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Abstract. Previous teaching models in the learning theory community have been batch models.
That is, in these models the teacher has generated a single set of helpful examples to present to
the learner. In this paper we present an interactive model in which the learner has the ability to
ask queries as in the query learning mode} of Angluin [1]. We show that this model is at least as
powerful as previous teaching models. We also show that anything learnable with queries, even
by a randomized learner, is teachable in our model. In all previous teaching models, all classes
shown to be teachable are known to be efficiently learnable. An important concept class that
is not known to be learnable is DNF formulas. We demonstrate the power of our approach by
providing a deterministic teacher and learner for the class of DNF formulas. The learner makes
only equivalence queries and all hypotheses are also DNF formulas.
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1. Introduction

Most learning theory research is concerned, understandably, with worst-case anal-
yses. That is, it is assumed that learning algorithms must interact with a hostile
environment controlled by an omniscient adversary. While this is clearly very valu-
able it does not accurately model all learning environments. In particular, such
modeling is not useful for determining how quickly learning problems may be com-
pleted. Models in which the environment is a helpful teacher are well suited to this
task.

The interaction between learning algorithms and cooperative environments has
been the subject of some research in the learning theory community. Much of this
research has been directed ai trying to develop modeis of teaching that are both
useful and satisfying. For a teaching model to be useful it must be the case that
it accurately reflects the relationship that can exist between learning algorithms in
some applications and the “teachers” with which they interact. While the criteria
for determining if a teaching model is satisfying are not universal, it should be the
case that learners perform at least as well with helpful teachers as with adversarial
ones; that a wide range of concept classes are teachable; and that the communi-
cation between the teacher and the learner is representative of that in problems
in which such a model is likely to be used. We consider this last point in further
detail.

When a cooperative teacher is introduced we want to ensure that the teacher is
not avoiding “true learning” by, in some way, telling the answer to the learner.
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This problem is compounded when the model is made interactive since communi-
cation between the teacher and learner is bi-directional. Thus, we would also like
to ensure that the learner is not similarly bypassing the learning task by, in some
way, encoding “extra” information for the teacher. Clearly such collusion trivializes
the learning task. The following examples illustrate why it is desirable to prevent
collusion in models of teaching. First, consider the training of intelligent robot
controllers. The task of directly programming a general purpose robot to perform
specific chores may be extremely difficult for two reasons: (1) the operator thinks
in Cartesian space while the robot’s motions are rotations and joint movements,
and (2) the robot’s effector’s are prone to calibration errors. For this application
it would be helpful to have a teacher/learner pair (T/L pair) in which the teacher
(human operator) establishes for the robot a representative set of actions in order to
improve the robot’s rate of learning. Notice that the teacher cannot simply provide
the learner with the answer in this case due to their different frames of reference
(i.e. it is too difficult to directly program). For the same reason, the learner cannot
easily give information to the teacher other than its current estimate of the task
it is being trained to perform. Another example comes from the field of human-
computer interaction where research is being done on modifying user interfaces
using programming by example. In this case the teacher may be a non-technical
end-user who cannot program the interface (although direct programming is possi-
ble). Once again, it is necessary to model a situation in which direct programming
(collusion) cannot occur. If direct programming is possible then teaching/learning
is unnecessary. Our goal is to develop a methodology that is useful in situations
in which direct programming is excessively labor intensive or infeasible. Thus, our
insistence on disallowing collusion is not for purely theoretical reasons.

It is important to understand the distinction between collusion and cooperation.
For the reasons outlined above, we want to disallow collusion between the teacher
and learner. However, we are modelling a teacher/learner relationship in which
the teacher is attempting to help the learner accomplish some task in as efficient
a manner as possible. Thus, it is reasonable to expect some level of cooperation
between the teacher and learner. As an example, such cooperation could take the
following form (as it does in our DNF algorithm): the teacher and learner agree
on the semantics of a good counterexample (one that relates a large amount of
information); the teacher then agrees to provide such a counterexample as long as
one exists. All such communication must occur before the choice of a target concept
but is likely to be specific to the concept class being learned. Such cooperation is
at the heart of helpful teaching.

In nearly all previous teaching models, in an effort to prevent collusion, the model
was reduced to that of teaching a consistent learner (a consistent learner is one
whose hypothesis is consistent with all counterexamples seen). In other words,
the teacher must give evidence ruling out every possible concept other than the
target concept. This, however, eliminates much of the intended advantage of using
a helpful teacher since the teacher is being required to teach to the “lowest common
denominator”. In effect, the adversarial teacher has been replaced by an adversarial



AN INTERACTIVE MODEL OF TEACHING 3

learner. In fact, if a teacher is required to teach any consistent learner then there
are classes for which efficient learning algorithms are known but an exponential
number of examples are required for teaching. Obviously, this is counterintuitive.

Jackson and Tomkins [18] introduced the notion of a T/L pair in which the teacher
and learner were designed fo cooperate with each other. The motivation for T/L
pairs is clear. First, they capture the intuition of a one-on-one teacher-student
relationship. A model using T/L pairs also provides a tool for establishing lower
bounds on the number of examples required by a learning algorithm. Finally, as
illustrated above, there are environments in which the learner and teacher speak
different languages and thus, encoding or programming are impossible and learning
must be used. Goldman and Mathias [11] (GM) extended T/L pairs so that pre-
vention of collusion does not reduce the model to teaching any consistent learner.
In that model, the teacher prepares a teaching set — a collection of labeled examples
that allow the learner to infer the target concept. To prevent collusion, an adver-
sary is allowed to add to the teaching set any properly labeled examples. In this
work we extend the idea of a T/L pair in the following, fundamental way. The com-
munication between the teacher and learner is interactive. It may not be obvious
that this change enhances the teaching model. Consider that in an off-line teaching
model the teacher must present all of the helpful examples at one the beginning of
the learning task. The collusion prevention scheme of Goldman and Mathias allows
an adversary to add properly labeled examples to the teaching set prepared by the
teacher. Consider the possible computations of the learner as a tree. In some cases,
using one of the adversarial examples could place the learner in a subtree containing
no successful terminations. I the learner could ask a query a helpful teacher could
provide an answer (or answers to a series of queries) that would allow the learner
to relocate itself to a subtree containing successful computations. We return to this
point in Section 5, when we show the power of such interaction using the work of
Bshouty [6].

When we discuss the desirability of preventing collusion we beg the question of
what constitutes collusion. Collusion is difficult to formally define. Unfortunately,
in an interactive model of teaching, it is even more difficult to prevent. We devised
several collusion prevention schemes {each more complex than the preceding one)
but each was defeated by increasingly complex methods employed by the teacher
and learner. We discuss one such method in the appendix. While we cannot claim
that prevention of collusion in such a model is impossible, it certainly appears to
be quite difficult. Therefore, in this work, we do not present a formal collusion pre-
vention result. We provide an intuitive, and broad, definition of collusion and show
that the Q-T/L pairs we present do not engage in these types of communication.
This seems a reasonable alternative to a theorem that no Q-T/L pair can collude.
We discuss this further in Section 4.

The learnability of digjunctive normal form (DNF) formulas is among the biggest
open problems in computational learning theory. DNF is an important class be-
cause it is rich in its representational power and because it is simple and natural.
While many subclasses of DNF have been shown to be learnable not much progress
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has been made for the general case. Two recent results illustrate the state-of-the-art
in DNF learning. Bshouty ei.al [7] gave a randomized algorithm, using restricted
subset and superset queries, to learn DNF. In the PAC model, Jackson [17] has
given an algorithm using membership queries to learn DNF against the uniform
distribution. We demonstrate the power of our approach by giving a deterministic
teacher/learner pair for the class of DNF formulas. The learner runs in polynomial
time and uses only equivalence queries. Furthermore, all hypotheses are from the
class of DNF. Our algorithms are quite natural and rely on the simple, underly-
ing structure of disjunctive normal form. We show that there does not exist a
teacher/learner pair for DNF in which both the teacher and learner run in polyne-
mial time. Thus, any improvement in the complexity of our algorithms would be
incremental. Note that while our model is powerful enough to allow the teaching of
DNT formulas the model is quite reasonable — the learner asks questions that are
answered by a helpful teacher.

The remainder of this paper is organized as follows. We first outline the relevant
previous work. In Section 3 we give definitions that are useful in reading this
paper. We then define our model in Section 4 and describe several general results,
In Section 5 we discuss an interesting relationship between our model and the
monotone theory of Bshouty. We then, in Section 6, give a deterministic teacher
and learner for the class of disjunctive normal form formulas. The learner for this
class runs is polynomial time and uses only equivalence queries. All hypotheses are
DNF formulas. In this section we also discuss an extension of our algorithms to an
interesting geometric class that generalizes DNF formulas. In Section 7 we explore
several variations of the model. Finally, we conclude and list open problems.

2. Previous Work

Goldman, Rivest and Schapire [13] first introduced the model of teacher-directed
learning, a variant of the on-line learning model, in which examples are chosen by
a helpful teacher. Recently, Rivest and Yin [22] have demonstrated the power of a
helpful teacher by giving concept classes that are efficiently teachable in the teacher-
directed model but that are not efficiently learnable in the self-directed learning
model of Goldman and Sloan [14]. Since the introduction of the teacher-directed
model, several interesting models have been proposed to study the complexity of
teaching. The first formal model of teaching was introduced by Goldman and
Kearns [12]. In this model they defined the teaching complexity as the minimum
number of examples that a teacher must present to any consistent learner to enable
the learner to exactly identify the target concept. In independent work, Shinohara
and Miyano [26] introduced a model in which a class is teachable by ezamples if there
exists a sample of polynomial size that allows all consistent learners to achieve exact
identification of the target concept.

The notion that, to avoid collusion, a teacher should be required to teach any
consistent learner runs counter to the intuition motivating models of teaching, To
remedy this, Jackson and Tomkins [18] introduced teacher/learner pairs. In their
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model a teacher and learner are paired together to cooperate. To prevent collu-
sion they require that the learner must output a hypothesis logically equivalent to
the target, or no concept at all, even if the teacher is replaced by an adversarial
substitute. Unfortunately, Jackson and Tomkins showed that, due to this method
of collusion prevention, the teacher must still teach any consistent learner. Their
model also allows for the teacher and learner to share a small amount of informa-
tion. These {rusted bils allow the teacher to communicate a stopping condition or
a size parameter of the target. When trusted bits are allowed, they show that any
class that is learnable is teachable in their model.

Our model is derived from that of Goldman and Mathias [11]. They developed a
model that pairs teachers and learners but prevents collusion without forcing the
teacher to teach any consistent learner. In their model the teacher constructs a
teaching set designed to optimally teach, to a particular learner, the target con-
cept. To preveni collusion, an adversary is permitted to add to this teaching set
properly labeled examples. They give one formal definition of collusion and prove
that this adversary is able to prevent it. They also prove that anything that is
deterministically learnable from example-based queries is teachable in their model.
Theirs is the first formal model of teaching for which this is true without relying
on additional information.

Aside from the work on formal models of teaching there has also been interest in
complexity measures of various concept classes in existing learning models. Perhaps
most general is the work of Hegediis [15], [16] who defines several general combinato-
rial measures on the complexity of teaching. Anthony, et.al. [5] consider subclasses
of linearly separable boolean functions. They compute bounds on the size of the
smallest sample with which only the target function is consistent. Natarajan [21)
defines a dimension measure for classes of Boolean functions that measures the
complexity of a class € by the length of the shortest example sequence for which
the target function is the unique, most specific function from C consistent with the
sample. In a model by Salzberg, et.al. [25] a helpful teacher presents a shortest
example sequence allowing the learner, using the nearest-neighbor algorithm, to
learn the target concept. Romanik and Smith [23], [24] propose a testing problem
in which the goal is to construct, for a given target concept, a set of examples such
that any concept that is consistent with this test set is “close” to the target in a
probabilistic sense.

There has been some work on teaching in the inductive inference community.
Though neither presents a complete model of teaching, both Freivalds, Kinber and
Wiehagen [9] and Lange and Wiehagen [20] have examined inference from “good
examples” chosen by a helpful teacher. By presenting the learner with a superset
of the teaching set prepared by the teacher, encoding is prevented in both of these
models. Lange and Wiehagen [20] examine learning pattern languages and show
that this can be achieved with good examples.
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3. Preliminaries

The teaching model that we present in this paper is based on the model of learning
with queries developed by Angluin [1]. In this model the learner’s goal is to infer
an unknown fargef concept f chosen from known concept class C. More precisely, C is
a representation class, a set of representations of functions. Throughou$ this paper,
however, we use represenialion class and concept class interchangeably. Typically,
C is parameterized by a size measure, n, so that C = Us>3Cy. In this paper we
consider Boolean concept classes, thus n is the number of boolean variables which
we denote y1,...,¥n. Each representation f € C has a size, denoted ||f}], which
is the number of bits required to write f as a member of the representation class
from which it was drawn. An instance is an assignment to the n boolean variables.
The instance space is denoted X = Up>1 Ay where &, = {0,1}". Let ¢ be a
concept. Then ¢ C A&,,. The learner’s hypothesis, &, is a polynomially evaluatable
function {0,1}* — {0,1}. Let h represent the learner’s hypothesis. A learning
algorithm achieves ezact identification of a concept class if for all instances « € X,
h(z) = f(z).

In our model the learner has the ability to make queries to learn about the tar-
get concept. The query types in most common use in query learning algorithms
are membership queries and equivalence queries. In a membership guery the learner
asks for the classification according to the target concept of an instance of its choos-
ing. In an eguivalence gquery the learner asks if its current hypothesis is logically
equivalent to the target concept. If this is not the case then, as defined above, a
counterexample is returned. A pesitive counierezample is an instance z; such that
h(z;) = 0 and f(z;) = 1. A negative counterezample is symmetric. A restricled
equivalence query is one that is answered “yes” or “no” but no counterexample is
provided. Two other query types that we discuss are superset and subset queries.
A superset query is answered “yes” if Yz € A such that f(z) = Lh(z) = 1. A
positive counterexample is returned otherwise. A subsef query is answered “yes”
if Ve € & such that h(z) = 1, f(z) = 1. A pegative counterexample is returned
otherwise.

An erample-based guery, as defined by Goldman and Mathias, is any query of
the form: “V(zy,...,zx) € X*, does ps(z1,...,2x) = 17” where  is constant and
ps(z1,...,z¢) is any polynomially evaluatable predicate with membership query
access to target concept f. The answer to an example-based query is “yes” or a
counterexample (i, ...,z:) € X* (with their labels) for which ¢s(z1,...,2:) =0
and the labeled instances for which membership queries were made to evaluate
the predicate. The instances on which membership queries were made serve as
witnesses for the counterexample. The class of example-based queries includes
all queries in common use in exact identification algorithms (e.g. membership,
equivalence, superset, subset, digjointness, exhaustiveness). For these queries k =
1 (each predicate operates on a single instance) and no membership queries are
required for evaluation.
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To illustrate the concept of an example-based query we provide two examples:
one of a common query type — a subset query, and the second of a rather bizarre
query. Intuitively, in a subset query the learner asks if its hypothesis is a subset
of the target concept. In other words, is it the case that there are no negative
counterexamples? As an example-based query a subset query has the following
form. As noted above, k = 1. The predicate, ¢, being evaluated is: for hypothesis
h, h(z) = 1 = f(z) = 1. The answer is “yes” if ¢ = 1 and is a counterexample
otherwise. Note that no membership queries are required to evaluate ¢. In contrast,
we define a minimal traversal query, MTQ(z, d), as follows. Given instance = and
integer d < n, the @ being evaluated is: all assignments obtained from z, by flipping
at most d bits, are negative. Once again, £ = 1. The answer to such a query is
either “yes” or a positive example =’ differing from =z in & < d bits. Additionally,
the learner is given the instances that differ from # in fewer than k bits to verify
that the minimal number of bits were flipped in z/. Qbviously, this query is very
powerful and is included here for illustrative purposes only.

The class of disjunctive normal form formulas (DNF) is important and will be
discussed in this paper. A DNF formula f is a disjunction of some number of terms:
F=tiVita V- - Vi,. We use m to denote the number of terms. Each term is a
conjunction of literals: #; = £, A---A£;, where each £;; is a variable or its negation.
A non-redundani DNF formula is a DNF in reduced form. That is, no terms can
be removed from the formula without altering the logical meaning of the formula.

4. The Teaching Model

In this section we describe our interactive model of teaching. In addition, we discuss
in detail the issue of preventing collusion. We also provide several general results
related to the model.

4.1. Defining the Model

As in the model of Goldman and Mathias, the teacher and learner can cooperate,
prior to the start of the teaching session, in devising a teaching strategy for known
concept class C. Also participating in the teaching session is an omniscient adversary
with unbounded computational power.

To begin a teaching session the adversary selects a target function f € C and
passes it to the teacher. Stage 7 of a teaching session (which begins with the ith
query) proceeds as follows:

1. The learner poses an example-based query and passes it to the adversary.

2. The adversary (knowing €, f, T and L) passes to the teacher a set of well-formed
queries containing the query asked by the learner.

3. The teacher answers each query in the query set received from the adversary
and passes this answer set to the adversary.
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Figure 1. An overview of a teaching session. When done, the leamner cutputs h € H 2 C.
For a randomized learner there are likely to be mulitiple & € N with non-zero probability of
being returned by the learner. However, all such hypotheses are logically equivalent to the target
concept. (For a deterministic learner, pr[k] = 1 and prih/] =0, V i € H, k! # h.)

4. Next the adversary passes to the learner an answer set containing the answer
set generated by the teacher as well as other correctly labeled answers.

The teaching session ends when the learner outputs a representation from hypoth-
esis class H D C. A tfeaching session is illustrated in Figure 1.

Let Y| denote the cardinality of set Y and ||Y|| denote the number of bits needed
to represent Y. Let Qf’ be the sequence of example-based queries asked by the
learner for target function f and Qf’[i] be the ith query in the sequence. For query
i asked by the learner the teacher receives a set of queries, Q[{] 2 {Qf[i]}, as
described in item 2 above. We use Q}" to denote the sequence of these adversarial
query sets for the entire learning task. The teacher’s answer set for query set QJ“} [2]
is denoted RY[{] and the sequence of these sets is R} . Rf[i] D R7[i] represents the
answer set presented to the learner by the adversary for query Qf: [], as described
in item 4 above. If R}[{] does not contain an answer for @7[i] then Q7[#] has been
answered “yes”. Let Rj} represent the sequence of adversarial answer sets for the
entire learning task. Siage 1 of the computation begins with QJ{‘ [{] and continues
until Q7[¢+ 1] is asked. Stage 0 lasts until the first query is asked.

Let s denote IQJ{‘|, the number of queries asked by the learner to learn f € C.
Using notation similar to that of Goldman and Mathias, we define a valid Q-T/L
pair for C to consist of a teacher T" and learner L such that: For any f € C the
sequence R}’ of answer sets R}'[z'] cutput by T, has the property that for any
sequence of answer sets Rf = (R#[1) 2 R7[1],..., R}[s] 2 R}[s]) presented to
L by the adversary, any ' € H 2 C, such that f' has non-zero weight in the
distribution Pr, (R‘;‘) output by the learner, is logically equivalent to f. In other
words, any representation output by L will be logically equivalent to f regardless of
the actions of the adversary. We define T to be a polynomial-time teacher if for any
query set Q}"‘[:’], presented to the teacher by the adversary, corresponding to query
Qf’[i} asked by I, and for any f € C,, T outputs R}’[i} in time polynomial in n,
[I71] and J}Q7 2]l If L asks a number of queries and runs in time polynomial in n,
(171l and maxi<i<, {||RF[i]]|} then we say that L is a polynomial-time learner. We
say that a representation class C is Q-T/L-teachable if, for all f € C,, there exists
a valid Q-T/L pair for which IQ_’;’I is polynomial in || ]|, » and max;<i<, {|R$[i]l}.
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If C is Q-T/L-teachable by a pair for which T is a polynomial-time teacher and L
is a polynomial-time learner then we say that € is pelynemially Q-T/L-teachable.
Finally, we say that C is semi-poly Q-T/L-teachable if it is Q-T/L-teachable with a
polynomial-time learner but a teacher that may be computationally unbounded.

Our model allows for randomized learners. This is feasible due to the interactive
nature of the model — it is not necessary for the teacher to predict, a priori, all of the
examples required by the learner. As with a deterministic learner the teacher knows
the learner’s algorithm and can provide a helpful answer. Unlike a deterministic
learner, the output of a randomized learner defines a distribution on the hypothesis
class that may have non-zero weight on multiple logically equivalent hypotheses.
(Actually, a deterministic learner may output a randomized hypothesis in which
case the output behavior is the same as that of a randomized learner.) Cur model
also allows for probabilistic teachers. The motivation for this is that it may be
that we can devise a randomized polynomial time teacher for some classes for
which there are no deterministic polynomial time teachers. A probabilistic teacher
defines a distribution over the space of possible sequences of answers to the learner’s
queries,

1t is easily seen that this model is robust against some types of noise. Specifically,
the model can easily be extended to handie both incomplete membership queries [4]
and malicious membership queries [3]. We briefly discuss the issue of noise in
Section 7.

4.2. Collusion

As discussed in the introduction, while we would like the teacher to help the learner
accomplish the learning task as quickly as possible, we do not want the learning
to take the form of encoding or some other form of collusion that clearly is not
“real” learning/teaching. What should be meant by “collusion” or “real” learning
is debatable. One motivation for models of teaching is that there may be instances
that would reveal to the learner a great deal of information about the target concept.
As an example, consider the concept class of a single, axis-parallel rectangle in the
plane. A concept in this class may contain many positive instances. However, they
are not all equally useful to a learner. In particular, a corner point of the target
rectangle is likely to be of much more use to a learner than an arbitrary interior
point. What we want to avoid, however, is the use of schemes in which the teacher
can transmit information about a representation or encoding of the target concept,
using instances that the learner can use without regard for their labels.

We distinguish two types of collusion: answer collusion and query collusion. An-
swer collusion occurs when the teacher passes “extra” information to the learner.
Within answer collusion we define infra-ezample and inier-ezample collusion. Intra-
example collusion occurs when the teacher is able to transmit to the learner, within
a single example, information not pertaining to the logical function being taught.
Inter-example collusion occurs when the teacher is able, using a sequence of exam-
ples, to transmit to the learner information not pertaining to the logical function.



10 H. D. MATHIAS

In inter-example collusion the learner is relying on some property of the examples
presented, such as ordering. For intra-example collusion to occur it must be the
case that the learner is relying on some property of the bits within an example such
as ordering, parity or Hamming weight. In the boolean domain the teacher could
pass up to n bits with a single example. This can be extended in non-obvious ways,
using inter-example collusion, to pass longer sequences (we discuss this further in
the next section). Since our model is interactive, we must also consider transmission
of “extra” information from the learner to the teacher. We call this query collusion.
Query collusion can be quite compiex or as simple as the learner using query types
to represent bits. In other words, by simply asking a query of a given type the
learner could pass a bit to the teacher. As with answer collusion, query collusion
can be divided into intra-guery and infer-guery collusion. We would like to include
in the model 2 mechanism that is capable of preventing both answer and query col-
iusion. Unfortunately, it appears to be quite difficult to devise such a mechanism
for an interactive model. We now give an intuitive definition of collusion.

Statement 1 A Q-T/L pair is said to collude if either of the following occurs:

1. The learner uses any example other than as a setling for the atiribules of the
domain or uses any example without regard to ils classification.

2. The teacher uses any guery other then as a request for an answer appropriate
to that type of query.

It is important to note that although our learner asks its queries on-line, in a fixed
order, the T/L pair cannot rely on any order of the queries or the answers since
the adversary can add any query or answer. For example, the adversary could add
to the teacher’s answer to the first query all of the answers that the teacher would
give to all queries the learner would ask while learning f (recall that the adversary
is omniscient). Clearly, this destroys the ability of the learner to use any ordering
on the answers.

Though it may not be possible to achieve consensus about what constitutes collu-
sion, we believe that the intuition for this definition is clear. The examples provided
by the teacher should be viewed as just that: instances (positive or negative) in
the domain of some target function. We want to disallow any other use. Similarly,
the queries asked by the learner should be seen by the teacher only as a request for
information about the semantics of the target function. We also want to disallow
any other use of queries. In the appendix, we discuss one non-obvious method that
can be employed by the teacher and learner to defeat some collusion prevention
schemes.

4.3. General Results

We now present a series of results in this model that build on a variety of previous
results. First, we show an interesting relationship to the GM model, namely that
any class teachable in that model is teachable is this interactive model.
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THEOREM 1 Any representation class C that is T/L-teachable in the GM model is
Q-T/L-teachable in our interactive teaching model using only equivalence queries.

Proof: We prove this theorem by construction. Let “GM learner” be the learner
for some class € in the GM model. Let b be a hypothesis that classifies as positive
all positive examples seen and classifies all other instances as negative (this could
take the form of a list of positive examples). Similarly, let A_ be a hypothesis that
classifies as negative all negative examples seen and classifies all other instance as
positive (this could take the form of a list of negative examples). Let h be the
hypothesis of the GM learner. Note that the GM learner does not ask queries,
Thus, h is its “final hypothesis” for the teaching set it has been given. Equivalence
queries are made with this hypothesis only to establish if the learner has yet received
sufficient information to complete the learning task. We construct our interactive
learner from the following components: the GM learner, a memory that stores
the answers to all queries asked (Mem), an algorithm for generating A,y and h_
(Minimal hyp) and a selector that chooses which hypothesis to use for the next
equivalence query.

A learning session proceeds as follows: the learner begins by making an equiva-
ience query with h, the initial hypothesis of the GM learner. A counterexample set
is received, placed in the answer memory and passed to the generator for hy/h_.
From this point on the learner alternates making equivalence queries with h, Ay
and h_. An equivalence query asked with hy (respectively, h_) allows the teacher
to give a positive (respectively, negative) counterexample of its choice.

At some point in this simulation the answer memory will contain all of the ex-
amples that a teacher would have placed in the teaching set for the GM learner.
When this set is passed to the GM learner it will produce a logically equivalent
hypothesis. When this hypothesis is used to make an equivalence query the answer
returned is “yes” and the learning task is completed. Note that our learner uses
only equivalence queries. Clearly, the time used is polynomial if the time used by
the GM learner is polynomial. See Figure 2 for an illustration of this construction.

]

Thus, we know that our interactive model is at least as powerful as the GM model.
The following corollary is implied by Theorem 1 and by a theorem of Goldman and
Mathias.

CoRrOLLARY 1 Any class that is polynomially learnable by a deterministic learner
using example-based queries is semi-poly Q-T/L teachable using only eguivalence
queries.

Ideally we would like to show separation of the two models by demonstrating
a concept class, or family of concept classes, that is teachable in the interactive
model but not in the GM model. While unable to do this, due to a lack of hardness
results in that model, we do give evidence of separation by showing that any class
learnable in polynomial time in the query learning model, even by a randomized
learning algorithm, is teachable with a polynomial-time learner and a possibly com-
putationally unbounded teacher in our interactive teaching model. Since Goldman
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h,orh-

Query Selector [* ]

GM Learner

Answer Answer
Mem [“ gt ]

“oomom——>  Minimal hyp

Figure 2. The construction of the interactive learner that learns any class teachable in the GM
model. See the proof of Theorem 1 for details.

and Mathias’ proof that learnability implies teachability relies heavily on the ability
of the teacher to simulate the learner, their theorem does not hold for randomized
learners. Therefore, it is unclear if classes learnable by randomized learners are
teachable in the GM model. Lending further evidence for separation is our Q-T/L
pair for DNF formulas. While this class has not been shown unteachable in the
GM model it appears to be hard since much effort has failed to produce a positive
result.

THEOREM 2 Any represeniation class C probabilistically learnable in polynomial-
time using ezample-based queries is semi-poly Q-T/L teachable using ezample-based
queries.

Proof: The proof is straightforward. Note that in the query learning model it
is assumed that counterexamples are given by an omniscient adversary. Thus, by
modifying the learning algorithm for C to handle counterexample sets, we have our
Q-T/L learner. Recall that a counterexample to an example-based query consists of
a set of k instances. Since the adversary can add counterexamples, the learner must
choose some k instances that comprise a valid counterexample. The learner can do
this easily by simply evaluating the query (that is, ¢(z1, ..., 2:)), for all subsets of
size k from the Instances in the counterexample set, until a valid counterexample is
found. This counterexample is certainly no worse for the learner than the one that
would have been given to the learning algorithm in the query model (since that
adversary tries to hinder the learner as much as possible). O

By using the learner to simulate subset and superset queries using equivalence
queries we obtain the following result.

THEOREM 3 Any representation class C (probabilisticaelly} learnable in polynomial
time using membership, equivalence, subset and superset queries is semi-poly Q-T/L
teachable using only membership and equivalence gueries.
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Proof: In the learning algorithm for C replace each equivalence, subset and super-
set query with a pair of equivalence queries. Since all such queries are now asked
in pairs, the teacher can simply alternate giving positive (simulating a superset
query) and negative (simulating a subset query) counterexamples. Thus, if the pair
of queries is simulating a subset query, the learner will receive a negative coun-
terexample if one exists. The simulation of superset queries is symmetric. Clearly,
replacing one equivalence query with 2 pair of queries does no harm. If at some point
the teacher breaks the pattern then the learner knows that there is no counterex-
ample of the appropriate type (the query being simulated was answered “yes”).
]
Some interesting results follow from the above theorems. The first of these uses
a result of Bshouty, Cleve, Kannan and Tamon [7] in which they show that DNF
formulas and polynomial-size circuits are learnable by a randomized learner using
only subset and superset queries.

CoROLLARY 2 DNF formulas and polynomial size circuits are Q-T/L teachable
with @ randomized learner that uses only equivalence queries.

In Section 6 we improve upon this result by demonstrating a more natural, deter-
ministic Q-T/L pair for the class of DNF formulas in which the learner uses only a
polynomial number of equivalence queries and all hypotheses are from the class.

Another consequence of the results in this section follows from the work of An-
gluin [1] in which she gives an algorithm for learning pattern languages of length n.
Her algorithm uses restricted superset queries and runs in time polynomial in n.

COROLLARY 3 Patlern languages of length n are Q-T/L teachable in time polyno-
mial in n with a learner that uses only equivalence queries.

Proof: Once again the T/L pair can simulate the superset queries using equivalence
queries. Since the superset queries used by Angivin’s algorithm are restricted, our
learner can ignore the particular counterexample received and simply determine
whether the counterexample is positive or negative. (For obvious reasons, it is not
possible to simulate restricted superset queries using restricted equivalence queries.)

O

The last result we discuss in this section also follows from a result of Angluin [1].
The “double sunflower” is a concept class defined by participants in the learning
seminar at the University of California, Santa Cruz in the Fall of 1987. The class
is defined as follows.

Let N = 2" for some given positiven. Let X = {z1,...,25y}and Y = {y1,...,yn}.
Let z; and 2y be two instances not in X or Y. The instance space is X =
X UY U{z, 22} and contains 2*+1 + 2 instances. For each j = 1,..., N let concept
i ={z1,2;}U{(Y —y;)}. Thus, the hypothesis space is the set of all well-formed
fi. Note that only f; contains z; and does not contain y;.

Angluin gives a proof that this concept class is not exactly identifiable by any
learner with access to membership, equivalence, subset, superset, disjointness and
exhaustiveness queries using fewer than N — 1 queries.
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CororLary 4 The “double sunflower” is poly Q-T/L teachable with a learner that
uses two equivalence gueries.

Proof: The learner uses any f; from the hypothesis space as its initial hypothesis
and makes an equivalence query. If f; is the target concept then the query is
answered “yes” and the learner is done. Otherwise, the teacher gives z; as a positive
counterexample telling the learner that f; is the target. The next equivalence query
is answered “yes”. Note that this proof relies on the standard learning theory
assumption that the learner knows the class being learned. B

The classes of Corollary 3 and Corollary 4 are also teachable in the GM model.
These results are included here to illustrate the increased power of equivalence
queries when answered in a helpful way.

5. Relationship to Monotone Theory

One of the most interesting recent results in learning theory research is the develop-
ment of the monotone theory, and its application to the learning of decision trees,
by Bshouty [6]. Bshouty defines a complexity measure for concept classes called
the monotone dimension, denoted Mdim(C) for concept class C. The Mdim(C) is
the minimal size of a monoione basis for C. A set S of instances is an M-basis for
C if for any f € C, f can be represented as a CNF formula such that every clause
in f is falsified by some instance in §. Thus, the maximum number of clauses in a
minimal CNF repregentation of any f € C is an upper bound on Mdim(C}.

Bshouty then proves that, using sizepwr(f)Mdim{C) equivalence queries and
n? membership queries for each equivalence query, any boolean function f € C is
learnable if the monoione basis of the funciion ts known o the learner. He also
gives a result in which the learner no longer needs to know the monotone basis.
The running time of this algorithm is polynomial in sizepnr(f), sizeenr(f) and
n. The hypothesis class used by these algorithms is depth-3 A-V-A circuits. That
is, each hypothesis H is the conjunction of a number of partial hypotheses H;, each
of which is a DNF formula.

In our model we can use the power of the teacher to allow the learner to use
resources polynomial in the monotone dimension without knowing the monotone
basis. Let N4 be the number of negative counterexamples added by the adversary.
The following thecrem states an important result implied by Bshouty’s work and
our model.

THEOREM 4 Any f € C, for eny concepl class C, is leachable using time and
queries polynomial in sizepnp(f), Mdim(C), Na and n with a learner that does
not know M-basis({f}).

Proof: Qur learner is almost identical to Bshouty’s learning algorithm with un-
known monotone basis. The key difference is that when our learner receives a
counterexample it is really a counterexample set containing the counterexample
from the teacher and some number (possibly 0) of adversarial counterexamples.
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Treating each negative counterexample as an element of the monotone basis, our
learner simply creates a partial hypothesis (each partial hypothesis is a DNF) for
each negative in the set. Thus, our learner creates at most Mdim(C) + N4 partial
hypotheses. As shown by Bshouty, each of these partial hypotheses must be refined
at most sizepnp(f) times.

Using at most Mdim(C) equivalence queries the learner obtains a valid monotone
basis since the teacher passed an example from the monotone basis each time a
negative counterexample was appropriate (if some element of the basis is no longer
a counterexample due to adversarial examples then the teacher no longer needs to
pass that example). Refinements of the partial hypotheses are done by processing
positive counterexamples. Therefore, we need at most (Mdim(C)+N4)sizepnr(f)
positive counterexamples. Each refinement uses at most O(n?) membership queries.
Thus, the number of equivalence queries used is O((Mdim(C) + Na)sizepnr(f))
and the number of membership queries is O((M dim(C)+ Na)sizepnr(f)n?). Time
is polynomial as well. Finally, it is obvious that this Q-T/L pair does not collude
since the learner was designed to work with an adversarial teacher and, therefore,
makes no assumptions about the information it is receiving. O

Thus, if the adversary adds no negative counterexamples the learner uses time
polynomialin Mdim(C) and sizepnp(f). This is as opposed to time polynomial in
sizecnr(f) and sizepnr(f) used by Bshouty’s algorithm in the learning model.
‘Thus, the improvement offered by the teaching model is significant since there are
concept classes C such that there exist f € C for which sizecnyr(f) is exponentially
larger than Mdim(C). Unate DNF is such a class.

This result illustrates a key difference between this model of teaching and the GM
model. As we discussed in Section 1, in some cases the use of an adversarial example
in the GM model could irrecoverably sidetrack the learner. The monotone theory
algorithm highlights this. In order to achieve equivalence with the target concept
it is necessary that each partial hypothesis, H;, in the learner’s hypothesis be a
superset of the target concept. That is, Vi, H; O f. In the GM model, however, it
is possible that an adversarial negative instance is used to begin some H; buf that
there are no positive examples in the teaching set that can be used to refine H;.
Thus, H; will remain under-specified and never become a superset of f. Because
the learner in the GM model does not have the ability to ask an equivalence query it
can never delete or modify H; and thus, the learner’s hypothesis will never become
logically equivalent to the target concept. We have been unable to create a T/L
pair in the GM model using the monotone theory. Obviously, it is interactivity that
gives this model its advantage.

In the next section we address the question of teachability of a class not known to
be efficiently learnable. Specifically, we give a deterministic semi-poly Q-T/L pair
for the class of DNF formulas. The learnability of this class is open.
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6. Teaching DNF Formulas

The learnability of disjunctive normal form formulas (DNF) is the subject of a great
deal of learning theory research. The question remains one of the most important
open questions in the field. The teachability of this class is either open or answered
negatively in all previous models of teaching. DNF formulas have a very well-defined
structure and it seems that a learning algorithm should be able to benefit from this.
However, in typical learning models, the structure is shrouded by an omniscient
adversary. In our teaching model a helpful teacher can select counterexamples that
reveal the structure. In this section we present a semi-poly Q-T/L pair for DNF
formulas, using only equivalence queries, where all hypotheses are DNF formulas.

6.1. The Q-T/L Pair

In this section we present our teaching and learning algorithms for the class of DNF
formulas. We give an overview before presenting the algorithms in detail.

It is helpful to consider the boolean instance space as a lattice. The top element
of the lattice is the instance {1}" and the bottom element is the instance {0}".
The elements are partially ordered by <, where v < w if and only if each bit in v
is less than or equal to the corresponding bit in w. The descendants (respectively,
ancestors) of an instance v are all instances w such that w < v (respectively, w > v).

Each DNF term, ¢;, has a maximum {in the lattice) positive instance, maz;, and
a minimum positive instance, min;. Term #; is specified by the “combination”
of maz; and min;. That is, if mez; and min; agree in a bit position then the
corresponding literal is in ¢;. For example, if maz; = 11101 and min; = 01100 then
t; = woz3%;. Given two instances v and w, we denote this operation by ferm(v, w).

Clearly, min; and max; are useful examples for building term {;. Thus, our
teacher provides to the learner, as counterexamples, min; and maz; for each term
of the target formula. If the learner knew the correct way to pair these coun-
terexamples then it would have the target by simply combining as above. Notice,
however, that the adversary can add counterexamples to the ones provided by the
teacher. Therefore, the learner cannot rely on any ordering of the counterexamples
it receives and does not know the correct pairing. Thus, the learner simply crosses
the set of counterexamples on itself creating a term for each pair.

Operating in this way the learner will ereate a quadratic number of terms falling
into three categories: prime implicants, implicants and non-implicanis. All of the
prime implicants and implicants can remain in the learner’s hypothesis since they
cause no counterexamples. Each of the non-implicants must be deleted since each
misclassifies at least one negative instance. The number of non-implicants created
is quadratic in the number of positive counterexamples seen by the learner. In the
end, the learner’s hypothesis is some DNF representation logically equivalent to the
target formula.

Our learner uses multiple hypotheses, h, and h. h. is a consistent hypothesis that
classifies as positive all positive instances seen and classifies all other instances as
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Learner for DNF Formulas:

1. he— @
2. he—48
3. Repeat
4, V e EQ(}I.;)
5. Foreach veV
6. he — ke U {v}
7. For each t € k.
8. h — hvierm(v,1)
9. V' EQ(h)
10. V' £9
11. For each v' € V'
12. If »' is positive
13. he + he U {2}
14. For each t € k.
15. b — hVierm(v', 1)
16. Else
1i7. Remove from k terms satisfied by v’

18. Until a ¥’ contains no positive examples

19, While V — EQ(h) # 8

20. ForeachveV

21. Remove from h all terms satisfied by v

22. Return(h)

Figure 8. Qur learner for DNF formuvlas. Hypothesis k. is a minimal, consistent hypothesis that
classifies all positive instances seen as positive and everything else as negative (this is equivalent
to the disjunction of a singleton term for each positive instance seen). The hypothesis & is a DNF

formula.

negative (. can take the form of a DNF formula— a singleton term for each positive
instance seen). Throughout a teaching session, k is a DNT formula approximating
the target formula and is logically equivalent to the target formula at the end of the
teaching session. An equivalence query made with k. allows the teacher to give as a
counterexample the minimum or maximum positive instance for any term provided
that the learner has not already seen that instance.

The learner begins with A = h, = 0§ and makes an equivalence query with A..
The teacher always anawers such a query with min; or maz; for some term ¢;. The
learner will receive a counterexample set, including some number of adversarial
counterexamples. Due to the nature of h. each counterexample received is positive.
For each counterexample v in the set the learner adds ferm(v, v) to h. as a singleton
term and then adds term(v,t) to & for each term £ in h.. The order of these oper-
ations ensures that term(v, v) is also added to h. After all of the counterexamples
in the set have been processed in this way an equivalence query is made with A.
The teacher answers with a minimum or maximum positive instance, if one exists
as a counterexample to the hypothesis. Note that it is possible that none are coun-
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Teacher for DNF Formulas:

Repeat
For EQ{h.) answer with min; or maz; for some i
For EQ(R)
Answer min; or maz; if a counterexample
Else give any positive counterexample
Else give any negative counterexample
Else answer #

A o

Figure 4. Algorithm for the teacher for DNF formulas.

terexamples to h since some already learned terms may contain these instances. If
no such instance exists then the teacher answers with any positive counterexam-
ple. If there are no positive counterexamples then the teacher gives any negative
counterexample. When this occurs, h 2 f and the adversary can add only negative
counterexamples also. Each negative counterexample, v, is used to delete from h
those terms (non-implicants) satisfied by v. After processing a counterexample set
containing only negative counterexamples, the learner exits the “Repeat” loop and
enters the “While” loop, continuing to ask equivalence queries with k. The learner
receives negative counterexamples, until such a query is answered “yes” and the
learner returns h and halts.

The only queries asked by the learner are equivalence queries and these are asked
in only three places. Thus, the algorithm for the teacher is quite simple. It simply
answers a query made with h, with a minimum or maximum positive instance for
some term of the target. A query made with & is answered with a positive counterex-
ample as long as one exists. When there are no further positive counterexamples
the learner will ask queries only with & and each is answered with a negative coun-
terexample until 4 is logically equivalent to f. Figure 3 shows pseudo-code for the
learner and Figure 4 shows the teacher.

6.2. Analysis
In this section we prove the following theorem.

THEOREM 5 There exisis a deterministic Q-T/L pair that ezactly identifies any
target, f, in the class of DNF formulas using only equivalence queries. All hy-
potheses used by the learner are DNF formulas. The learner has query complexity
polynomial in n, m and ini and time complezily polynomial in n, m and ]|R}l”

We first argue the correctness of our Q-T/L pair using the following lemma.

LEMMA 1 Our Q-T/L pair exacily ideniifies any DNF formula using only equiva-
lence queries with hypotheses that are DNF formulas.



AN INTERACTIVE MODEL OF TEACHING 19

Proof: We begin by examining the learner assuming that s, contains min; and
mazi, ¥ 1 < i < m, as well as other positive instances. We then show that the
learner can build A,.

Each positive counterexample received by the learner is combined with every
instance in h. and the corresponding terms placed in h (the singleton term cor-
responding to the counterexample is also placed in f.). Therefore, we have as an
invariant that h contains a term for each pair of instances in a cross product of h,
with itself. Thus, after the teacher has given as counterexamples the minimum and
maximum positive instances for each term, h 2 f.

If equality holds then we are done. Otherwise, i D f. In this case h contains
false positives. Specifically, A contains some number of terms that each contain (are
satisfied by) at least one negafive instance. Since when presented with a negative
counterexample the learner deletes any term it satisfies and since any non-imnplicant
term is satisfied by at least one negative instance, it is easy to see that all non-
implicant terms are deleted by negative counterexamples. Thus, & contains no false
positives at the conclusion of the learning task.

We complete the proof by showing that the learner can build an appropriate h,.
h. classifies as negative any instance that the learner has not yet seen. This allows
the teacher to provide as a counterexample to k. any positive instance not already
contained in h.. Thaus, afier at most 2m equivalence queries with A, the teacher
will have provided the minimum and maximum positive instances for each term of
f. The possibility that the adversary may add some of these counterexamples is
inconsequential since they will be processed the same way and the learner does not
rely on any ordering of the counterexamples. O

Thus, when our algorithm halts the learner’s hypothesis is logically equivalent to
the target formula. It may not be obvious that our teacher is unable to force the
learner to output a particular DNT representation. Notice, however, that the adver-
sary can add the minimum and maximum positive instances for terms in logically
equivalent DNF representations. The resulting terms created by the learner are
implicants of the target function and are, therefore, not deleted from the learner’s
hypothesis.

Next we argue that our Q-T/L pair for this class is indeed a semi-poly Q-T/L
pair.

LEMMA 2 OQur deterministic §-T/L pair for DNF formulas has query complexity
polynomial in n, m and IR}4|. The learner has time complezily polynomial in n, m

and ||RY]|.

Proof: We first examine the total number of terms added to h. Note that
lhe| < |R}]. Since h contains exactly one (not necessarily unique) term for every
tuple in the cross product of k. with itself, the number of terms added to k is no
more than |R#|%. The terms may not be unique since the combinations of different
instances may result in the same term and thus a term may be added to h, deleted
and then added again by a different combination. However, the total number of
terms added is no more than |Rf|%. Since every negative counterexample removes
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at least one non-implicant from %, at most (|R}|? — m) negative counterexamples
are required.

Each time the learner asks an equivalence query with k. the teacher supplies the
minimum or maximum positive instance for one term. There are at most 2m such
instances, therefore, the learner will iterate the Repeat loop at most 2m times.
Within each iteration 2 equivalence queries are asked. Thus, the Repeat loop is
responsible for 4m equivalence queries after which the learner’s hypothesis will
subsume the target concept. The learner proceeds to the While loop where the
equivalence queries counted above are asked. Thus, the total number of queries
asked by the learner is O(|R{|?). Note that |R}| = Q(m).

Next, we bound the time used by our learner. Each query asked takes constant
time. Creating the terms to add to A takes O(n) time each yielding a total time
to create b of O(n - |R{|?). Processing the negative counterexamples requires O(n -
|[R|?) time each ~ O(n) time to check each of the O(|R#|?) terms in h. Thus
the total time to process all of the negative counterexamples is O(||R}[|*) which
dominates the running time of the learner. O

The proof of Theorem 5 follows immediately from Lemma 1 and Lemma 2.

Finally, we claim that our teacher and learner for this class do not engage in
collusion as it was described in Section 4.

We provide intuition to support our claim that neither answer collusion nor query
collusion occur. The learner receives counterexamples at three places in the algo-
rithm: lines 4, 9 and 19. In line 4, the counterexample is always positive and
each is treated as a maximum or minimum positive instance for some term. In
line 19, only negative counterexamples are received and each is used to delete all
terms containing that counterexample. In line 9 the counterexamples seen may be
either positive or negative but are processed, depending on sign, as above. Since
no other processing is done on these examples, there is no answer collusion. To see
that there is no query collusion notice that the teacher always gives a maxirnum
or minimum positive instance if one exists as a counterexample. Otherwise, any
positive counterexample or any negative counterexample is given. The teacher does
not use the queries in any other way.

The time required by the teacher is not polynomially bounded. The teacher can
easily determine all of the minimum and maximum positive instances in polynomial
time. However, to give a counterexample the teacher may need to solve a satisfi-
ability problem and, therefore, cannot run in polynomial time unless P=NP. Next
we show that no teacher for DNF in this model can run in polynomial time.

THEOREM 6 There does not exist a Q-T/L pair for DNF with a teacher that runs
in polynomial time unless P=NP.

Proof: The proof is straightforward. Note that the teacher is required to answer
arbitrary adversarial queries. By asking an equivalence query with the identically
true hypothesis the adversary forces the teacher to determine if the target DNF is
a tautology. This cannot be done in polynomial time unless P=NP. O
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We note that in some sense this result subsumes the Q-T/L pair using the mono-
tone theory since any function can be taught in time polynomial in its DNF size
without regard for its monotone dimension. However, for classes with small mono-
tone dimension, that result may be more efficient than the algorithm in this section.
DNF formulas are not such a class. In fact, even Read-Twice DNF have monotone
dimensions that are exponential in the number of booclean variables in the domain.

6.3. A Geometric Extension

Unions of d-dimensional, axis-parallel boxes in discretized d-dimensional space gen-
eralize DNF formulas. We use the notation of Goldberg, Goldman and Math-
ias [10] to define the class formally. Box2 denotes the class of axis-parallel boxes
over {1,...,n}%. So d represents the number of dimensions and n represents the
number of discrete values that exist in each dimension. Let [i, j] denote the set
{m € N| i < m < j}. Then, Box3 = {x§_,[ix, ] [ 1 €4 < jx < n}. So &
and j; are the minimum and maximum positive values of the k-th coordinate of a
box. Note that by allowing equality of iz and j; we include in Box3 boxes with
zero size in dimensior k. Finally, let |J, Box% denote the class of the union of at
most s concepts from BoxZ. Given a box b, we define the corner c¢; as the point
on the boundary of b such that the k-th coordinate of ¢; is less than or equal to
the k-th coordinate of all other points in b for all 1 < k < d. Conceptually, this
is the point on b closest to the origin. The point, ¢,, on b farthest from the origin
is symmetrically defined. Structurally this class is quite similar to DNF. Each is
a union (disjunction) of a number of sub-structures. Each of these sub-structures
is easily specified by two instances — in the case of DNF formulas these are the
minimum and maximum positive instances and in the geometric case these are ¢,
and ¢,. Our Q-T/L pair for DNF formulas is easily modified for this geometric
class as we show in this corollary to Theorem 5.

CoROLLARY & There exisis a deterministic Q-T/L pair that ezactly ideniifies any
target, f, in the class |J, BOXZ using only equivalence queries where all hypotheses
are unions of bozes. The learner runs in lime polynomial in lgn, s, d and iR}"‘[.

Note that if the boxes are not axis-paralle] teaching is still possible, polynomial
in lgn, s, d, [R?I and the number of slopes, provided that the learner knows the
set of possible slopes (it is not necessary for the learner to be told the siope of each
individual box, just the set of possible values over all boxes). The learner for this
class is exactly the learner for the axis-parallel case except that each box in the
learner’s hypothesis for 2 target in that class is replaced by one box for each of the
possible slopes in this class. The remainder of the algorithm generalizes trivially.
A learning algorithm for this class, efficient only for constant values of d, is given

by Bshouty et.al. [8].
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7. Variations of the Model

In this section we briefly discuss several varianis of our teaching model. The first
of these allows the teacher to give multiple counterexamples to a single query. The
next variant allows for incomplete or malicious membership queries.

As our model is defined the teacher provides the learner with a single coun-
terexample to any query, paralleling the standard query learning model. Consider,
however, a model in which the teacher can answer any query with a constant num-
ber of counterexamples. This, for example, would allow the randomized learner for
DNF in Section 4.3 to ask a single equivalence query for each superset/subset query
pair since the teacher could provide both a positive and a negative counterexample
as an answer. It seems unlikely, however, that this change increases the power of
the model.

The next change we consider to the model concerns allowing noise. Specifically we
examine noise in the membership queries. Angluin and Slonim [4] introduced the
model of incomplete membership queries in which any membership query can be
answered “I don’t know” independently at random. The only restriction is that the
answers are persistent — the answer given for a query the first time it is asked is given
every time it is asked. In this model, Angluin and Slonim showed that monotone
DNF is learnable, with high probability, in polynomial time. It is easy to allow
for this phenomenon in our model. We simply have the teacher flip a (possibly)
biased coin and give the correct answer for the query if the coin is heads and answer
“I don’t know” if it is tails. It is clear that in this model we can make the same
claims about learnability (with IMQ) implying teachability that we make in general.
What is less clear is if the ability of the teacher to provide useful counterexamples to
equivalence queries can help compensate for the noise (say by reducing the number
of membership queries necessary) and thus allow the teachability of a class in this
model that is not learnable with incomplete membership queries.

Finally, we consider malicious membership queries as introduced by Angluin and
Krikis [3]. In this model the membership queries are answered incorrectly at the
discretion of an omniscient adversary. As with incomplete membership queries the
noise is persistent. The adversary has a bound of £ on the number of instances
on which it can lie and the learner is allowed time polynomial in £. (Sloan and
Turan [27] introduced a similar model in which membership queries are answered
“I don’t know” at the discretion of an adversary.) This change is easily incorporated
into our model since we can allow the adversary to change the answer to membership
queries at its discretion with a bound of £ on the number of times this can be done.
Again it is easy to see that we can teach in this model any class that can be
learned with malicious membership queries but it is unclear if the model allows the
teachability of a class that is not learnable.
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8. Concluding Remarks

In this paper we have presented an interactive model of teaching that more accu-
rately models the nature of the relationship between teachers and students. We
have shown that any concept class that is learnable using example-based queries,
even by a randomized learner, is teachable in this model. We have demonstrated
the power of the model by showing that the class of DNF formulas is teachable
using only equivalence queries. The learnability of this class is an important open
problern.

Axn intriguing open problem is to try to find Q-T/L pairs for concept classes
that are representationally more powerful than DNF formulas. In particular, does
there exist a deterministic Q-T/L pair for polynomial size circuits? In a different
direction, it would be interesting to pursue the power of randomization in the
model. What classes can be learned with a randomized learner and teacher? Is
there a probabilistic, polynomial time teacher for the class of DNF?

Another interesting research direction is to extend this model to work in the PAC
sense. That is, change the requirement of the learner to return, with high proba-
bility, a good approximation of the target concept. This changes the relationship
between the teacher and learner since the examples seen by the learner would be
chosen according to an unknown probability distribution. One idea is to allow the
teacher to first communicate to the learner some polynomial number of “good”
examples that communicate an important aspect of the target.
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Appendix
Attempting to Prevent Collusion

During development of this model, we attempted to prevent collusion between the
teacher and learner. While all of the methods we tried were adversary based, each
successive attempt increased in complexity. Each was also defeated. In this section
we outline one method used by the teacher and learner to frustrate our attempts to
prevent collusion. We hope that this discussion illustrates the difficulty of collusion
prevention in an interactive teaching model.

The purpose of the adversary in the teaching protocol is to prevent collusion.
While unsuccessful, we maintain the adversary because it can prevent some forms
of collusion (e.g. inter-example collusion in the absence of intra-example collusion).
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It also seems that if a general collusion prevention scheme is possible it will be
adversary-based.

‘We begin with the adversarial method currently used in our model: an omniscient
adversary has the ability to add queries to those asked by the learner and to add
answers to those provided by the teacher. We demonstrate a system implemented
by the teacher and learner that allows collusion in the presence of this adversary.
This construction is due to Dana Angluin [2].

Let p be an n/2 bit prime. In polynomial time a randomized teacher can gen-
erate p with high probability. If the teacher is computationally unbounded then
it can generate p with probability 1. The teacher can send p to the learner in a
single example (without loss of generality, assume it is the first example sent to
the learner). The learner then knows that one of the examples in the first answer
set received represents p. By interleaving computations for the remainder of the
teaching session with each candidate for p the learner will obtain the intended re-
sult. For the remainder of this discussion we assume that the learner knows p. We
assume that the teacher and learner have agreed on some method, using residues
mod p, to encode a hypothesis, h;, equivalent to the target. That is, the teacher
and learner agree on some encoding method. The teacher then breaks the encoding
for h; into pieces of length n/2 (each a residue mod p) to pass to the learner. Let
v be the number of residues required to specify h;. The goal of the teacher is to

communicate to the learner the sequence of residues {ay,...,ar_3).
The sequence is reconstructed by the learner in an iterative fashion, first building
pairs {ap, a1}, (@2, aa}, . . ., then quadruples {ao, a3, a2, 43), . . . and so on until the en-

tire sequence has been constructed. The reason for iteratively building the sequence
is to keep the total number of candidate sequences small (recall that the adversary
is adding instances to confuse the learner). The way that this is accomplished is
explained in a moment.

Each d-tuple of residues is encoded as a degree d — I polynomial where each a; is
a coefficient. Each polynomial, ¢, is encoded by its values ¢(0), ¢{1),...,¢(r — 1).
We use q1 fo represent the first pair, ¢2 to represent the second pair, ¢pj241 fo
represent the first quadruple, etc. The teacher sends the values in a round-robin
manner: ¢1(0}, ¢2(0),...,¢(0),9:1(1),¢2(1), . . .. Each ¢i(j) is represented in a single
instance where the first n/4 bits represent i, the next n/4 bits represent j and the
last n/2 bits represent ¢;(j) mod p. During this stage of the algorithm the learner
maintains two minimally consistent hypotheses: hy and h—. hs is a list of the
positive examples seen by the learner and h_ is a list of the negative examples seen
by the learner. The learner simply alternates asking equivalence queries with Ay
and h_ allowing the teacher to give as counterexamples any instance not yet seen
by the learner.

We now consider the learner’s strategy. According to the schedule described
above, the teacher will attempt to send (3, 7, ¢:(j) mod p) as the answer to query
2(js 1) or query 2(js+14)+1 (since this instance is either positive or negative and
will thus be appropriate as an answer to only one of the equivalence queries EQ(h,)
or EQ(Ah_)). Let R;; denote the set of all instances received by the learner (those
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of the adversary in addition to those of the teacher) through query 2(js +4) + 1
that have “tag” (i,j). First, the learner constructs pairs of coefficients. Since each
pair is represented as a degree one polynomial the learner can reconstruct each
pair from two points. However, the learner does not know which points to use.
By taking Rj o x Ry, (the sets of candidate points for polynomial ¢; evaluated at
0 and 1) the learner creates (after some arithmetical manipulation) |R; of - | Ry 1]
candidate pairs for (ap,a1). Call this set Ci. By looking at Ry » the learner can
eliminate those candidates from C'; that do not take on a value in Ry at j = 2.
The learner can also eliminate from R; 3 any values that do not correspond to one
of the polynomials in C; at 7 = 2, At this point it must be the case that either:
at least two candidates in C) have the same value at j = 2 or |Cy| £ [Ry2|. In the
first case the learner continues checking R; ; until |Cy| < |R; | for some k. Since
distinct lines can intersect in at most one point, this must happen for

b (oo (1l 1))

The learner satisfies this condition independently for each pair (as;, a2i41). Then
processing can begin on the quadruples. For example, if € is the set of candidates
for (ag,a1) and C is the set of candidates for (as,as) then the cartesian product
of Cy and C; gives the set of candidates for the quadruple (a,, a1, a2, az). Call this
set of candidates C;. Then the learner checks these candidates using values in the
sets Ry ; for j = 0,1,2,..., eliminating candidates from C} until |Cy] < |Ry 4 for
some g > 0.

Building pairs into quadruples, quadruples into octuples ete., the learner eventu-
ally satisfies the condition for the entire sequence. That is, |C,| < |R,y]. There
are | Ry y| - |Ruw,.| candidates for the entire sequence, where R, , and Ry, , are sets
of candidates for the sequences of length /2. Thus, there are

( IRu,ul : iRw,zl )
2

pairs of candidates. Since two degree k polynomials can intersect in at most &
points, each pair of candidates can intersect in at most r — 1 points. Thus, [C,] <
lR;,y] for

y< (- (ool Rl )Y,

At this point the learner can make an equivalence query with each candidate in C,
one of which will be answered “yes”.

The learner asks O(rs) queries to build the R;; where r = O(|[jh:|[) and s, the
number of polynomials passed, is at most 2r. Thus, to build the candidates, the
learner asks a number of queries polynomial in the size of the hypothesis being
encoded. The number of queries asked at the end is polynomial in the number of
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examples (including adversarial examples) seen by the learner. The time used by
the learner is polynomial as well.

In an effort to prevent such a scheme we allowed the adversary the additional
ability of remapping the instance space by rearranging the boolean variables. This
was intended to prevent the intra-example collusion that allows the above method
to defeat the adversary — specifically, the use of the tag bits indicating 7 and j. The
way this worked was that the adversary would change the learner’s queries to an
alternate boolean basis (the adversary could still add queries and answers). When
the teacher answered these queries the adversary would remap the answers back to
the original basis. Thus, the teacher couldn’t pass the type of “tag” information
necessary. However, as its first query the learner could pass a set of examples
that illustrated for the teacher what its basis was (i.e. for n = 5 show the instances
10000, 11000, 11100, 11110). The adversary would then remap this query to another
basis. But only 10000 would map to an instance with only one 1. This would tell
the teacher which bit ¥ mapped to. Then, with this knowledge, the teacher could
discover where y» was mapped by looking at the only instance in the query with two
1s. Even after adding of queries by the adversary the teacher would know that the
basis was one of a polynomial number of candidates and could work with them in a
round-robin fashion.). Note that remapping by using bitwise XOR with some string
in {0,1}" (as in Bshouty’s monotone theory) is even easier to circumvent. Other
types of remappings destroy structure in the lattice that is essential to some classes
(such as monotone classes). Once the basis is known to the teacher, a scheme as
above could be used for encoding. Thus, the teacher and learner can bypass this
additional method as well.
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