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For various reasons, a dedicated cluster is not always fully utilized even when all of its processors 
are allocated to jobs.  This occurs any time that a running job does not use 100% of each of the 
processors allocated to it.  Keeping in mind the needs of both the cluster’s system administrators 
and its users, we would like to increase the throughput and efficiency of the cluster while 
maintaining or improving the average turnaround time of the jobs and the quality of service of the 
“primary” jobs originally scheduled on the cluster. 

To increase the throughput and efficiency of the cluster, we schedule background jobs to run 
concurrently with the primary jobs.  However, to achieve our goal of maintaining or improving 
the average turnaround time of the jobs and the quality of service of the primary jobs, we 
investigate two methods of prioritizing the CPU usage of the primary and background jobs.  The 
first method uses the existing “nice” mechanism in the 2.4 Linux kernel to give background 
processes a lower priority than primary processes.  The second method involves modifying the 
2.4 Linux kernel’s CPU scheduler to create a new guest process priority that prevents guest 
processes from running when primary processes are runnable. 

Our results come from empirical investigations using real production applications.  Production 
runs using these applications are regularly performed in the dedicated cluster environment that we 
used for testing.  Measurements of various statistics, such as wall time and CPU time, are taken 
directly from test runs that use these same production applications.  This was helpful for 
comparison to results from models and synthetic applications. 

We found that using the existing nice mechanism significantly improves the throughput, 
efficiency and average turnaround time of the cluster but only at the expense of the quality of 
service of the primary jobs (primary job running times increased 5-25%).  On the other hand, we 



 

can use the guest process priority to get similar improvements in throughput, efficiency and 
average turnaround time while not significantly impacting the quality of service of the primary 
jobs (primary job running times changed less than 1%).
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Glossary 

cluster-level scheduler: the scheduler responsible for allocating processors to a job.  
This is distinguished from the local OS scheduler that actually performs time-sharing of 
the processor between runnable processes. 

guest process: a process that is not enabled to run if there is a higher-priority non-guest 
process in the kernel’s run queue.  This means that a guest process may experience 
starvation if it is run along with a CPU-bound process.  The meaning is similar when the 
term guest precedes other words such as task or job. 

job: the smallest unit accepted by a cluster-level scheduler.  The cluster-level scheduler 
allocates processors that it manages to a job.  A job then starts any number of processes 
on these processors.  If multiple processes are started, they do not necessarily have to be 
a part of a parallel application but this is often the case. 

low-priority process: a process that has been assigned the lowest priority allowable by 
the Linux kernel’s “nice” mechanism.  The meaning is similar when the term low-priority 
precedes other words such as task or job. 

primary process: a process that has high-priority usage of the system resources 
(processor, memory, I/O and network bandwidth, etc.) of the system on which it is 
running.  The meaning is similar when the term primary precedes other words such as 
task or job. 
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1 Introduction 

In a cluster environment, where processors are only allocated to a single application at a 
time, some parallel applications do not fully utilize the processors to which they have 
been assigned.  For example, certain classes of applications, when parallelized, require a 
high amount of communication between individual parallel processes running on 
different processors.  Depending on the latency and bandwidth of the connection between 
the individual processors, the frequency and/or size of inter-process messages can cause 
these processes to underutilize the processors on which they are running.  This is 
particularly prevalent in dedicated clusters when a relatively high-overhead network, 
such as Ethernet, connects its processors. 

It is desirable to allow other “guest” processes to run in the background concurrently 
with these applications and benefit from the unused processor time.  This would help to 
increase the throughput and efficiency of the cluster.  We would not, however, want to 
interfere with the primary task being performed on a given processor.  To help avoid 
interference, we would not want to schedule other processes in the background that 
utilize the same resource that is the bottleneck for the primary task.  In addition, we must 
be able to control the guest processes’ resource usage to keep them from interfering with 
the primary task (i.e., we must maintain the primary task’s quality of service). 

This work is motivated by observing the behavior above on a sixty-four-processor 
production cluster used by researchers at the University of Missouri—St. Louis.  The 
cluster is dedicated to running resource-intensive programs.  Some of the applications run 
do not fully utilize the processors assigned to them.  It is desirable in this production 
environment to increase the throughput and efficiency of the cluster while maintaining 
quality of service for the primary jobs.   

We evaluate two methods for controlling the CPU usage of a process to see how they 
might help us achieve our objectives of higher throughput and efficiency while 
maintaining quality of service for the higher-priority process. One of these is the 2.4 
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Linux kernel’s “nice” mechanism that allows us to specify the CPU priority of a given 
process.  Secondly, we examine how a set of modifications to the kernel’s CPU 
scheduler—originally designed for the Linger-Longer system to provide fine-grained 
cycle stealing in a network of workstations [19]—might help us achieve our goals.  In 
this thesis, we are on the cluster level dealing with whole applications and so methods 
that can be used to prioritize threads within an application are not available to us. 

The Linger-Longer system provides mechanisms and policies that support running guest 
processes along with host processes in order to exploit otherwise idle workstation 
resources in a non-dedicated network of workstations.  The host processes are those 
processes, such as a web browsers and editors, which might be running on a workstation.  
The guest processes are processes that will be running concurrently with the host process 
on the workstation in order to consume any idle cycles.  It is a goal of the Linger-Longer 
system to make sure that these guest processes do not significantly interfere with the host 
processes. 

Our work applies some concepts from the Linger-Longer system to a dedicated cluster as 
opposed to a non-dedicated network of workstations.  Users submit their jobs to the 
cluster and expect that the nodes allocated to their jobs will be available exclusively to 
their jobs.  We call the processes running on the cluster as a part of these jobs primary 
processes (contrast this with Linger-Longer’s host processes).  As in the Linger-Longer 
system, we would like to run jobs in the background in order to use any spare CPU 
cycles.  One of our goals is to make sure that these jobs do not significantly interfere with 
the primary jobs.  When we use the Linux kernel’s existing “nice” mechanism to help us 
control the CPU usage of these background jobs, we call the background jobs “low-
priority” jobs. When we use the kernel extensions, we call them guest jobs. 

The Linger-Longer work in [18], [19] and [20] presents results of experiments using 
benchmarks, models and simulations.  In [19], the benchmarks were run as host processes 
and guest processes.  The effect on the running time of the host processes was measured.  
In [18] and [20], the efficiency with which idles cycles were used by guest jobs as well as 
the change in the throughput of guest jobs was measured by running jobs in a simulated 
environment.  
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In our experiments, we use a number of real production applications that are normally run 
on a dedicated production cluster.  Our testing environment is an actual subset of this 
production cluster.  These production applications are used as both primary jobs and 
guest jobs.  The effect on the running time of primary jobs is measured.  We measure the 
change in the efficiency of the use of the entire cluster as opposed to just the efficiency of 
the use of the idle cycles.  Similarly, we measure the change in the throughput of the 
entire cluster instead of just the change in the throughput of the guest jobs.  Additionally, 
we measure the change in the average response time of the entire set of jobs. 

The remainder of this chapter describes our testing environment and the applications we 
used in our experiments as well as gives an overview of the experiments.  Chapter 2 
discusses related work.  Chapter 3 presents results obtained from running experiments 
using existing mechanisms in the unmodified 2.4 Linux kernel.  Chapter 4 describes how 
these results change when the experiments are run again using a modified 2.4 kernel.  
Our conclusions are presented in Chapter 5. 

1.1 Testing Environment 

The production Linux cluster mentioned above consists of thirty-two dual processor 
servers.  Of the sixty-four available processors, thirty-four are 1.4 GHz Pentium IIIs and 
thirty are 1 GHz Pentium IIIs.  All of the nodes are on the same 100 Mb/s Ethernet 
network.  That is, each node has one full-duplex 100 Mb/s Ethernet connection to a 100 
Mb/s network switch.  Each node has 1 GB of 133 MHz SDRAM and an 18 GB Ultra3 
SCSI (160 MB/s) 10,000 RPM hard drive.  Each node runs an SMP Linux kernel (2.4.x).  

The cluster is dedicated to running resource-intensive programs.  Each researcher submits 
a job to the cluster’s resource management software, which allocates nodes based on the 
resources the researcher requested.  Thus if the researcher requested four nodes, then 
his/her job will be given exclusive1 access to four dual processor nodes.  This would 
include exclusive access to all of the memory (4GB total), all scratch space (on the four 

                                                 
1 There are, of course, a small number of administrative utilities that run in the background, such as 
monitoring applications.  The amount of resources used by these utilities is very minimal; however, queries 
by the administrator can occasionally cause these utilities to run even when a researcher’s job has 
“exclusive” access.   Additionally, the kernel will always need access to some of the resources. 
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hard disks), all processors (eight total), all four network connections2, and other resources 
(e.g., buses). 

The resource management software used on the cluster is OpenPBS [14], commonly 
referred to as PBS.  A job is submitted to PBS by specifying a shell script that contains 
PBS-specific directives followed by the commands to be executed once processors are 
assigned to the job.  The PBS submit node runs a pbs_server process that accepts job 
submissions and a pbs_sched process that decides when and where to schedule the 
jobs.  The PBS submit node communicates with each worker node via a pbs_mom 
process running on each node.  Once the scheduler determines where the job will run, the 
job script submitted earlier is transferred to that node.  The pbs_mom process is 
responsible for starting execution of that script.  The commands in that script now have 
complete access to the one or more nodes requested during job submission.  Parallel 
processes may be started via the PBS API or via any other method, such as MPICH [6]. 

For our experiments, we used four nodes from the production cluster.  To reduce the 
degrees of freedom in our experiments, we chose to boot each of these nodes with a 
2.4.20 uniprocessor Linux kernel.  This effectively made the nodes single-processor 
servers.  As a result, each parallel application we ran used a maximum of four processors 
each on a different node and connected by a 100 Mb/s Ethernet network.  This means that 
each processor had exclusive access to the entire 1 GB of memory in the node as well as 
all scratch space and the full bandwidth of the various buses. 

1.2 Application Descriptions 
A number of applications were used during our research.  As shown in Table 1-1, these 
applications are either CPU-bound or I/O-bound and consist of either one sequential 
process or four parallel processes (i.e., their degree of parallelism is either one or four).  
The I/O-bound applications vary in their level of CPU usage.  Measurements showing 
each application’s CPU-usage are presented in Section 3.1.  With the exception of HPL, 
these applications have been used by the cluster’s users to do real-world research.  
Hereafter, we will refer to these applications by the names listed in Table 1-1. Detailed 

                                                 
2 Although the job will have exclusive access to the four network connections (one per node), the 
availability of the full bandwidth is not guaranteed.  Although it is not likely, the network switch’s 
backplane could be saturated by traffic from other nodes and thus, network availability would be affected. 
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descriptions of each application are given in the subsections below and summarized in 
Table 1-2 through Table1-7. 

Table 1-1.  Application Properties 

Name CPU-bound I/O-bound Degree of 
Parallelism  

GAUSS X  1 
HAL1 X  4 
HPL  X 4 
MrBayes  X 4 
WRF  X 4 
PAUP X  1 
 

Table 1-2. GAUSS 

Name GAUSS 

Description GAUSS is a mathematical and statistical package that provides a matrix 
programming language.  Programs written with GAUSS are run on the Linux 
cluster by Economics researchers. 

Properties This program is used in an embarrassingly parallel fashion in that the same 
program is run many times with different input.  These different simulations are 
independent and can be run simultaneously on the cluster.  Thus, linear speedup 
is achieved when running the different simulations in parallel.  Each simulation is 
CPU-intensive.  Other resource usage is minimal. 
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Table 1-3. HAL1 

Name HAL1 

Description HAL1 is a program used by Logistics researchers.  It applies an intelligent 
enumeration algorithm to analyze all possible locations for hub arcs in a logistics 
network [4].  This program is run in parallel on the Linux cluster. 

Properties This program is CPU-intensive.  Other resource usage is minimal.  It is written 
using a master/slave model.  If one slave process is slowed for some reason, the 
program as a whole will not be halted since the resulting excess work will be 
given out to the other slave processes.  

 

Table 1-4. HPL 

Name HPL 

Description HPL is a software package that solves a (random) dense linear system in double 
precision (64 bits) arithmetic on distributed-memory computers. It can thus be 
regarded as a portable as well as freely available implementation of the High 
Performance Computing Linpack Benchmark.  We use HPL as a benchmark 
code.  HPL is an MPI program. 

Properties This program can be CPU intensive or communication intensive depending on 
the size of the system being solved and the number of processors being used in 
the computation.  With larger systems, more data is communicated between 
processes.  Similarly, when the number of processors used to solve the problem is 
increased, so is the amount of communication between processors.  If one process 
is stopped for some reason, the entire program will halt waiting for that process. 
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Table 1-5. MrBayes 

Name MrBayes 

Description MrBayes is a program for the Bayesian estimation of phylogeny.  It is used on the 
cluster by Biology researchers.  MrBayes is an MPI program. 

Properties This has moderate network bandwidth requirements and small memory 
requirements.  It statically assigns independent portions of its work to different 
processors.  If one process is stopped for some reason, the other processes will 
continue on their independent portions. 

 

Table 1-6. PAUP 

Name PAUP 

Description PAUP (Phylogenetic Analysis Using Parsimony) is a package for inference of 
evolutionary trees.   

Properties This program is used in an embarrassingly parallel fashion in that the same 
program is run many times with different input.  These different simulations are 
independent and can be run simultaneously on the cluster.  Thus, linear speedup 
is achieved when running the different simulations in parallel.  Each simulation is 
CPU-intensive.  Other resource usage is minimal. 

 

Table 1-7. WRF 

Name WRF 

Description WRF is designed to be a flexible, state-of-the-art atmospheric simulation system 
that is portable and efficient on available parallel computing platforms. WRF is 
suitable for use in a broad range of applications across scales ranging from meters 
to thousands of kilometers. 

Properties This program is very communication intensive.  As a result, it does not fully 
utilize the CPU.  As the number of processors used increases, the CPU utilization 
decreases.  If one process is stopped for some reason, the entire program will halt 
waiting for that process. 
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1.2.1 GAUSS 

GAUSS is a mathematical and statistical package that provides a matrix programming 
language [5].  Researchers in the Economics department at the University of Missouri – 
St. Louis use this package to write their analysis programs.  One such analysis program, 
which was written with GAUSS, was used in production to perform actual research.  The 
only change made to the input file was to reduce the runtime to an appropriate value.  
Many copies of this program using different datasets were run on the cluster in an 
embarrassingly parallel manner.  The program is CPU-bound. 

1.2.2 HAL1 

HAL1 is a program written by researchers in the College of Business Administration at 
the University of Missouri – St. Louis.  It applies an intelligent enumeration algorithm to 
analyze all possible locations for hub arcs in a logistics network [4].  This program is run 
in parallel on the Linux cluster using the MPICH [6] programming system. 

HAL1 aims to optimize the location of hub arcs (the paths between hubs) instead of 
optimizing individual hub locations.  Instead of enumerating through every possible 
combination of hub arcs between hub cities, however, HAL1 keeps track of the best set 
of hub arcs it has found so far and stops analyzing a given combination of hub cities once 
its cost exceeds the best (i.e., lowest) cost found so far. 

The problem is solved in parallel using the master/slave paradigm with load balancing.  
One coordinator (master) process coordinates multiple worker (slave) processes.  The 
workers are allocated a set of possible hub arc configurations through which to 
enumerate.  At certain times, each worker process will report its best answer found so far 
to the coordinator process.  The coordinator process will then push this information out to 
other workers so that they can eliminate more of the hub arc configurations that they are 
considering (based on this new information). 

For the experiments using HAL1 in this thesis, we use input files that were used in 
production runs on the cluster.  The only change was to scale the running time to an 
appropriate value.  We ran the program using four processors for three worker processes 
and the coordinator process.  This program is CPU-intensive.  Other resource usage is 
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minimal.  If one worker process is slowed for some reason, the program as a whole will 
not be halted since the resulting excess work will be given out to the other worker 
processes. 

1.2.3 HPL 

HPL is a software package that solves a (random) dense linear system in double precision 
(64 bits) arithmetic on distributed-memory computers. It can thus be regarded as a 
portable as well as freely available implementation of the High Performance Computing 
Linpack Benchmark [16].  HPL was used as a benchmark code on the cluster.  HPL is an 
MPI program. 

This program has a number of tunable parameters.  While all of the parameters affect 
performance in one way or the other, changing the matrix size and number of processors 
allows us to simulate a number of different conditions on the cluster.  Depending on the 
matrix size, this program can have a small or very large memory footprint.  As more 
processors are used, HPL communicates more and uses the CPU less.  With smaller 
numbers of processors, it is CPU-intensive as well as communication-intensive.  If one 
process is stopped for some reason, the entire program will halt waiting for that process.  
For the experiments in this thesis, we configured HPL in such a way that we would see 
the communication-intensive behavior. 

1.2.4 MrBayes 

MrBayes is a program for the Bayesian estimation of phylogeny [8].  It is used in 
production on the cluster by Biology researchers.  Researchers have many datasets that 
can be processed independently.  Furthermore, MrBayes allows each dataset to be 
processed in parallel by allocating each chain of the analysis to its own processor.  Since 
each chain is independent and statically assigned to a processor, if one process is slowed, 
the others can continue.  MrBayes is an MPI program.   

The dataset used in the experiments in this thesis is one that was used to do production 
research.  It used four chains and thus four processors were used by MrBayes to analyze 
this dataset. 
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1.2.5 WRF 

WRF is designed to be a flexible, state-of-the-art atmospheric simulation system that is 
portable and efficient on available parallel computing platforms. WRF is suitable for use 
in a broad range of applications across scales ranging from meters to thousands of 
kilometers [26].  WRF is a parallel program and is very communication intensive.  As a 
result, it does not fully utilize the CPU.  As the number of processors used increases, the 
CPU utilization decreases.  If one process is stopped for some reason, the entire program 
will halt waiting for that process. 

1.2.6 PAUP 

PAUP (Phylogenetic Analysis Using Parsimony) is a package for inference of 
evolutionary trees [23].  It is used in production by researchers in the Biology department 
at the University of Missouri – St. Louis.  PAUP is a sequential program that is used with 
many different datasets in an embarrassingly parallel manner on the cluster.  It is CPU-
bound.  For the experiments in this thesis, a dataset was used that, when analyzed by 
PAUP, exhibited the same runtime properties as those that were run in production on the 
cluster (i.e., its analysis was CPU-bound). 

1.3 Overview of Experiments 

Our results are based on seven distinct sets of experiments as summarized in Table 1-8.  
Each set consists of a number of individual experiments.  As a convention used 
throughout the thesis, we will refer to experiment Y in set X as “experiment sXeY.”  For 
example, experiment 3 of set 1 would be referred to as experiment s1e3. 
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Table 1-8. Summary of Experiments 

Set Purpose of Experiments 
1 To measure the running time of each application when it is run by itself using the 

unmodified kernel.  This establishes the baseline performance of each application. 
2 To measure the effect of running a low-priority job concurrently with a primary job using 

the unmodified kernel.  A set of one or more processes (a job) is assigned the kernel’s 
lowest “nice” priority (low-priority processes) and run concurrently with a job consisting of 
processes with the default kernel nice priority (primary processes). 

3 To measure the throughput, efficiency and turnaround time when running all applications 
such that there is only one application process per processor at any given time (i.e., we do 
not allow more than one job to be assigned to a given processor at a time) using the 
unmodified kernel.  Additionally, the total running time of the primary jobs is measured as 
an indication of the primary jobs’ quality of service.  These are baseline measurements to be 
used for comparison with results from experiment sets 6 and 7. 

4 The same as experiments in set 1 but this time with the modified kernel.  These experiments 
are used to verify that the running times of the applications are not changed when run using 
the modified kernel. 

5 The same as experiments in set 2 but this time with the modified kernel (and thus a “guest” 
job instead of a “low-priority” job). 

6 To measure the throughput, efficiency and turnaround time when running a low-priority job 
concurrently with a primary job on the unmodified kernel.  Additionally, the total running 
time of the primary jobs is measured as an indication of the primary jobs’ quality of service.  

7  The same as experiments in set 6 but this time with the modified kernel (and thus a “guest” 
job instead of a “low-priority” job).  Additionally, the total running time of the primary jobs 
is measured as an indication of the primary jobs’ quality of service.   

Each experiment was allocated four nodes by the cluster-level scheduler regardless of the 
number of processes it was going to create.  Each process, including individual parallel 
processes of a parallel application, were started by a wrapper script, getstats, that 
would start the process as one of its children and then collect resource usage statistics 
using the Linux kernel’s getrusage() system call when the child process completed.  
Wall time was measured using a call to gettimeofday() immediately before the 
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process was started and immediately after it finished.  All parallel applications used four 
processors and were run using the MPICH 1.2.5 implementation of the MPI specification 
[6].  Figure 1-1 shows how a parallel application, using MPICH, is started in order to 
gather the desired statistics.  MPICH starts parallel processes on remote nodes using a 
specified program, such as rsh or ssh.  We specified the use of a custom script, fsh, 
that modifies the command normally started via rsh by MPICH such that it uses the 
wrapper script, getstats, to start each parallel process as a child.  Then, as mentioned 
above, getstats uses standard system calls to collect the desired statistics. 

Process 1

getstats

fsh
node1

Process 2

getstats

fsh
node2

Process 3

getstats

fsh
node3

Process 4

getstats

fsh
node4

Parallel Application

 

Figure 1-1. Gathering Statistics from the Applications 

With the exception of HPL, all applications used in these experiments have been run on 
the production cluster in order to perform real-world research.  HPL is benchmarking 
software and a dataset was designed for it that would cause it to behave as an I/O-bound 
application.  For all other applications, datasets were chosen so that they would exhibit 
the properties observed by the actual researchers using them on the cluster but with 
smaller running times.  Wherever possible, actual datasets from the researchers were used 
but scaled down to make the experiments run within an appropriate amount of time. 

The seven sets of experiments described in Table 1-8 can be grouped into three groups as 
described in Table 1-9. 
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Table 1-9. Three Groups of Experiments 

Group Sets in Group Purpose of Group 
A 1, 4 To collect baseline statistics for primary jobs. 
B 2, 5 To measure the impact on the quality of service of 

primary jobs when other jobs are run concurrently. 
C 3, 6, 7 To measure the change in average turnaround time of a 

set of jobs; measure the change in throughput and 
efficiency of the nodes used by these jobs; and measure 
the impact on the quality of service of primary jobs. 

1.4 Contributions of Thesis 

The work done to complete this thesis has resulted in a number of contributions.  Before 
any work could be done, it was necessary to develop scripts to gather and report 
throughput, efficiency, response time and quality of service measurements.  It was then 
necessary to gather a variety of production applications to measure.  The Linger-Longer 
kernel extensions had to be ported to the 2.4 Linux kernel.  Additional scripts were 
written to collect, manage and average 156 experimental runs (fifty-two experiments run 
three times each).  Over 4300 lines of shell scripts and C code was written to support the 
work done for this thesis.  The results of these experiments are analyzed in this thesis. 

The scripts written to report the performance data from the applications had to consider 
both sequential and parallel processes.  Parallel applications were run with MPICH.  A 
script was written to be called from MPICH in place of rsh or ssh.  This script modifies 
the command line that MPICH uses to create a parallel process on a remote host.  These 
modifications force the parallel process to be started by yet another script written for this 
thesis work.  That script creates the parallel process as a child process and reports 
statistics for that process once it exits. 

The applications chosen were mostly production applications.  Input files for these 
applications were gathered and tuned so that run times would be appropriate and so that 
the applications would still exhibit the runtime characteristics that researchers saw when 
using them on the production cluster of which our test environment was a part.  The 
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applications represented a variety of fields, such as biology, economics, logistics and 
weather modeling. 

As provided, the Linger-Longer kernel extensions were for the 2.0.x and 2.2.x Linux 
kernels.  Our test systems used the 2.4.x Linux kernel.  Due to changes in the way 
priorities are calculated in the 2.4 kernels versus the 2.2 and 2.0 kernels, these kernel 
extensions had to be ported to the 2.4 Linux kernel. 

With all of the above preparations, scripts were written to do the actual experiments.  
These scripts had to ensure that certain applications were started on certain processors 
during the correct time frames.  Timing information from these experiments had to be 
reported in addition to the statistics reported by the other scripts for each application.  
Each of the fifty-two experiments was run three times to detect any major variation in the 
measurements.  Scripts had to be written to calculate the averages of the many 
measurements recorded.  Additionally, scripts were needed to extract statistics from the 
hundreds of output files and calculate from them statistics for the cluster as a whole. 

An analysis of the results of these empirical experiments is presented in this thesis.  It 
serves to strengthen previous results which were obtained through simulations and 
modeling using benchmarking applications.  Additionally, the analysis shows the 
viability of extending the Linger-Longer work to a dedicated cluster.  It provides support 
for new methods to improve the throughput, efficiency and response time in a dedicated 
cluster while maintaining quality of service.  
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2 Background and Related Work 

A goal of our research is to increase the throughput and efficiency of a dedicated cluster 
by exploiting its available idle time.  At the same time, we would like to improve or 
maintain the average turnaround time of the jobs and the quality of service of the primary 
jobs.  Condor [12], LSF [27], NOW [1] and Linger-Longer [17], [18], [19], [20] all 
present ways to exploit the available idle time in a network of non-dedicated 
workstations while taking steps to limit the impact on the owner of the workstation. 

Condor, LSF and NOW attempt to limit the impact on the user by removing guest 
processes whenever CPU activity is generated by the primary processes (i.e., the 
processes that the workstation owner has started).  In our dedicated cluster environment, 
CPU activity from the primary jobs is ideally always present.  Thus the mechanisms used 
above would not be sufficient in helping us to exploit idle time while minimizing the 
impact on primary jobs.   

Linger-Longer is based on Linux kernel modifications that allow the guest processes to 
persist on the owner’s workstation despite CPU activity from the primary processes.  The 
kernel modifications keep the guest processes from being scheduled on the CPU when 
primary processes are runnable.  Once the primary processes’ CPU activity subsides, the 
Linger-Longer system will allow the guest processes to proceed.  Although this method 
was designed with the workload characteristics of a network of non-dedicated 
workstations in mind, it is also well suited for our dedicated cluster environment because 
it would allow us to keep the guest jobs running concurrently with the primary jobs yet 
limit the impact on the primary jobs. 

Linux is widely used as the operating system for commodity clusters [21].  However, 
there are times when extensions or modifications of the Linux kernel are considered in 
order to improve the efficiency of the cluster [3].  We investigate how some 
modifications to the Linux kernel can help us to run guest jobs concurrently with primary 
jobs without significantly impacting the primary jobs.  Using extensions to the Linux 
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kernel that support real-time scheduling, He et al. [7] developed models of idle time in 
heterogeneous clusters that can be used to run aperiodic jobs without interfering with 
existing periodic jobs.  This model uses specific properties of the periodic jobs that will 
be present in the system, such as their deadline and period.  Since the primary jobs in our 
system are not periodic, this information is not available and the model cannot be directly 
applied to our scenario. 

Our research does not propose modifications to the cluster-level scheduler.  The kernel 
modifications should be made on each of the worker nodes comprising the dedicated 
cluster.  Any cluster-level scheduler, such as those found in Condor, LSF, PBS [14] and 
Sun GridEngine [22], can be used to allocate processors to the primary jobs.  
Additionally, any cluster-level scheduler can then be used to fill the CPU time not being 
used by the primary jobs by scheduling guest jobs with complimentary resource 
requirements to run concurrently.  Also, it is still applicable to utilize techniques to tune 
the performance of cluster-level schedulers when appropriate, such as choosing suitable 
job sizes and job runtimes to establish an effective prime/non-prime time scheduling 
policy as studied in [13].  Another method called “interstitial computing” [9] schedules a 
large number of small “interstitial jobs” to fill unused CPU cycles arising from scenarios 
where each queued job requires more processors than are available (and as a result they 
leave the available processors idle).  This method does not schedule the interstitial jobs 
on the same processor as a native job; each interstitial job receives a dedicated processor.  
As a result, the cluster-level scheduler for the primary and/or guest jobs could certainly 
utilize interstitial computing if desired. 

Our work does not rely upon any special characteristics of the cluster-level scheduler.  It 
is assumed that a scheduler would be chosen to allocate processors as efficiently as 
possible to the primary jobs.  We are not proposing a new cluster-level scheduler but 
rather we are proposing that a second scheduler might be used to schedule guest jobs to 
use available idle time on already allocated processors.  Indeed, the same scheduler could 
be used as long as it recognizes which guest jobs would be complimentary to the primary 
jobs already running on a set of nodes.  The idle time on a processor could simply be 
viewed as a slower processor that is available.  Additionally, once the processors have 
been allocated to primary and/or guest jobs, the proposed kernel changes do not preclude 
the use of other methods sometimes used to synchronize the scheduling of individual 
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processes within the jobs (if needed), such as coscheduling [15], methods used by the 
Stealth distributed scheduler [10] or the Periodic Boost scheme used by Banerjee et al. 
[2]. 

Once primary jobs are allocated to CPUs in the cluster, the distribution of idle resources 
available to guest jobs can resemble a non-dedicated distributed environment.  As such, 
one could use metrics such as the “task ratio,” used by Leutenegger et al. [11] to 
determine the feasibility of scheduling parallel jobs on non-dedicated workstations, in 
order to determine the feasibility of scheduling guest jobs on the available resources.  It 
may also be beneficial for parallel guest jobs to make use of parallel programming 
environments that consider the potentially variable availability of distributed resources.  
Dyn-MPI [25] is one such programming environment.  It automatically redistributes the 
location of data used by parallel processes as the availability of resources changes. 

The Linger-Longer work also recognized that in addition to a guest job’s CPU usage, the 
memory [19], network and I/O [17] usage of a guest job could have a significant impact 
on the primary jobs running concurrently.  Our research does not address these other 
issues, such as memory, I/O and network usage by the guest jobs, which may impact the 
primary job.  Our experiments were designed so that the only resource contention would 
be for the CPU.  We verified the impact on primary jobs when running guest jobs 
concurrently using the Linux kernel’s existing “nice” mechanism versus the Linger-
Longer approach.   

The Sharc system [24] provides resource management mechanisms to control the CPU 
and network bandwidth usage of applications that are run concurrently across a shared 
cluster.  These mechanisms improve support for application isolation and performance 
guarantees for applications running across a shared cluster.  The Sharc system relies on 
single node resource management mechanisms, such as reservations or shares.  It then 
extends the benefits of these mechanisms to clustered environments.  Testing and 
evaluation of the Sharc system was done using extensions to the Linux kernel that 
provide QoS schedulers that satisfy Sharc’s dependencies; although it should be noted 
that Sharc itself does not include any kernel modifications.  The scope of the work on the 
Sharc system is wider than that of this thesis.  In fact, the Linux kernel extensions 
presented in this thesis and in the Linger-Longer work [17],[19],[20] may provide 
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alternative resource management mechanisms that could satisfy the kernel requirements 
of the Sharc system.  

We used a mixture of parallel and sequential applications, normally used by researchers 
in a production cluster environment, to verify the results of the Linger-Longer work in 
our dedicated cluster environment instead of using synthetic applications.  Our focus was 
on increasing the throughput and efficiency of the cluster while maintaining or improving 
the turnaround time of the jobs and the quality of service of the primary jobs.  We did not 
pay particular attention to the possibility of starvation of a guest job.  In fact, starvation 
of a guest job is a real possibility.  In order to ensure the forward progress of the guest 
jobs as well, it may be necessary to implement process migration.  Some approaches to 
handling process migration in a cycle stealing environment can be found in [19]. 
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3 Existing Priority Resource Management in the 
Kernel 

3.1 Establishing Baseline Measurements 

Baseline measurements show us how each application behaves when there are no other 
applications running concurrently to interfere with them.  Our first set of experiments, set 
1, consists of six experiments—one for each application.  This set of experiments comes 
from group A in Table 1-9.  The objective of these experiments is to determine the 
normal running time (i.e., wall time) of these applications on our 1 GHz dual Pentium III 
test systems as well as their efficiency and total CPU usage.  For each sequential 
application, only one process was run at a time ensuring that each process had unimpeded 
access to its critical resource.  Each parallel application was run alone using a total of 
four processors across four nodes.  The results for each application are shown in Table 
3-1. 

Table 3-1.  Baseline Application Running Times 

Run 1 Run 2 Run 3 
Experiment Application 

CPU (s) Wall (s) Eff (%) CPU (s) Wall (s) Eff (%) CPU (s) Wall (s) Eff (%)

s1e1 GAUSS 179 180 99 179 180 99 179 180 99

s1e2 HAL1 662 167 99 661 167 100 662 167 99

s1e3 HPL 844 357 59 844 357 59 845 357 59

s1e4 MrBayes 234 92 64 239 92 65 235 90 66

s1e5 WRF 863 393 55 863 390 55 866 392 55

s1e6 PAUP 212 214 99 211 211 100 212 213 99

Each experiment was run three times.  During each run, three statistics were reported: 
CPU time, wall time and efficiency.  The CPU time reported in Table 3-1 is the sum of 
the CPU time used by all processes in the application.  The wall time is the time elapsed 
between when the first process in the application started and when the last process exited.  
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The efficiency is the sum of the CPU times of all processes in the application divided by 
the sum of the wall times of all processes in the application.  Efficiency was measured in 
this way so that we could see how efficiently the application used the processors it was 
allocated.  This is neither a measure of the application’s parallel efficiency nor a measure 
of how efficiently the cluster was used as a whole. 

The average CPU time, wall time and efficiency for the three runs shown in Table 3-1 are 
presented in Figure 3-1, Figure 3-2 and Figure 3-3, respectively.  Remember that the 
CPU time shown in these graphs is the total CPU usage across all parallel processes for 
each individual application and it will generally be higher than the wall time for 
applications with degrees of parallelism greater than 1 (see Table 1-1).  Figure 3-4, 
Figure 3-5 and Figure 3-6 show the standard deviation of the CPU time, wall time and 
efficiency, respectively3.  We can see that the standard deviation is small, indicating low 
variability in the execution performance of these applications.  We take advantage of this 
result by reporting only the mean value of the three runs of each experiment throughout 
the remainder of the thesis.   

This data, summarized in Table 3-2, helps us to confirm the claims in Table 1-1 about the 
properties of the applications.  The high efficiency measured for GAUSS, HAL1, and 
PAUP demonstrate that they are CPU-bound.  Likewise, we can see that HPL, MrBayes 
and WRF are not CPU-bound in our experiments (in the case of these experiments, the 
properties of the cluster interconnect network slowed these applications down). 

Table 3-2. Averages (with Standard Deviations) for Three Baseline Runs 

CPU Time (s) Wall Time (s) Efficiency (%) 
Experiment Application Average Std. Dev. Average Std. Dev. Average Std. Dev.
s1e1 GAUSS 179 0 180 0 99 0
s1e2 HAL1 661 0 167 0 99 0
s1e3 HPL 844 0 357 0 59 0
s1e4 MrBayes 236 3 91 1 65 1
s1e5 WRF 864 2 392 1 55 0
s1e6 PAUP 212 1 212 1 100 0

                                                 
3 Figure 3-4, Figure 3-5 and Figure 3-6 are drawn on separate graphs at 1/20th the scale of the graphs in 
Figure 3-1, Figure 3-2 and Figure 3-3 because the standard deviations were too small to be seen as error 
bars with the averages. 
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Figure 3-1. Average CPU Time for Three Baseline Runs 
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Figure 3-2. Average Wall Time for Three Baseline Runs 
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Figure 3-3. Average Efficiency for Three Baseline Runs 
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Figure 3-4. Standard Deviation of CPU Time 
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Figure 3-5. Standard Deviation of Wall Time 

0

2

4

6

s1e1 s1e2 s1e3 s1e4 s1e5 s1e6

Experiment

St
an

da
rd

 D
ev

ia
tio

n 
(%

 p
oi

nt
s)

Efficiency (%)

 

Figure 3-6. Standard Deviation of Efficiency 
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3.2 Evaluating Existing Priority Resource Management Facilities 

The 2.4 SMP Linux kernel provides users with the ability to adjust the priority with 
which the kernel schedules processes for CPU time.  Our next set of experiments focuses 
on the effect that low-priority jobs have on primary jobs that are running concurrently on 
the same node. 

3.2.1 Effect of Low-Priority Jobs on Running Times of Primary Jobs 

The experiments in set 2 were intended to determine how some of the applications, run as 
primary processes, are affected when low-priority processes are run concurrently.  This 
set of experiments comes from group B in Table 1-9.  The list below shows the sequence 
of applications run for different experiments; applications in parentheses are started 
simultaneously and applications in brackets are only requesting a low level of service 
(i.e., they could be scheduled as “nice” or as a “guest”).  We tested four of the 
applications: HAL1, WRF, MrBayes and GAUSS.  These particular applications were 
chosen so that we would have half I/O-bound applications (WRF, MrBayes) and half 
CPU-bound applications (HAL1, GAUSS).  The low-priority jobs were CPU-bound 
applications chosen at random except where noted.  The experiments in set 2 are listed 
below. 

• s2e1: 
o GAUSS 
o [GAUSS] 

• s2e2: 
o MrBayes 
o ([GAUSS], [GAUSS], [GAUSS], [GAUSS]) 

• s2e3: 
o HAL1 
o [PAUP] 

• s2e4: 
o WRF 
o [PAUP], [PAUP] 
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• s2e5: 

o WRF 
o [HAL1] 

• s2e6: 
o HAL1 
o [PAUP] (specifically run concurrently with one HAL1 slave process) 

• s2e7: 
o HAL1 
o [PAUP], [PAUP], [PAUP], [PAUP] (specifically run concurrently with all 

HAL1 processes) 
• s2e8: 

o HAL1 
o [PAUP], [PAUP], [PAUP] (specifically run concurrently with all three 

HAL1 slave processes) 

Table 3-3 shows the mean CPU time, wall time and efficiency of each of these 
applications when running a low-priority process concurrently with them. 

Table 3-3. CPU Time, Wall Time and Efficiency of Primary Jobs. 

Experiment 
Primary 

Application 
CPU (secs) Wall (secs) Efficiency (%) 

s2e1 GAUSS 178.72 208.91 85.55 
s2e2 MrBayes 241.32 100.30 60.34 
s2e3 HAL1 676.56 224.22 75.70 
s2e4 WRF 885.04 409.09 54.14 
s2e5 WRF 765.31 426.92 44.86 
s2e6 HAL1 642.14 182.31 88.27 
s2e7 HAL1 412.76 269.42 38.36 
s2e8 HAL1 587.96 226.87 64.92 

The CPU time reported in Table 3-3 is the sum of the CPU time used by all processes in 
the primary application.  The wall time is the time elapsed between when the primary 
application’s first process started and when its last process exited.  The efficiency is the 
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sum of the CPU times of all processes in the primary application divided by the sum of 
the wall times of all processes in the primary application.  Efficiency was measured in 
this way so that we could see how efficiently the primary application used the processors 
it was allocated.  This is neither a measure of the application’s parallel efficiency nor a 
measure of how efficiently the cluster was used as a whole. 

Figure 3-7 shows how the running time of the primary applications have been affected by 
running a low-priority job concurrently.  Figure 3-8 shows the percent change from the 
baseline running times of the primary applications. 
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Figure 3-7. Baseline Running Times vs. Running Times with a Low-Priority Job 
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Figure 3-8. Percent Increase Over Baseline Running Times 

The data presented above in Table 3-3, Figure 3-7 and Figure 3-8 show that running a 
low-priority job concurrently with a primary job consistently impacts the quality of 
service of the primary job.  For an I/O-bound job, we would expect that the impact would 
be less since it does not generally use the full processor and thus is not giving up as much 
CPU time as a CPU-bound job.  This intuition is supported by the data just presented.  
The two I/O-bound jobs, MrBayes and WRF, have the lowest percent increase in running 
time. 

It is important to point out that the impact on the application is not always just an 
increase in wall clock time.  Examples of this are experiments s2e5 (WRF) and s2e7/s2e8 
(HAL1).  Notice that the CPU time used by the applications during these particular 
experiments has actually decreased from baseline when the low-priority job was run 
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concurrently with them.  These values were not anomalies; they were consistent across 
the three runs performed for each experiment.  It is reasonable for this to happen if the 
application uses an algorithm that varies the work it does based on certain factors.  For 
example, a probabilistic application may find different answers depending on which 
branches it chooses to examine.  Changing the characteristics of the processor on which 
such algorithms execute can be just the cause needed to set the algorithm in a new 
direction. 

The authors have particular knowledge of the HAL1 application.  HAL1 uses the 
master/slave paradigm with load balancing along with an adaptive enumeration algorithm 
to generate its results [4].  A slave process’ workload can change depending on the 
results found by the other slave processes so far.  Therefore, if a low-priority process is 
taking CPU time away from one or more of the slave processes, this can affect the 
workload of the other slave processes.  Additionally, the slave processes communicate 
their results to each other through the master process.  Thus if there are fewer 
communications for the master process to manage as a result of less work being done by 
some of the slave processes, the master process may use less CPU time also. 

3.2.2 Throughput, Efficiency and Response Time 

The next experiments are intended to measure some important properties of the cluster’s 
resource management environment.  The throughput of our system is measured by 
looking at the number of jobs completed in a certain amount of time.  The efficiency of 
the use of the cluster’s CPU resources is measured by noting the percentage of the CPU 
utilization over a particular period of time.  The turnaround time of a particular job is 
measured by noting the difference between when the job is submitted to the resource 
manager and when it completes execution. 

A first set of experiments (set 3 in Table 1-8, group C in Table 1-9) was run to obtain 
measurements when jobs had to follow each other sequentially.  That is, only one job at a 
time had access to a given set of processors.  These are baseline measurements that we 
can use to compare with the cases where we use the kernel’s existing “nice” mechanism 
to run more than one job per set of processors.  Additionally, we can compare the 
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baselines to the case where we use the “guest process” kernel modifications to run more 
than one job per set of processors. 

Running One Job per Set of Processors (Set 3, Group C) 

The list below shows the sequence of applications run for different experiments; 
applications in parentheses are started simultaneously and applications in brackets are 
only requesting a low level of service (i.e., they could be scheduled as “nice” or as a 
“guest”).  Figure 3-9 illustrates the timeline for the application sequence for s3e1 shown 
in the list below.  Experiments s3e1 and s3e2 specifically start only CPU-bound primary 
jobs.  Experiments s3e3 and s3e4 specifically start only I/O-bound primary jobs.  The 
remaining experiments start a mixture of both CPU- and I/O-bound primary jobs.  As 
mentioned in Section 1.3, only CPU-bound jobs were run as low-priority jobs since one 
of our goals is to increase the CPU utilization of the cluster.  Except where noted above, 
the sequences of applications were chosen somewhat randomly.  In some cases we 
attempted to schedule the low-priority jobs so that they would, when run concurrently 
with the primary jobs later (in set 6), fill up as much of the unused CPU time as possible.  
We used the baseline measurements from Table 3-1 to guide us to these rough 
approximations.  Additionally, the sequences we chose were guided in at least a small 
way by the sequences of job submissions seen on the production cluster of which our test 
nodes were a subset.  The experiments are: 

• s3e1: HAL1, (PAUP, PAUP, GAUSS, GAUSS), [HAL1], [HAL1] 

• s3e2: (PAUP, PAUP, PAUP, PAUP), [HAL1], ([GAUSS], [GAUSS], [GAUSS], 
[GAUSS]) 

• s3e3: MrBayes, WRF, HPL, [HAL1], ([PAUP], [PAUP], [GAUSS], [GAUSS]), 
([PAUP], [PAUP], [GAUSS], [GAUSS]) 

• s3e4: HPL, [HAL1], WRF, ([GAUSS], [PAUP], [PAUP], [GAUSS]), [HAL1] 

• s3e5: WRF, ([GAUSS], [GAUSS], [GAUSS], [GAUSS]), ([PAUP], [PAUP], 
[PAUP], [PAUP]), HAL1 

• s3e6: [HAL1], ([PAUP] , [PAUP] , [PAUP] , [PAUP]), MrBayes, HPL 

• s3e7: WRF, [HAL1], ([GAUSS],[GAUSS],[GAUSS],[GAUSS]) 

• s3e8: MrBayes, MrBayes, (PAUP, PAUP,PAUP,PAUP), [HAL1],[HAL1] 
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Figure 3-9. Application Timeline for s3e1 

We measured the throughput of the cluster resource management system by taking the 
number of jobs run (including both primary and low-priority) and dividing it by the 
number of hours (i.e., seconds/3600) required for all jobs to complete (including both 
primary and low-priority).  

The efficiency measurement here is a calculation of how efficiently the set of jobs in a 
given experiment used the set of processors assigned to them.  For each experiment, we 
considered its set of jobs to be the only jobs queued.  We summed the CPU usage of each 
process (including all parallel processes); call this Tc.  We then noted the amount of wall 
time, Tw, needed until the last job in the set completed.  We considered that each of the 
four processors was available for use this entire time.  Thus we calculated the available 
processor time as 4Tw.  We then calculated the efficiency as Tc/(4Tw).   

We also measured the average turnaround time of the jobs in each experiment.  The 
turnaround time for a given job is the amount of time that elapsed from when the job was 
submitted to the queue (we assume that all jobs were submitted at the same time (i.e., at 
time 0)) and the time that it finished executing.  The average turnaround time for a given 
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experiment is found by summing the turnaround time of every job in the experiment and 
dividing this sum by the number of jobs in the experiment. 

Finally, as a measure of the quality of service received by the primary jobs in each 
experiment, we report the wall time needed for all primary jobs to complete.  The 
throughput, efficiency, turnaround time and primary job running time measurements for 
the experiments in set 3 are shown in Table 3-4. 

Table 3-4. Throughput, Efficiency, Response Time and Primary Job Running Time 
for One Job Case 

Experiment 

Number 
of Jobs 

Run 
Throughput 

(jobs/hr) 
Efficiency 

(%) 

Avg. 
Turnaround 

Time (s) 

Primary 
Job 

Running 
Time (s) 

s3e1 7 35.45 97.21 420.61 1447.69
s3e2 9 57.71 99.05 395.62 852.19
s3e3 11 30.18 72.86 1084.11 3350.53
s3e4 8 22.24 73.61 952.79 2987.98
s3e5 10 37.74 80.93 685.83 2225.35
s3e6 7 30.36 78.09 437.99 1789.21
s3e7 6 29.36 76.06 659.27 1561.72
s3e8 8 39.56 90.69 403.33 1573.92

Running Multiple Jobs per Set of Processors 

The experiments in set 6 (group C) are identical to those in set 3; the difference is in how 
they were run.  For set 6, low-priority jobs were allowed to run concurrently with the 
primary jobs.  For these experiments, if only low-priority jobs are running and a primary 
job is submitted, the primary job will immediately be allocated the processors it needs.  If 
other primary jobs are running and there are not enough free processors, then the newly 
submitted primary job will be queued.   

The list below shows the sequence of applications run for different experiments; 
applications in parentheses are started simultaneously and applications in brackets are 
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only requesting a low level of service (i.e., they could be scheduled as “nice” or as a 
“guest”). Figure 3-10 illustrates the timeline for the application sequence for s6e1 shown 
in the list below.  Experiments s6e1 and s6e2 specifically start only CPU-bound primary 
jobs.  Experiments s6e3 and s6e4 specifically start only I/O-bound primary jobs.  The 
remaining experiments start a mixture of both CPU- and I/O-bound primary jobs.  The 
experiments are the same as in set 3 but the order of execution was done as if there were 
two queues that could use the same set of processors simultaneously.  The experiments 
are: 

• s6e1:  
o HAL1, (PAUP, PAUP, GAUSS, GAUSS) 
o [HAL1], [HAL1] 

• s6e2:  
o (PAUP, PAUP, PAUP, PAUP) 
o [HAL1], ([GAUSS], [GAUSS], [GAUSS], [GAUSS]) 

• s6e3:  
o MrBayes, WRF, HPL 
o [HAL1], ([PAUP], [PAUP], [GAUSS], [GAUSS]), ([PAUP], [PAUP], 

[GAUSS], [GAUSS]) 
• s6e4:  

o HPL, WRF 
o [HAL1], ([GAUSS], [PAUP], [PAUP], [GAUSS]), [HAL1] 

• s6e5:  
o WRF, HAL1 
o ([GAUSS], [GAUSS], [GAUSS], [GAUSS]), ([PAUP], [PAUP], [PAUP], 

[PAUP]) 
• s6e6:  

o MrBayes, HPL 
o [HAL1], ([PAUP] , [PAUP] , [PAUP] , [PAUP]) 

• s6e7:  
o WRF 
o [HAL1], ([GAUSS], [GAUSS], [GAUSS], [GAUSS]) 

• s6e8:  
o MrBayes, MrBayes, (PAUP, PAUP, PAUP, PAUP) 
o [HAL1], [HAL1] 
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Figure 3-10. Application Timeline for s6e1 

Now that we are allowing low-priority jobs to run along with the primary jobs, we would 
like to see what effect this has on throughput, efficiency, average turnaround times and 
quality of service.  We measured the throughput of the cluster resource management 
system by taking the number of jobs run (including both primary and low-priority) and 
dividing it by the number of hours (i.e., seconds/3600) required for all jobs to complete 
(including both primary and low-priority).  

The efficiency measurement here is a calculation of how efficiently the set of jobs in a 
given experiment used the set of processors assigned to them.  For each experiment, we 
considered its set of jobs to be the only jobs queued.  We summed the CPU usage of each 
process (including all parallel processes); call this Tc.  We then noted the amount of wall 
time, Tw, needed until the last job in the set completed.  We considered that each of the 
four processors was available for use this entire time.  Thus we calculated the available 
processor time as 4Tw.  We then calculated the efficiency as Tc/(4Tw).   
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We also measured the average turnaround time of the jobs in each experiment.  The 
turnaround time for a given job is the amount of time that elapsed from when the job was 
submitted to the queue (we assume that all jobs were submitted at the same time (i.e., at 
time 0)) and the time that it finished executing.  The average turnaround time for a given 
experiment is found by summing the turnaround time of every job in the experiment and 
dividing this sum by the number of jobs in the experiment. 

Finally, as a measure of the quality of service received by the primary jobs in each 
experiment, we report the wall time needed for all primary jobs to complete.  Our 
measurements for set 6 are shown in Table 3-5. 

Table 3-5. Throughput, Efficiency, Response Time and Primary Job Running Time 
for Multiple Job Case 

Experiment 

Number 
of Jobs 

Run 
Throughput 

(jobs/hr) 
Efficiency 

(%) 

Avg. 
Turnaround 

Time (s) 

Primary 
Job 

Running 
Time (s) 

s6e1 7 36.01 99.70 465.09 1728.16
s6e2 9 57.92 99.81 403.62 931.96
s6e3 11 38.79 96.42 826.41 3606.06
s6e4 8 27.60 95.16 763.2 3262.36
s6e5 10 44.35 91.06 576.13 2759.82
s6e6 7 35.51 99.39 569.04 1935.5
s6e7 6 37.15 99.25 530.61 1649.12
s6e8 8 41.63 99.63 411.83 1695.48

Figure 3-11 compares the baseline measurements from the set 3 experiments (primary 
jobs only) to the measurements obtained for the set 6 experiments (primary jobs with 
low-priority jobs run concurrently).  These results show that the throughput of the 
cluster-level scheduler can be increased by running low-priority jobs concurrently with 
primary jobs.  As we would expect, the increase in throughput is related to the efficiency 
with which the set of primary jobs (in the set 3 experiments) utilized the processor.  
Experiments in set 3 with all CPU-bound jobs (such as e1 and e2) obtained higher 
efficiency and thus there was little or no room for improvement in throughput in set 6; 
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thus the gains are minimal or non-existent.  On the other hand, experiments e3 and e4 
were I/O-bound resulting in lower efficiency when run alone (in set 3) and thus resulting 
in bigger gains in throughput when run with low-priority jobs in set 6.  Figure 3-12 
shows the associated increase in the efficiency of the cluster-level scheduler. 
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Figure 3-11. Baseline Throughput vs. Throughput with Low-priority Jobs 
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Figure 3-12. Baseline Efficiency vs. Efficiency with Low-priority Jobs 

Additionally, Figure 3-13 demonstrates that we can achieve this higher throughput while 
also lowering the average turnaround time of the jobs for most experiments.  Clearly the 
amount that we can decrease average turnaround time depends on how many of the jobs 
can finish sooner than before.  If we have CPU-bound primary jobs (e.g., e1 and e2) there 
will not be any CPU time available to run low-priority jobs.  Since the low-priority jobs 
are run with the kernel’s nice mechanism, they will take some CPU-time away from the 
primary job (as discussed in Section 3.2.1).  Thus the low-priority jobs’ average 
turnaround time may decrease but the primary jobs’ average turnaround time may 
increase.  On the other hand, when the primary jobs are I/O-bound (e.g., e3 and e4), the 
low-priority jobs are able to run sooner while having less of an impact on the primary 
jobs (versus when running with CPU-bound primary jobs).  Thus, as the impact of the 
low-priority jobs on the primary jobs gets smaller, so does the increase in the primary 
jobs’ average turnaround time.  Additionally, as the primary jobs’ CPU utilization 
efficiency decreases, so does the low-priority jobs’ average turnaround time.  Obviously, 
when the low-priority jobs’ average turnaround time decreases more than the primary 
jobs’ average turnaround time increases for a given experiment, we see an overall 
decrease in the average turnaround time of the set of jobs run in that experiment.  Taking 
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note of the efficiency measurements presented in Table 3-4, we can see this behavior in 
Figure 3-13. 
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Figure 3-13. Baseline Average Turnaround Time vs. Average Turnaround Time 
with Low-Priority Jobs 

The exception is experiment e6.  Even though Table 3-4 lists an efficiency of 78% for 
s3e6 we do not see the decrease in average turnaround time that we expect in s6e6.  
Experiment e6 is different from the other experiments in that for set 3 (i.e., experiment 
s3e6), the jobs are executed so that the low-priority jobs are run first followed by the 
primary jobs.  When the same jobs are run in set 6 (i.e., experiment s6e6), the primary 
jobs will be started immediately (i.e., at time 0).  Since the primary jobs have priority 
over the low-priority jobs, the low-priority jobs will all see an increase in their average 
turnaround times.  In this case, the increase in the average turnaround time for the five 
low-priority jobs was greater than the decrease in the average turnaround time for the two 
primary jobs thus resulting in an overall increase in the average turnaround time of this 
set of jobs (i.e., the jobs in e6). 

Thus far we have seen that running low-priority jobs concurrently with primary jobs 
when there is unused CPU time on the cluster can not only increase the throughput (and 
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thus the efficiency) of the cluster but it can also lower the average turnaround time of the 
jobs.  However, as we can see from Table 3-5 and Figure 3-14, this comes at the expense 
of the quality of service of the primary jobs.  That is, in all of the experiments, the time 
needed to complete the primary jobs increased when low-priority jobs were run 
concurrently. 
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Figure 3-14. Baseline Running Time vs. Running Time with Low-priority Jobs 

Figure 3-15 shows this data as the percent of increase over the baseline running times 
when low-priority jobs are run concurrently.  We see an increase of at least 5% in the 
running times of the primary jobs with some sets of primary jobs being affected by 20-
25%. 
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Figure 3-15. Percent Increase Over Baseline Running Time 

In this chapter we have seen that by running low-priority jobs concurrently with primary 
jobs, we can increase the throughput and efficiency of the cluster-level scheduler as well 
as lower the average turnaround time of the scheduled jobs.  However, this was at the 
expense of the quality of service of the primary jobs.  In Chapter 4, we present results 
from experiments that use a new “guest” priority class, created by modifying the Linux 
kernel’s CPU scheduler, to run guest jobs concurrently with primary jobs.  
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4 Evaluating Modifications to the Kernel’s Priority 
Resource Management Facilities 

We applied the kernel source code modifications used in [19] to our test kernel (2.4 SMP 
Linux kernel).  As supplied by Ryu, they supported a 2.2 Linux kernel.  These 
modifications allow the kernel to differentiate between normal processes (i.e., processes 
as defined by the unmodified kernel) and guest processes.  A guest process is a process 
that we want to run alongside normal processes but in such a way that the running times 
of the normal processes will not be significantly affected.  The kernel modifications focus 
on adding stricter resource management policies to the kernel.  These new policies will 
prohibit any guest processes from getting scheduled for the processor when there are 
normal processes that are eligible to run.  In our experiments, primary jobs consist of 
normal processes and guest jobs consist of guest processes.  Therefore, we want the 
kernel modifications to allow us to run guest jobs concurrently with primary jobs without 
affecting the quality of service that the primary jobs receive. 

4.1 Description of Kernel Modifications 

The kernel was updated so that if a process were given the lowest nice value of 19, it 
would be considered a guest process.  In the modified kernel, if a normal process is 
runnable, it will always be chosen to run over a guest process.  Any statistics normally 
gathered by the kernel, such as the “goodness” value, are ignored for guest processes 
when being compared to a normal process.  When deciding between multiple guest 
processes, however, the normal CPU scheduling mechanisms are used including any 
statistics kept for these processes. 

As provided, the Linger-Longer kernel modifications were for the 2.0.x and 2.2.x Linux 
kernels.  In those kernels, the nice value assigned to a process was its priority.  In the 
2.4.x Linux kernel, the nice value is just one of the quantities used to calculate the 
priority of a process at any given time.  Over time, the priority of a given process in the 
2.4 kernel will change.  At each call to the CPU scheduler, the weight or “goodness” 
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value for a process is calculated.  The runnable process with the highest weight is 
selected to run.  When a primary process is runnable, a guest process will never be run 
even if it has a higher weight according to the kernel’s normal scheme.  However, if there 
are no runnable primary processes, but one or more guest processes, the guest process 
with the highest weight will run (i.e., the normal kernel scheduling algorithm is applied).  
As provided, the Linger-Longer kernel code relied on the priority being set to the nice 
value.  It considered a process with a priority of 19 (the lowest nice value inside the 
kernel) to be a guest process.  This worked with the static priorities of the 2.0.x and 2.2.x 
kernels.  However, we cannot use this method to classify guest processes in the 2.4 kernel 
since the priority changes over time.  We instead looked explicitly at the nice value of the 
process to determine if it was a guest process.  Pseudocode for the core of the original 2.4 
Linux kernel CPU scheduler and our modified CPU scheduler is shown in Figure 4-1. 
 
next = DUMMY_PROCESS; 
weight = -1000; 
Foreach runnable process p do { 
  process_weight = calculate_weight(p); 
  If ( process_weight > weight ) 
    weight = process_weight; next = p; 
} 
schedule_on_CPU(next); 

(a) original scheduler 
 
next = DUMMY_PROCESS; 
weight = -1000; 
Foreach runnable process p do { 
  process_weight = calculate_weight(p); 
  if ((p == guest process) XOR (next == guest process)) { 
    if (( p is not a guest process) || (weight < 0) 
      weight = process_weight; next = p; } 
  else { /* both are primary OR guest processes */ 
    if ( process_weight > weight ) 
       weight = process_weight; next = p; } 
} 
schedule_on_cpu(next); 

(b) modified scheduler 

Figure 4-1. Modified Linux 2.4 CPU Scheduler 
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4.2 Confirming Baseline Measurements 

Our next set of experiments (set 4, group A) was used to validate the new modified 
kernel.  Since none of the kernel modifications should affect the resource usage of normal 
processes (i.e., not a guest process) or the resource usage of guest processes that are not 
contending for resources, we should obtain matching resource usage statistics when the 
baseline experiments used with our unmodified kernel are run with our modified kernel.  
The results are shown in Table 4-1. 

Table 4-1. Baseline Running Times with Modified Kernel 

Run 1 Run 2 Run 3 
Experiment Application 

CPU (s) Wall (s) Eff (%) CPU (s) Wall (s) Eff (%) CPU (s) Wall (s) Eff (%)

s4e1 GAUSS 179 180 99 179 180 99 179 180 99

s4e2 HAL1 661 167 99 661 167 99 662 167 99

s4e3 HPL 845 357 59 845 357 59 845 357 59

s4e4 MrBayes 236 90 66 230 89 65 255 97 66

s4e5 WRF 864 391 55 863 391 55 866 392 55

s4e6 PAUP 207 208 100 211 211 100 209 210 100

Comparing Table 3-1 with Table 4-1 we see that there has been no appreciable impact on 
the baseline performance of our set of applications. 

4.3 Investigating Effect of Kernel Modifications 

The primary change to our experiments is that a low-priority process will now be a guest 
process.  That is, we will not use the kernel’s original CPU priority scheduling scheme 
(e.g., by using the nice command).  Instead, we will set the priority of the process to 
“guest.”  The modified kernel will recognize this new class of processes and act 
appropriately. 

4.3.1 Effect on Running Times of Primary Jobs 

The experiments in set 5 (group B) are the same as those in set 2 except that guest jobs 
are run concurrently with the primary jobs instead of running low-priority jobs 
concurrently with the primary jobs.  The experiments in set 5 were intended to determine 
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how some of the applications, run as primary processes, are affected when guest 
processes are run concurrently.  As in set 2, we tested four of the applications: HAL1, 
WRF, MrBayes and GAUSS.  These particular applications were chosen so that we 
would have half I/O-bound applications (WRF, MrBayes) and half CPU-bound 
applications (HAL1, GAUSS).  The low-priority jobs were CPU-bound applications 
chosen at random except where noted.  The experiments in set 5 are: 

• s5e1: 
o GAUSS 
o [GAUSS] 

• s5e2: 
o MrBayes 
o ([GAUSS], [GAUSS], [GAUSS], [GAUSS]) 

• s5e3: 
o HAL1 
o [PAUP] 

• s5e4: 
o WRF 
o [PAUP], [PAUP] 

• s5e5: 
o WRF 
o [HAL1] 

• s5e6: 
o HAL1 
o [PAUP] (specifically run concurrently with one HAL1 slave process) 

• s5e7: 
o HAL1 
o [PAUP], [PAUP], [PAUP], [PAUP] (specifically run concurrently with all 

HAL1 processes) 
• s5e8: 

o HAL1 
o [PAUP], [PAUP], [PAUP] (specifically run concurrently with all three 

HAL1 slave processes) 

Table 4-2 shows the CPU time, wall time and efficiency of each of these applications 
when running a guest process concurrently with them. 
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Table 4-2. Average CPU Time, Wall Time and Efficiency of Primary Job with a 
Guest Job 

Experiment 
Primary 

Application 
CPU (secs) Wall (secs) Efficiency (%) 

s5e1 GAUSS 178.63 179.54 99.49 
s5e2 MrBayes 239.34 90.71 66.23 
s5e3 HAL1 661.35 166.30 99.60 
s5e4 WRF 866.36 391.19 55.42 
s5e5 WRF 864.18 391.44 55.25 
s5e6 HAL1 661.09 166.61 99.39 
s5e7 HAL1 661.22 166.52 99.58 
s5e8 HAL1 661.62 166.72 99.52 

Figure 4-2 shows how the running time of the primary jobs have been affected by 
running a guest job concurrently.  We see here that the kernel modifications have had the 
desired effect.  That is, the running time of the primary jobs has not changed significantly 
from the baseline running times found in the set 2 runs.  We can see that the kernel 
modifications (i.e., guest processes) have virtually eliminated the impact on the primary 
jobs that is seen when using the kernel’s existing “nice” mechanism to enable low-
priority processes.  Since we use the running time as our measure of the quality of service 
received by the primary jobs, we can say that running guest jobs concurrently with the 
primary jobs does not impact the quality of service that the primary jobs receive. 
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Figure 4-2. Baseline Running Times vs. Running Times with Guest Job 

4.3.2 Effect on Throughput, Efficiency and Response Time 

The experiments in set 7 are the same as those in presented in 3.2.2 (for set 6, group C) 
except that the kernel has been modified to allow guest jobs to run along with the primary 
jobs instead of low-priority jobs.  Figure 4-3 illustrates the timeline for the application 
sequence for s7e1 shown in the list below.  We measured the throughput of the cluster 
resource management system by taking the number of jobs run (including both primary 
and low-priority) and dividing it by the number of hours (i.e., seconds/3600) required for 
all jobs to complete (including both primary and low-priority).  
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Figure 4-3. Application Timeline for s7e1 

The efficiency measurement here is a calculation of how efficiently the set of jobs in a 
given experiment used the set of processors assigned to them.  For each experiment, we 
considered its set of jobs to be the only jobs queued.  We summed the CPU usage of each 
process (including all parallel processes); call this Tc.  We then noted the amount of wall 
time, Tw, needed until the last job in the set completed.  We considered that each of the 
four processors was available for use this entire time.  Thus we calculated the available 
processor time as 4Tw.  We then calculated the efficiency as Tc/(4Tw).   

We also measured the average turnaround time of the jobs in each experiment.  The 
turnaround time for a given job is the amount of time that elapsed from when the job was 
submitted to the queue (we assume that all jobs were submitted at the same time (i.e., at 
time 0)) and the time that it finished executing.  The average turnaround time for a given 
experiment is found by summing the turnaround time of every job in the experiment and 
dividing this sum by the number of jobs in the experiment. 
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Finally, as a measure of the quality of service received by the primary jobs in each 
experiment, we report the wall time needed for all primary jobs to complete.  The results 
from set 7 are presented in Table 4-3. 

Table 4-3. Throughput, Efficiency, Response Time and Primary Job Running Time 
for Multiple Job Case using a Modified Kernel 

Experiment 

Number 
of Jobs 

Run 
Throughput 

(jobs/hr) 
Efficiency 

(%) 

Avg. 
Turnaround 

Time (s) 

Primary 
Job 

Running 
Time (s) 

s7e1 7 35.32 97.03 422.95 1451.19
s7e2 9 57.78 99.22 396.59 852.84
s7e3 11 36.65 97.09 886.99 3357.76
s7e4 8 26.60 97.29 808.66 2988.14
s7e5 10 42.55 94.02 642.06 2222.1
s7e6 7 34.85 99.29 572.85 1784.02
s7e7 6 34.97 99.60 561.33 1559.07
s7e8 8 40.96 99.60 402.87 1590.22

Figure 4-4 and Figure 4-5 compare the baseline measurements from the set 3 experiments 
(primary jobs only) to the measurements obtained for the set 7 experiments (primary jobs 
with guest jobs run concurrently) as well as to the measurements from set 6 (primary jobs 
with low-priority jobs run concurrently).  These results show that the throughput of the 
cluster-level scheduler can be increased by running guest jobs concurrently with primary 
jobs.  The throughput measurements are very similar to those achieved by running low-
priority jobs concurrently with the primary jobs (in set 6).  As we would expect, the 
increase in throughput is related to the efficiency with which the set of primary jobs (in 
the set 3 experiments) utilized the processor.  Experiments in set 3 with all CPU-bound 
jobs (such as e1 and e2) obtained higher efficiency and thus there was little or no room 
for improvement in throughput in set 7; thus the gains are minimal or non-existent.  On 
the other hand, experiments e3 and e4 were I/O-bound resulting in lower efficiency when 
run alone (in set 3) and thus resulting in bigger gains in throughput when run with guest 
jobs in set 7.  Obviously as throughput increases, so does the efficiency of the cluster.  
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Figure 4-6 compares the baseline efficiency (set 3) with the efficiency when running 
concurrently with low-priority jobs (set 6) and guest jobs (set 7). 
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Figure 4-4. Baseline Throughput (s3) vs. Throughput with Low-priority Jobs (s6) vs. 
Throughput with Guest Jobs (s7) 
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Figure 4-5. Percent Increase Over Baseline Throughput (Low-priority Jobs (s6) vs. 
Guest Jobs (s7)) 
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Figure 4-6. Efficiency of Cluster Nodes (Baseline (s3) vs. Low-priority Jobs (s6) vs. 
Guest Jobs (s7)) 
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Additionally, Figure 4-7 demonstrates that we can achieve this higher throughput while 
also lowering the average turnaround time of the jobs for most experiments.  Clearly the 
amount that we can decrease average turnaround time depends on how many of the jobs 
can finish sooner than before.  If we have CPU-bound primary jobs (e.g., e1 and e2) there 
will not be any CPU time available to run guest jobs.  Since the gust processes are run 
only when there are no runnable primary processes, the guest jobs should not take any 
CPU time away from the primary jobs (as discussed in Section 0).  Thus the guest jobs’ 
average turnaround time should not change nor should the primary jobs’ average 
turnaround time.   

On the other hand, when the primary jobs are I/O-bound (e.g., e3 and e4), the guest jobs 
are able to run sooner while still having no impact on the primary jobs.  Thus, the guest 
jobs should realize a decrease in their average turnaround time.  Additionally, as the 
primary jobs’ CPU utilization efficiency decreases, so does the guest jobs’ average 
turnaround time.  Since the guest jobs should not impact the average turnaround time of 
the primary jobs and since there is the possibility that the guest jobs’ average turnaround 
time will decrease, we expect to see the average turnaround time of the jobs in each 
experiment in set 7 to either decrease or stay the same relative to the baseline average 
turnaround times (in set 3).  Taking note of the efficiency measurements presented in 
Table 3-4, we can see this behavior in Figure 4-7. 
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Figure 4-7. Baseline Average Turnaround Time (s3) vs. Average Turnaround Time 
with Low-priority Jobs (s6) vs. Average Turnaround Time with Guest Jobs (s7) 

The exception is experiment e6.  Even though Table 3-4 lists an efficiency of 78% for 
s3e6 we do not see the decrease in average turnaround time that we expect in s7e6.  
Experiment e6 is different from the other experiments in that for set 3 (i.e., experiment 
s3e6), the jobs are executed so that the guest jobs are run first followed by the primary 
jobs.  When the same jobs are run in set 7 (i.e., experiment s7e6), the primary jobs will be 
started immediately (i.e., at time 0).  Since the primary jobs have priority over the guest 
jobs, the guest jobs will all see an increase in their average turnaround times.  In this 
case, the increase in the average turnaround time for the five guest jobs was greater than 
the decrease in the average turnaround time for the two primary jobs thus resulting in an 
overall increase in the average turnaround time of this set of jobs (i.e., the jobs in e6). 

Thus far we have seen that running guest jobs concurrently with primary jobs when there 
is unused CPU time on the cluster can not only increase the throughput (and thus the 
efficiency) of the cluster but it can also lower the average turnaround time of the jobs.  
Additionally, as we can see from Table 4-3 and Figure 4-8, running guest jobs 
concurrently with primary jobs will not impact the quality of service received by the 
primary jobs.  That is, in all of the experiments in set 7, the time needed to complete the 
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primary jobs did not change significantly when guest jobs were run concurrently.  This is 
what we expected after seeing the result from set 5 that were presented in Figure 4-2. 
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Figure 4-8. Baseline Running Time (s3) vs. Running Time with Low-priority Jobs 
(s6) vs. Running Time with Guest Jobs (s7) 

Figure 4-9 shows the running time data as the percent of increase over the baseline 
running times when guest jobs are run concurrently while also comparing these 
percentages to those from Figure 3-15 (the set 6 runs).  Notice that we do not see any 
significant increase in the running times of any of the primary jobs (less than 1% 
increase).  Compare this to the low-priority job case that saw an increase of at least 5% in 
the running times of the primary jobs with some sets of primary jobs being affected by 
20-25%. 
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Figure 4-9. Percent Increase Over Baseline Running Time (Low-priority Jobs (s6) 
vs. Guest Jobs (s7)) 
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5 Conclusions 

The 2.4 Linux kernel provides users with the ability to specify a “nice” value for a 
given process.  Using the lowest possible nice value for all processes in a low-priority 
job still causes low-priority jobs to impact the running time of the primary jobs. On 
the other hand, using the kernel modifications enabled fine-grained control over CPU 
usage and allowed us to successfully keep guest processes from significantly 
interfering with the CPU usage of primary processes. 

 As one would expect, the running time of CPU-bound primary jobs is impacted more 
than that of I/O-bound primary jobs.  However, we saw that applications can be 
affected in ways other than increasing wall clock time.   This was demonstrated with 
the HAL1 application where, although the wall clock time was increased, the CPU 
time was decreased.  We saw this behavior when running low-priority jobs along with 
the HAL1 primary job.  However, when run concurrently with a guest process, 
neither the CPU nor the wall time of the HAL1 primary job was significantly 
impacted. 

The existing nice mechanisms in the 2.4 Linux kernel can be used to increase the 
throughput and efficiency of a cluster while also lowering the average response time 
of the queued jobs.  It does so, however, at the expense of the quality of service of the 
primary job.  The guest process mechanism in the modified kernel can help to 
maintain the quality of service of the primary job while also increasing the 
throughput and efficiency of the cluster and lowering the average response time of 
queued jobs.  When running low-priority or guest processes concurrently with the 
primary jobs, we saw that the gains for the throughput and efficiency of the cluster 
increased when the efficiency of the primary jobs decreased.  Under the same 
conditions, the average turnaround time tended to decrease as the efficiency of the 
primary jobs decreased.  There can be exceptions, however, if there are a large 
number of jobs that finish later and a smaller number of jobs that finish sooner. 
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For our experiments, we found that using the kernel’s existing nice mechanism to 
start low-priority jobs concurrently with primary jobs enabled us to increase 
throughput by up to 29%, increase efficiency by up to 32% and decrease the average 
turnaround time by up to 20%.  Unfortunately, this came at the expense of impacting 
the primary jobs’ quality of service by increasing their run times anywhere from 5%-
25%.  Similarly, we found that by using the kernel modifications to run concurrent 
guest processes, we could increase throughput by up to 21%, increase efficiency by 
up to 33% and decrease the average turnaround time by up to 18%.  Additionally, the 
quality of service of the primary jobs is maintained and running times are within 1% 
of their baselines. 
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