant drawing.

-19-

EUPHORIA Reference Manual

8 Common Questlons

Glossary

Configuration

Constraint

Data Boundary

Distributed Application

End-user

EUPHORIA

IO Abstraction

Logical Connection

Module

Multimedia

Published Variable

The communication structure of an application. In this manual, the configuration refers
to the constraint relationships among user interface graphics and/or the logical
connections among distributed application modules.

A relationship to be maintained among a set of graphics attributes and/or published
variables. Usually, this relationship is satisfied by computing the value of an output
variable as a function of a set input variables.

In Playground, “data boundary” refers to a module’s set of published variables (also
known as the “presentation”). For a widget, “data boundary” refers its set of exposed
attributes.

An application consisting of multiple concurrent processes, usually runming on separate
workstations, that comimunicate over a network. In Playground, an application consists
of a collection of independent modules and a configuration of logical connections
among the modules’ published variables.

The user of an appiication. Here, end-users are people who are proficient in WYSIWYG
applications, such as word processors and graphics editors, but are not necessarily
experienced in textual programming.

End-User Production of grapHical interfaces fOR Interactive distributed Applications

A connection-oriented model of interprocess communication in which independent
modules interact with an abstract environment.

The communication specification between two published variables. Connections can
specify either bidirectional or unidirectional communication.

A component of a distributed application. In Playground, a module is a process that has
a set of published variables.

Integration of different media types such as text, interactive graphics, images, andio, and
video within an application.

A data structure, such as a real number or an array, that is exposed from a module to the
external environment. Whenever a published data structure is updated, communication
to other published variables occurs implicitly according fo the outgoing logical
connections.

220-

EUPHORIA Reference Manual 8 Commeon Questions

Acknowledgments

We thank the EUPHORIA users of the Washington University €8333 class for their useful com-
ments. 'We also thank David Saff, who developed constraint visualization and editing for EUPHO-
RIA. This research was supported in part by National Science Foundation grants CCR-91-10029,
CCR-94-12711, and ARPA contract DABT63-95-C-0083.

References

{11 Kenneth i. Goldman, T. Paul McCartney, Bala Swaminathan, and Ram Sethuraman. The Programmers’ Playground: A
demonstration. In Proceedings of the 1995 ACM International Conference on Multimedia, pp. 317-318, November 1995.

[2] Kenneth J. Goldman, Bala Swaminathan, T. Paul McCartney, Michael D. Anderson, and Ram Sethuraman. The Program-
mers’ Playground: I/O Abstraction for User-Configurable Distributed Applications. IEEE Transactions on Software Engi-
neering, 21(9):735-746, September 1995,

[3] Kenneth J. Goldman, T. Paul McCartney, Ram Sethuraman, Bala Swaminathan, and Todd Rodgers. Building Interactive
Distributed Applications in C4-+ with The Programmers’ Playground. Washington University Department of Computer Sci-
ence technical report WUCS-95-20.

[4] T.Paul McCartney. User Interface Applications of a Multi-way Constraint Solver. Washington University Department of
Computer Science technical report WUCS-$5-22, July 1995.

[5}] Robert W. Scheifler, James Gettys. X Window System, Third Bdition, Digital Press, 1992.

_21-

	EUPHORIA Reference Manual
	Recommended Citation

	tmp.1439928365.pdf.QWSWA

