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Abstract

A visual programming language is presented. This language uses interactive
graphics to convey notions such as subroutine, recursion, block structure, parallel and
serial processing to school children. Currently the system is interpreter based. To
overcome the inefficiency of the interpreter based system, a compiler is implemented for

this language.

This report gives an overview of the compiler and the details about the parser,
semantic analyzer and the code generator . Finally, a performance comparison between the

interpreter based system and compiler based system is given.



A COMPILER FOR A TWO DIMENSIONAL PROGRAMMING LANGUAGE

INTRODUCTION

As personal computers become more accessible and powerful, people are finding
them very useful in business, at school or at home due to the great variety of software
available. However, this ready-made software is often addressed to a general audience.
Therefore, many people find that some aspects of a given program serve their needs but
other aspects are not satisfying. Those people who wish to use the computer to solve
their specific needs often find themselves programming,

For most people, programming is a skill which can only be developed through
training in college. Learning how to program without help is next to impossible.
Leamning a programming language itself, both syntax and semantics, and then
transforming an algorithm into a program requires a great deal of effort. On top of that,
in order to write a program, a user may have to learn how to enter, compile and assemble,
and finally link and load the program. Many system manuals may have to be read before
one can solve the problem.

New programming languages have been proposed through the years in order to
solve this problem. But it is not until recent years that researchers realized that a radical
departure from traditional programming languages may be useful. Hardware technology

has made it possible to fabricate high resolution graphic chips and memory chips in the



order of megabytes at low cost. Various programming languages have been developed
which make use of this graphics hardware to make programming easier. These kinds of
languages are usually termed visual programming languages.

Since visual programiming research is a relatively new field, there is no concensus
as to what kind of language is more acceptable than another. Even how to represent
popular programming constructs is a problem. In this thesis, a new visual programming
language called the Show and Tel™* Language is presented. This language integrates
three application areas: computation, database and communication. An interpreter-based
implementation has been developed. However, to enhance the performance of the
system, a compiler is proposed.

All of the known visual language system implementations are interpreter based.
The compiler we propose represents the first step towards comnpiling these visual
languages. There are three motivations for providing a compiler for the Show and Tell
Language:

(1) For execution efficiency - During program development, an interpreter is
convenient in spite of stow running time. However, when the debugging or refinment
phase of program development is finished, the run time efficiency becomes important.
(2) Linkage between two-dimensional and one-dimensional programming
environment - Since most of the existing software is written in one-dimensional
programming languages, the object code generated by a compiler can be linked with the
existing software. Thus, the proposed compiler will provide a tool to integrate one-
dimensional and two-dimensional programming language programs.

(3)  Lay ground for future research - The difficulty of generating a compiler will be

better understood, and this will be useful for future research into this area.

*Show and Tell is a trademark of Computer Services Corporation (CSK).



The second chapter of this thesis will survey related work in the area of visual
programming languages. Then the Show and Tell Language will be introduced through
examples in the third chapter. Chapter four is an overview of the compiler specific for
this language. Then detailed translation rules will be discussed. Finally, some

measurements of compiler performance are presented in chapter five,



2. RELATED WORK

There are two approaches to integrate the graphic capabilities into a language
system. The first approach is using pictures to help in representing various aspects of a
program, in control flow, datafiow or data structure. The most popular example in
representing control flow is to use flow charts or Nassi-Shneiderman diagrams.

Dataflow diagrams are usually used in conjunction with dataflow languages. Displaying
data structures are an effective use of graphics, particularly if the program can be run
interpretively while changes to the data structures are displayed. A second approach in
providing a visual language is that graphical elements such as rectangles, circles, arrows
or other geometric objects are an integral part of the language, where the terminal symbols
of the language consist of these kinds of objects. A number of systems have been

developed using these two approaches. Some of them are described below.

2.1 PECAN

PECAN (1)* is a system developed at Brown University. Itis a graphical
extension to Pascal. This program development system allows multiple views of a user's
program, both static and dynamic views. Static views include Nassi-Schneiderman
diagram, structure flow graph of a program, data types, expression tree and symb;)I
tables. Dynamic views show the stack content, error messages incurred during
execution, program input and output and program in action by highlighting each statement
as it is being executed.

A PECAN user indicates the actions he wishes to perform by pointing the mouse
to items in systern menus. Since the editor is syntax directed, it can give immediate
feedback to user if there is any syntactic errors in the program. Incremental compilation

allows a user to run a program after writing it or making changes in it without

" The numbers in parentheses in the text indicate references in the Bibliography.



recompiling the unchanged parts. A user can step through a program during execution or
he can set break points and examines variables at those break points.

PECAN integrates different tools to support system development. Unlike earlier
systems, such as (2) and (3}, which only concentrate on the structure flow of a program,
PECAN allows multiple views of a program at edit time and also at run time, a great help
for debugging. However, it does not contribute any new paradigm that utilizes new

technology to enhance program representation,

2.2 OMEGA

OMEGA (4) is a systern which incorporates interactive graphics and pointing
devices to allow a user to create and modify program structures stored in a database. Its
approach is to combine one-dimensional and two-dimensional programming language
into paradigms with a single language.

The fundamental concept is abstraction. An abstraction has three parts: the
pictograph that the abstraction represents, the parameters, and the semantics of the
operations. A pictograph is a visual object that the programmer sees and manipulates. It
consists of letters and icons arranged in a two-dimensional area.

While the most fundamental abstractions (pictographs) are defined in textual form,
high level abstractions can be defined in terms of the existing pictographs which are in
two-dimensional form. This provides an integration between one-dimensional
programming language and two-dimensional programming language. It gives a user a
choice between expressing a program in terms of character-string tokens or graphical
pictures.

A glossary is a list of pictographs defined by the user. Each pictograph can be
used any time in order to define new abstractions. For example, to use a pictograph in a

program, a user has to select it from the glossary and then place it at the desired point in



the statement list he is working on. All pictographs are stored in a general purpose
database. The database system allows a user to view or modify pictographs.
Therefore, an OMEGA program is a mixture of text and pictures. The most
fundamental pictographs are all defined by text. Aftera glossary of pictographs is
defined, a program can be defined using these high level abstractions and eventually

programs can be composed only of pictures.

2.3 PROGRAMMING BY REHEARSAL

Programming by Rehearsal (5), designed by Finzer and Gould, is a visual
programming environment that non-programmers can use to create educational software.
It is implemented in the Smalltalk-80 programming environment and runs on the Xerox
Dorado.

Programming in this system is analogous to rehearsaling for a theater production.
A program is a theater production. The basic component of a production is performer. A
performer corresponds to a process in a program. Communications between processes
are done by sending cues. A cue is a message sent by a performer.

The first step in composing a program in the system is to choose performers.
Primitive performers are defined in the system and a user can select them using the
mouse. The set of performers can be extended as users create new ones and teach them
new cues. Each performer can be moved or resized to the desired location or size. The
second step is rehearsing the production by showing each performer to perform what
actions on what events. Each performer has a tiny icon representing an closed eye.
When the eye of a performer is selected, the eye will open and all actions that the user
perform will be recorded. The codes for the actions will also be displayed on another
window.

A user does not need to understand the codes at all. Because he can debug the

codes by sending cues to the performer which he has just programmed and see whether it



acts as it is told. A more advanced user can choose to examine the codes displayed on the
window. There is a large on-line help facility to assist 2 rehearsal user.

Programming by Rehearsal is an experiment of how interactive, graphical
programs can be built inside an interative, graphical programming environment. All

objects and only objects that are visible can be manipulated.

24  PICT

PICT (6) is a system developed at the University of Washington. It is a pictorial
representation of Pascal. All program names, parameter passing, data structures,
variables and program operations are represented by icons. Itis a complete system in that
all the tools a user needs to compose, edit and run his program are in the same system
framework.

There are five different mode of operations which a PICT user can select. They
are the programming mode, the erasing mode, the icon editing mode, user library and
program execution mode. Itis in the programming mode that a user constructs a
program. Erasing mode allows a user to delete control paths or icons. If an icon is
deleted, all the paths related to that icon will also be deleted. Icon editing mode is the
mode of operation which allows a user to design new names for user routines. User
library mode allows a user to examine or select program names which are currently
defined in the system. Finally, program execution mode runs users programs. Every
program is identified by its icon. If an icon is selected, the associated program may either

be edited or run.

As a programming language, prototype PICT/D's capabilities are limited to handle
simple numeric calculations. However, it proposes a way of representing well-known

programming language constructs such as subroutine, while-do loop, and if-then-else in a



two-dimensional manner. It is important to note the use of color in the PICT system,

which gives more flexibility in designing a visual environment.

Besides the systems described above, some of the other projects under way are
Programming in Pictures (7) at University of Southern California, Program Visualization

(8) at Computer Corporation of America, and PegaSys (9) at SRI.



. HOW AND TELL LA A T,

3.1 OVERVIEW

In this section STL is introduced. A subset of STL, called the Simple Show and
Tell Language (SSTL), will be the source language for the proposed compiler. SSTL
will be introduced in the next section. STL is an icon-driven visual programming
language. All programs and data are in pictorial form. It is designed for users who have
little or no training in programming. Currently, it is being tested by school children.
However, the language is powerful enough to express complex operations. In fact, it is
computationally complete.

The language integrates three areas of applications: computation, database and
communication. The integration is in a uniform conceptual framework of dataflow and
completion. Dataflow is a well known concept in computer science (10). A dataflow
program consists of nodes which represent operations that can be executed concurrently
and arcs connecting nodes for communication between nodes. The only condition
détennjning the execution of a node is that all the data from paths coming into a node have
arrived. Unlike general dataflow programs, an STL program is an acyclic multigraph,
There are no loops or cycles among the nodes. Besides the arrival of data, the condition
determining the execution of a node is also affected by consistency. Consistency will be
explained in section 3.4.

Completion on the other hand is a concept imported from psychology (11).
Completion is the process of filling in missing portions of an incomplete pattern. It is
illustrated in Figure 1 and Figure 2. The human brain performs the process of filling in

incomplete patterns all the time. Given the pattern in Figure 1a, the brain completes the
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missing portions and a person will abstract to the pattern in Figure 1b. Similarly, Figure

2a is another form of completion. However, the constraint is physical rather than

psychological.
A
1 b
Figure 1a: Incomplete pattern Figure 1b: Completed pattern

Figure 2a: Incomplete jig-saw puzzle  Figure 2b: Completed jig-saw puzzle

A Show and Tell program is called a puzzle because it is very similar to a jig saw
puzzle except the constraints are logical rather than physical. The STL system is
presented to users as a system which can perform completion. In the computation area,
the system completes by execution of arithmetic operations. In the database area,
completion is accomplished through pattern matching, and in the communication area,
completion is accomplished through transmission of data through the network.

Section 3.2 describes the language by using a sequence of examples. It is not

intended to be a reference manual. For a detail description of the language, refer to (12).
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3.2 SYNTAX

3.2.1 Lexical Element

The following are the lexical elements and their names on the side.

Closed Box . Structure Box
Open Box Parallel Port
Base Box D Sequential Port

I File Box ——— AITOW

Iteration Box

Figure 3: Lexical Elements of STL

3.2.? Composition of ST Puzzle

A Show and Tell puzzle consists entirely of a nested set of boxes connected by
arrows. There is no loop or cycle created by the combination of boxes and arrows. No
box can overlap or touch another box. A box may be empty, or it may contain a data
value or an icon which represents an operation or another STL puzzie. Each level of
nesting is a partially ordered set of boxes. Each arrow serves as a path for a value to flow
from one box to another. A box may not be executed until the value of each incoming
arrow has arrived. Except for this dependency, there is no specific sequencing in the
execution of a puzzle. Since there is no loop or cycle, once a box is executed, it will not
be executed again. Thus once the value in a box is registered, it will never be changed

again. Therefore, STL is a functional system; i.e., there are no side effects.
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The composition rule of STL can be summarized in the following:

(1
(2)
(3)

4

(5)

(6)
(7
(8)
&)
(10)

No two boxes overlap with each other.

No cycle nor loop exists.

An arrow must start from a box and end at a2 box. An arrow can:

(1) starts from a simple box and ends at a simple box. A simple box can be a
closed box, a base box, or an open box. The content of a simple box can be
empty, a text, a number, an image, a user defined or a system defined icon.

(ii) starts from a structure and ends at a structure box.

(i)  starts from a simple box, goes through a sequential port and ends at a
simple box.

(iv)  starts from a simple or file box, goes through a parallel port and ends at a
structure box.

(v) starts from a structure box, goes through a parallel port and ends at a
simple or file box.

No arrow traverses through any box other than an empty box or a box containing
other boxes.

An iteration box can have an arbitary number of sequential ports and parallel
ports.

A structure box may only contain base boxes.

A file box can be connected to/from a structure box through a paraliel port.
There must be one and only one arrow through a sequential port.

No arrow goes through more than one port.

There must be at least one arrow through a parallel port.
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3.3 SUBROUTINE

The most fundamental kind of box in STL is the closed box. This kind of box
can hold values which can be numbers, text, tmages or definition of another puzzle
(icon). Figure 4 shows how it is used (Figure 4 to Figure 20 are collected at the end of
section 3). In this puzzle, there are five boxes connected by arrows. Box one has a value
of 3; box two has a value of 5; box three and box four have values which are definitions
of system puzzles named "*" and "+", and box five is currently empty. When the
system solves this puzzle, the result will be in Figure 5.

In order to use the puzzle in Figure 4 as a subroutine, the system has to know
what are the input and output variables. The base box is used for this purpose. A base
box has the same meaning as a closed box except that it represents an input or output
variable of a puzzle. The value of a base box can either be a number, text or an image.
Figure 6 is a redefinition of Figure 4 with the input and output represented by base boxes.

An STL puzzie can be named by a user defined icon. Any Macpaint™ picture can
be used as a puzzle name. In Figure 6, the name of the puzzle is the icon "star". Itis
used in Figure 7 as a subroutine. Recursive definition of a puzzle is also allowed. Figure
7.1 in Appendix 7.1 is an recursive definition of the factorial function. This example will

be explained when the concept of consistency is introduced.

3.4  CONSISTENCY

Not all combinations of boxes and values represent correct puzzles. For example,
in the puzzle in Figure 8, 2 is not greater than 3. If the system solves this puzzle, the
result appears as in Figure 9. The box with a ">" sign is hatched to represent that there is
something wrong with this box. This box is inconsistent in Show and Tell terms. From
the system's point of view, the inconsistent box with all of its related arrows does not
exist. There are two kinds of control mechanisms for propagation of the effects of

inconsistency: the closed box and the open box. When a closed box is inconsistent, the
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inconsistency is confined within the box. However, when an open box is inconsistent,
the inconsistency can propagate out of it into the surrounding environment.
Inconsistency propagates in the broadcasting mode within the boundary of the smallest
closed box containing the inconsistent puzzle. There is no boolean value in STL;
inconsistency is the main switching mechanism.

Figure 10 illustrates the difference between a closed box and an open box. When
this puzzle is solved, the result will be as in Figure 11. The box Al is inconsistent
because there is a conflict of "2 flowing into 3", Since Al is an open box, the
inconsistency propagates to the surrounding box. Therefore B1 is also inconsistent. The
inconsistent box B1 shuts off the communication between boxes C1 and D1. Therefore
the data in C1 cannot reach its destination D1. However, when A2 become inconsistent,
the inconsistency is confined within itself. Thus, the data in C2 can flow through the
arrow and reaches its destination D2.

Consistency is used to switch between two sections of the puzzle in Figure 7.1.
This puzzle is a recursive definition of the factorial function. There are two main parts in
the puzzle, box 6 containing box 7 and 8 and box 0 containing boxes 1t0 5. Box 6
contains the actions to be performed when the incoming value from box 10 is zero. In
this case, one is the result. Otherwise, box 6 will be inconsistency. On the other side,
box O is the part determining whether the incoming value is greater than zero. If it s,
another invocation of factorial with a new input argument will be made. Otherwise, box

0 will be inconsistency.

3.5 ITERATION

STL puzzles are strictly acyclic multigraphs. In order to represent iteration, a
special kind of box called an iteration box is introduced. There are two kinds of iteration
in the system, sequential and parallel iteration. Sequential iteration is indicated by the

matching triangular sequential port attached on the side of an iteration box. Figure 12 is
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an example of sequential iteration. This puzzle is a definition of the Fibonacci numbers.
When this puzzle is executed, the puzzle inside the iteration box is expanded as long as it
is consistent. Figure 13 is the conceptually expanded version of Figure 12.

Another form of iteration is parallel iteration. This kind of iteration is denoted by
having a rectangular parallel port on the side of an iteration box. When both sequential
and parallel iterations are present, the number of expansions is determined by the number
of elements in a sequence entering the parallel port. Figure 14 is an example of parallel
and sequential iteration. Figure 15 is the conceptual expansion of the iteration box in
Figure 14 during execution.

To illustrate the power of parallel and sequential iteration, Figures 16 to 20 show
the prime number generator. Figure 16 is the rernainder function. It finds the remainder
when the first value is divided by the second value. Figure 17 is a sequence generator. It
will generate a sequence from 2,3,4 .... up to the number specified in the argument.
Figure 18 is a filter. It accepts a sequence as its first argument and outputs as a sequence
those numbers which are not divisible by the second argument. Figure 19, sieve, is the
main driver. The sequence decomposition operation in the open box and the sequence
composition operation in the closed box are system defined. The decomposition
operation puzzle becomes inconsistent when the input sequence is null. This fact is used
to terminate the recursion. It will call filter and itself recursively to filter out the non-
prime numbers. Figure 20 is just calling the sequence generator and passing the sequence

to sieve for processing.
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Figure 8: Inconsistency Example 1

S=——————— — BT

=]

Inconsistency
Example

\Y4—
-

Figure 9: Display of Figure 8 after execution




16

En bdit = =F—=———
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Figure 10: Inconsistency Example 2
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Figure 11: Display of Figure 10 after execution
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FIB(X) = IF X<2 THEN 1 ELSE FIB(X-1)+FIB(X-2)
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A

A
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FIB(X)

Figure 12:  STL puzzle to find the 10 Fibonacci Number
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Figure 13:  Conceptual Expansion of Figure 12
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Sequential
Ond 1: 2: 3: 4
Parallel
Iter‘at i [¢]2] Mﬁr
0
b > B b 10
1, 3,6 10
Figure 14:  An example of sequential and parallel iteration
1 2 3 4
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Figure 15: Conceptual Expansion of Figure 14
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Figure 16: An STL puzzle defining the remainder function
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Figure 20: A prime number generator
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4, THE SHOW AND TELL ILER

4.1  OVERVIEW OF COMPILER BASED SYSTEM

Currently, the Show and Tell Language system is interpreter based. The system
can be divided into four main parts, the event recognizer, the screen manager, the editor
and the interpreter. The event recognizer is the driver of the system which gathers all the
events generated by the user or the system, analyzes them and then takes the appropriate
actions. The screen manager manages the updating and refreshing of the various
windows on the screen. It works very closely with the event recognizer and the editor.
The editor manages the puzzles' construction. Besides calling the screen manager to
update the puzzie drawn on the screen, the editor's main function is to update and
maintain the internal representation of puzzles. The interpreter is divided into two parts,
the scheduler and the execution manager. Since one or more puzzles can be solved
concurrently, the scheduler determines which puzzle is to be processed next. The
execution manager performs the actual processing of boxes and displays both the
intermediate results at break points and the final answers.

The current configuration of the system allows a flexible environment for program
development. Puzzles can be edited and solved for immediate feedback since the system
is interpreter based. However, in order to achieve higher performance, a compiled
version of the language is needed. Figure 21 is an overview of the system with an STL
compiler integrated.

In this system, a user can use the interpreter during program development and the
compiler after debugging is finished. The execution system provides a run time
environment for the compiled programs. Its main functions are to link and load the

executable module into memory as well as supplying library routines during execution.
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Results to be displeyed . Box Graph
mS o e Clapeye STL interpreter ¢ £
Events during Interpretation
Regions to be Input boxes and
updated . arrows
Event Recognizer

Boxes and Arrows to

Screen Manaqger
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Editor and Parser

Results Puzzle to be executed
t°_ be Box Graph
digplayed Object

Execution System[<>22{STL Code Generator

Figure 21:  Overview of the STL system with a compiler integrated

Currently, the execution system is not implemented. Section 5.1 contains a
description of a system to test the correctness and performance of the code generated by

the compiler.

4.2  DEFINITION OF SIMPLE SHOW AND TELL LANGUAGE (SSTL)

Not all the constructs defined in section 3.2 are accepted by the current compiler.
The database constructs which include the file box and the structure box, and all
input/output primitives are excluded from the current implementation because they are
machine dependent. This restricted STL is referred to as the Simple Show and Tell
Language (SSTL). The syntax rules are the same as in STL. Figure 22 shows the lexical

elements for the SSTL.
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’ Closed Box Parallel Port

Open Box D Sequential Port

L s LS L e |

Base Box —) Arrow

Iteration Box

Figure 22: Lexical Elements of SSTL

4.3 OVERVIEW OF THE SSTL COMPILER

The SSTL Compiler has three main parts: the parser, the semantic checker and
scheduler, and the code generator. Figure 23 is an overview of the compiler. The parser
1s an incremental parser which checks whether the combination of boxes and arrows
entered so far represent a syntactically correct puzzle ornot. It is the same parser used in
the interpreter based system. Any new box or arrow entered by the editor will be rejected
immediately if the resulting puzzle is not syntactically correct. The output of the parser is
a data structure called a box graph. The box graph will pass through the semantic
analyzer to determine whether the puzzle is semantically meaningful.

Because of data dependency, some boxes have to be executed before others. The
scheduler determines which box should be compiled (and therefore executed at run-time)
before which box. The output of the scheduler is a box sequence which is ordered
according to their execution sequence. The final stage of compilation is the code
generator. The code generator takes the box graph and the box sequence and generates C
code as output. No code optimization is incorporated. Appendix 7.1 gives a complete
example with the source puzzle, output of the parser, output of the scheduler and the

output of the code generator,
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Semantic
Editor Checker E
and K and . Co ebo

Parser Error Scheduler Box S EAeE

1 Sequence +
Boxes C
and Code
N Box Graph
Figure 23: Overview of SSTL Compiler
4.3.1 Parser

The Parser is the front end of the compiler. It works on a data structure called a
box graph. A box graph contains four main structures: box Structure, arrow structure,
segment structure and the doz structure. A dot is an intersection of 2 box and an arrow,
and an arrow is composed of a number of straight line segments. For a detailed example
of a box graph, refer to Appendix 7.1. The following are some of the major structural
components of a boxgraph:

type BOX is pointer to Box_structure

type ARROW s pointer to Arrow_structure

type DOT 1s pointer to Dot_structure

type SEGMENT is pointer to Segment_structure

type POINT  is pointer to Point_structure

Record Point_structure:

nt X_coordinate;
int y_coordinate;
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Record Box structure:

POINT top_left; -- coordinate of top_left corner

POINT bottom_right; -- coordinate of bottorn_right corner

DOT inport; -- the first intersection of the box with
an incoming arrow

DOT outport; -- the first intersection of the box with
an outgoing arrow

BOX son; -- the biggest box enclosed by the box

BOX dad; -- the immediate box enclosing it

BOX brother; -- a neighbor with the same dad

int boxtype; -- the type of the box; it can be

simple box, base box, file box
iteration box or structure box
int boxscope; -- denotes whether the box is an
-- open or closed box

Record Arrow_structure:

DOT first_dot; -- the first intersection of the arrow
with a box

SEGMENT first segment; -- the first segment of the arrow

ARROW next_arrow; -- next arrow

ARROW pre_amrow;  -- previous arrow

Record Dot _structure:

POINT location; -- coordinate of the point

BOX onbox; -- the box where the dot is on

ARROW ONnarrow; -- the arrow where the dot is on

int porttype; -- indicate whether the dot is an
inport or outport.

DOT next_dot; -- next dot on the same arrow

DOT pre_dot; -- previous dot on the same arrow

DOT next_port; -- next inport or outport on the same
box

DOT pre_port; -- previous inport or outport on the
same box

Record Segment_structure:

POINT start point;  -- coordinate of the point where the
segment starts

POINT end_point;  -- coordinate of the point where the
segment ends

SEGMENT next_segment; -- next segment on the same arrow
There are two main exror checking modules in the parser, the check box module
and the cycle detection module. The check box module determines whether a newly
entered box overlaps or touches any existing box. If it does, then it will be rejected. The
cycle detection module will be invoked each time a new box or new arrow is entered. It

checks every path starting from the root nodes. A list of nodes for each path is generated.
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If a node on a path is visited twice, a cycle is found. Figure 24 shows some of the

invalid puzzles.

Overlapping boxes

v

Line on the edge of a box

w

Self Loop

Arrow with no source box

Line cutting the corner of a box

w

General Loop

Figure 24: Syntactically incorrect puzzles
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4.3.2 Semantic Checker And Scheduler

The parser can only check for syntactic errors. But some combinations of boxes
and arrows will not make a meaningful puzzle. The semantic analysis detects and reports
meaningless puzzles. For example, a puzzle may not be meaningful because:

(1) More than one arrow goes through a serial port.

(2) No arrow goes through a serial port.

(3)  No arrow goes through a paraliel port.

The semantic analysis reports all these errors before execution.

Note that an STL puzzle is a partially ordered set of boxes. Because of the data
dependency, some boxes have to be executed before others. The scheduler will generate
a box sequence for the code generator so that the execution sequence is the same as the
compilation sequence. It schedules the compilation of boxes in depth-first manner for
boxes of different levels (i.e. nested) and topological sort for boxes of the same level.

The meaning of level can be seen in Figure 25.

L1B1 L1B2
L1B3 L1B4
L2B1 L2B3
L3| | L3||L3|||L2B2
B1||[B2||B3
ad H T

Figure 25: Levels in Show and Tell Puzzie
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Each box enclosing other boxes represents a new level. For level 1, the data
dependencies are L1B3 depends on L1B1, and L1B4 depends on L1B2. Therefore, the

box sequences of level 1 can only be:

L1B1 LiB3 L1B2 L1B4 or L1B1 L1B2 L1B3 L1B4

L1B1 L1B2 L.1B4 L1B3 or L1B2 LiB4 LiB1 L1B3

L1B2 L1B1 L1B4 L1B3 or L1B2 L1B1 L1B3 L1B4
A box is not finished processing until all the boxes it encloses are processed. Therefore,
boxes of different levels are processed in a depth-first manner. For example, the
sequence L1B1 L1B3 L1B2 L1B4, between L1B3 and L1B2, all boxes enclosed by

L1B3 have to be inserted. Combining the two conditions, some of the sequences

generated for Figure 25 are:

L1B1 L1B3 L2B1 L3B3 L3B1 L3B2 L2B2 L1B2 L1B4 L2B3 or
LiB1 L1B2 L1B3 L2BI1 L3BI1 L3B3 L3B2 L2B2 L1B4 L2B3 or
L1B1 L1B2 L1B4 L2B3 L1B3 L2B1 L3B1 L3B3 L3B2 L2B2 or
L1B2 L1B4 12B3 L1BI L1B3 L2B1 L3B1 L3B3 L3B2 L2B2 or
L1B2 L1B1 L1B4 L2B3 L1B3 L2B1 L3B1 L3B3 L3B2 L2B2 or

L1B2 L1B1 LIB3 1L2B1 L3B1 L3B3 L3B2 L2B2 L1B4 L2B3 or

4.3.3 Code Generator

The output of the parser is a valid box graph, and the output of the scheduler
defines one sequence of the boxes from the box graph. The code generator takes this
information and generates specific code. The code generator works closely with a set of
templates. Each main template is a translation rule which is called for a particular box
type with a particular box value. Other templates will be called by the main templates for
further translations. The compiler can generate codes other than C code by redefining the

set of templates.
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The templates provide a way of changing the desired output without changing the
compiler. The code generator analyzes the box type and the box value to determine which
templates should be used and what parameters should be given to the templates.

Currently, the output of the compiler is not integrated with the system's screen
display management; this is an experimental compiler for testing whether the translation
rules are correct and sufficient. A work bench is devised to test the code generation part
of the compiler. This is explained in section 5.1. The activations of the screen display

manager can be embedded in the templates if future integration should be needed.

4.3.4 Inconsistency

Inconsistency is one of the most difficult and important concepts in the SSTL. A
portion of the codes will be skipped for execution when inconsistency is found in a
particular part. One of the main concerns of code generation is to make sure that
inconsistency is properly represented in the object language.

In this compiler, an analogy between inconsistency and the concept of exception
is made. The compiler translates inconsistency into an exception handling mechanism.
In Ada®", when an exception is raised, the control is automatically turned to the exception
handling part. The C language does not have an exception handling capability, but with a
package of macros and routines, it can be implemented. A detailed description of how it
can be done is given in (13). The basic structure of a C program block containing

exception handlers is shown as the Figure 26.

*Ada is a registered trademark of the U.S. Government (Ada Joint Program Office).
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NEW_EXCEPTION (exception namel); /* declaration of exception  */
NEW_EXCEPTION(exception name2);

BEGIN /* normal C code *f
EXCEPTION
WHEN(<exception namel>) /* exception handler 1 b
WHEN.(;exception_namcb) /* exception handler 2 i
END

Figure 26: A CProgram Block Containing Exception Handlers

The NEW_EXCEPTION, BEGIN, EXCEPTION, WHEN and END are macros
defined in the exception package. The exception name should be declared in the program
before it is used. Exception names are global throughout the system and there is only one
exception name, "inconsistent”. Exceptions can be propagated to the calling routine, as in
Ada.

Each complex (a box containing other boxes) closed box is translated to a new
exception block. Open complex boxes do not open up a new exception block because
when an open box becomes inconsistent, the inconsistency propagates to the surrounding
box. In the object code, the behavior of open box is retained by putting the code for the
open box within the same block as its parent box. For the example in Figure 235, the
skeleton of the output for the box sequence in Figure 27a is shown in Figure 27b, using
exception blocks to denote inconsistency. (operations in italics, dead and eliminate, are to
be further expanded.) If L2B1 is an open box, the skeleton of the output would be

Figure 27c.



L1B1 L1B3 L2B1 L3B1 L3B3 L3B2 L2B2 L1B2 L1B4 L2B3
Figure 27a: A Box Sequence

do LIBI
BEGIN
BEGIN
do L3B1
do L3B3
do L3B2
EXCEPTION
WHEN (inconsistent)
eliminare L2BI1, L3B1, L3B3, L3R3
END
do L2B2
EXCEPTION
WHEN (inconsistent}
eliminate LIB3, L2B1, L2B2, L3B1, L3B2, L3B3
END
do LIB2
BEGIN
do L2B3
EXCEPTION
WHEN (inconsistent)
eliminate L1B4, L2B3
END

Figure 27b: Skeleton of Output For Figure 25

do LiB1
BEGIN
do L3B1
do L3B3
do L3B2
do L2B2
EXCEPTION
WHEN (inconsistent)
eliminate LIB3, L2B1, L2B2, L3BI, L3B2, L3B3
END
do L1B2
BEGIN
do L2B3
EXCEPTION
WHEN(inconsistent)
eliminate L1B4, [2B3
END

Figure 27c: Skeleton of Output when L2B1 is an Open Box
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The analogy between inconsistency and the concept of exception contributes to the
simplicity of the code generation. We conjecture that if this analogy were not made, the

code generation would be more difficult to implement.

4.3.5 Translation Schema

Translation in this compiler is the process of generating C object codes from a box
graph. The compilation model is arrow based. Values of computations are stored in
arrows, and data for the computation can either be in the boxes or in the arrows. Each
arrow represents a communication path between boxes, both for data and consistency
information. Therefore, an arrow has two main pieces of information associated with it,
its value, the data information and its stams, the consistency information. The value of an
arrow is a tagged data item which can be text, number, image or user defined icon. The
status of an arrow denotes whether the arrow starts from or passes through any box
which is inconsistent. If an arrow does lie on an inconsistent box, the status is dead.
Otherwise, it is running. The value and status of an arrow are represented by
avalue[arrownumber] and astatus[arrownumber], respectively, in the object code. An
arrow which goes through a port (sequential or parallel), there is an additional value
attached to it, represented by aportval{arrownumber] . Itis used to keep track of values
in the previous stages of iteration.

Each SSTL puzzle is a function in the object code. In order to handle user defined
and system defined functions in a uniform way, all functions have one input and one
output parameter, which is a list of the actual input and output parameters. Argument
passing is accomplished by two variables in the object code, rempin and tempou.
Tempin is a list of all the incorning values of the box being translated. It will be used as
the list of input arguments for both system defined and user defined functions. Tempout

stores the list of output values returned by any system defined or user defined function.
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In SSTL, all user defined functions are named by an icon. However, in order to
represent a subroutine in C, an identifier is needed that corresponds to the icon. When a
puzzle is constructed, the editor gives the icon a time stamp as its icon_id. The compiler
uses this time stamp as the identifier for that icon.

To complete translation, two more pieces of codes, besides the translated code for
each box, have to be attached onto the object code. The first one is the function and
variables declarations, and the initialization of variables. The second one is the
preparation of return values and the deletion of local variables. Function declarations
include definition of user defined functions called by the puzzle being translated. Variable
declarations include both global and local declarations. Global variables are boxvalue
(values inside each box), TTLbox (total number of boxes in the box graph), TTLin (total
number of input boxes), TTLouz (total number of output boxes), 7TLarw (total number
of arrows in the box graph), and boxinir (a boolean flag signal whether all the box values
are initialized). Local variables are STinbox (the values of the input boxes), SToutbox (
the values of the output boxes), avalue, astatus, aportval, tempin, tempour and STreturn
(store the function return values). The initialization part will give initial values to all the
variables declared.

STreturn is a list storing all the output values. If a box is an output base box, the
value of the box after execution will be stored in SToutbox. Therefore, all the output
values can be collected from SToutbox at the end and put them in STreturn. Deletion of
local variables include deleting the values in avalue, aportval, STinbox, SToutbox,

tempin and tempout.
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4.3.6 Value Manager

A package is used throughout the translated code. It is the value manager(vm)
package which is used to manipulate all data objects created during execution of the
compiled program. The following are the structures declared in the package:

type VALUE is pointer Value structure
type LHEAD is pointer List_structure
type VLIST  is pointer VHist_structure
type TEXT  is pointer Text_structure
type IMAGE is pointer Image_structure
type PUZZLE is pointer Puzzle structure
-- Text, Image, Puzzle structure are defined in
other packages.

Record VList_structure

VALUE val;

VLIST next;

Record List structure
VLIST first;
VLIST last;
VLIST lastvisit;
int count;

Record Value structure
int ref count;
int value_type;
case value typeis
TEXTDATA; TEXT dataitem;
IMAGEDATA: IMAGE dataitemn;
NUMBERDATA: float dataitem;
LISTDATA: VHEAD dataitemn;
NULLDATA: int dataitem;
PUZZLEDATA:. PUZZLE dataitemn;
end case
-- Value_Structure is a variant record. The dataitem
can either be of the type TEXT, IMAGE, float,
VHEAD, int or PUZZLE depending on the tag
value type.

Only the type VALUE can be used by a user. All the other types are private to the
vm package. The operations on VALUE are the following:

vin_Delete(VALUE) -- delete a value
vm_Copy(VALUE) -- make a copy of the value
vm_ListVal() -- create an empty list value

vm_Add(VALUE, VALUE) -- add the value in the second argument onto the list
value in the first argument
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vm_GetNext(VALUE) -- get the next value in the list. The lastvisit field
stores which element was used previously.

vm_Reset(VALUE) -- reset the lastvisit so that the next call to GetNext
will get the first element in the list.

vm_NumberVal(float) -- create a new number value

vm_TextVal(TEXT) -- Create a new text value

vin_PuzzieVal(PUZZLE) -- create a new puzzle value

vm_ImageVal(IMAGE) -- create a new image value

vm_NullVal() -- Credte a new empty value

A complete set of templates is given in Appendix 7.2. Figure 28 is a simple example to

explain how the templates are used in translation.

BO

B1

RO . E'@

B2 Al B3

Figure 28: An example STL puzzle

Box sequence generated by the scheduler : B2 BO B1 B3
For B2, since it is a base box, rules R1, R11 and R12 are used (All rules are defined in
Appendix 7.2). After applying the rules, the annotated output is:

vm_Delete(tempin);

tempin = vin_ListVal();

vm_Delete(tempout);

tempout = NULL;

tempout = doprimitive(STinbox[0], tempin); -- Since B2 is an input box,
the value in STinbox is
used instead of using the
value in boxvalue[2]

vm_Reset(tempout);

vm_Delete(avalue[0]);

avalue[0] = vm_Copy(vm_GetNext(tempout));
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astatus[0] = running;

vm_Delete(avalue[1]);

avalue[1] = vin_Copy(vm_GetNext(tempout));
astatus[1] = running;

For BO, rules R6, R13 and R14 are used; the output is (characters in bold are to be
expanded by another rule) :

BEGIN
<ProcessSon(SonSize, SizeNumberList)>
EXCEPTION
WHEN (inconsistent)
astatus[1] = dead;
END

For B1, rules R4, R11, and R12 are used; the output combining with the output of B0 is:

BEGIN
vm_Delete(tempin);
tempin = vin_ListVal();
vm_Delete(tempout);
tempout = NULL,;
if(astatus[0] != dead)
vm_Add(tempin,vm_Copy(avalue[0]));
tempout = doprimitive(boxvalue[1], tempin);
vm_Reset(tempout);
EXCEPTION
WHEN (inconsistent)
astatus[1] = dead,;
END

Finally, for B3, rules R1, R11 R12 are used; the annotated output is:

vm_Delete(tempin);

tempin = vm_ListVal();

vm_Delete(tempout);

tempout = NULL;

if(astatus[1] != dead)

vm_Add(tempin,vm_Copy(avalue[1]));

tempout = doprimitive(boxvalue{3], tempin);

vmn_Reset(tempout);

SToutbox[0] = vin_Copy(vm_GetNext(tempout)); -- Since B3 is an output
box, the value of B3 is
also stored in SToutbox.

Combining the output of each box and the pieces of code for declarations and return, the
final annotated output for the puzzle in Figure 28 is :

#include "compile.h” -- header file for vim package
static VALUE boxvalue[4]; -- total # of box = 4
static int TTLbox = 4;

static int TTLin = 1; --total # of in box = |
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static int TTLout = 1; -- total # of out box = 1
static int TTLaw =2; -- total # of arrows = 2
static int boxinit = (;

VALUE ST2532(STarg)

VALUE STarg;

{

/* Box 2 */

/* Box O */

/* Box 1 */

VALUE STinbox[1];

VALUE SToutbox[1];

VALUE avalue[2];

VALUE aportval[2];

int astatus[2];

VALUE tempin;

VALUE tempout;

VALUE STreturn;

int STindex;

-- initializing arrow values

for(STindex = 0; STindex < 2; STindex++) {
avalue[STindex] = NULL;
aportval[STindex] = NULL,;
astatus[STindex] = running;

-- initializing box values
if{!boxinit) {
STboxinit(boxvalue, "ST2532_box", TTLbox);
boxinit = 1;

}
vm_Reset(STarg);
-- gelting arguments into in boxes
for(STindex = 0; STindex < TTLin; STindex-++)
STinbox{STindex] = vmn_Copy(vi_GetNext(STarg));
for(STindex = 0; STindex < TTLout; STindex++)
SToutbox[STindex] = NULL;
tempin = NULL,;
ternpout = NULL,;
STreturn = NULL;

vmn_Delete(tempin);

tempin = vim_ListVal();

vmn_Delete(tempout);

tempout = NULL,;

tempout = doprimitive(STinbox([0], tempin);
vm_Reset(tempout);

vin_Delete(avalue[Q]);

avalue[0] = vin_Copy(vm_GetNext(tempout));
astatus[0] = running;

vm_Delete(avalue[1]);

avalue[l] = vin_Copy(vm_GetNext(tempout));
astatus[1] = running;

BEGIN

vin_Delete(tempin);
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tempin = vim_ListVal();
vm_Delete(tempout);
tempout = NULL;
if(astatus[0] != dead)
vm_Add(tempin,vm_Copy(avalue[0]));
tempout = doprimitive(boxvalue{ 1], tempin);
vin_Reset(tempout);
EXCEPTION
WHEN(inconsistent)
astatusf[1] = dead;
END

/* Box 3 */
vm_Delete(tempin);
tempin = vim_ListVal();
vmn_Delete(tempout);
tempout = NULL;
if(astatus[1] != dead)
vm_Add(tempin,vm_Copy(avalue[1]));
tempout = doprimitive(boxvalue[3], tempin);
vm_Reset(tempout);
SToutbox[0] = vin_Copy(vm_GetNext(tempout));
STreturn = vm_ListVal();
-- preparing return values
for(STindex = 0; STindex < TTLout; STindex++)
vim_Add(STreturn, vim_Copy(SToutbox[STindex)));
-- deleting local variables
STarwdelete(avalue, TTLarw);
STarwdelete(aportval, TTLarw);
STboxdelete(STinbox, TTLin);
STboxdelete(SToutbox, TTLout);
vm_Delete(tempin);
vm_Delete(tempout);
return(STreturn);

Appendix 7.1 contains a full example of the box graph, the box sequence

generated by the scheduler and the output of the code generator.
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S, EVALUATION AND CONCILUSION

5.1  TESTING SET-UP
Figure 29 is the system currently used to give the performance measurements of

the compiled version of an STL puzzle.

Automatic Manual
Event Executable
Sequence Event _ Module

" Recognizer Linker B

Object Code

Screen k Edmgr I ani .

Manager an un Time Package
Parser
, +
Code Generator ¥ C Compiler
C Code

Figure 29: Configuration of the STL system used in Performance measurement
The event recognizer, the screen manager and the editor are the same as in the

interpreter based system. The code generator outputs object code in the C language. The
C language was chosen for experimentation purpose only. Other languages could be
used instead. The C code generated can be compiled by any regular C compiler and the
object code can be linked with a run time package to generate an executable module. The
run time package provides support for system defined operations. Eventually, the manual
portion of the system will be eliminated and will be replaced by the execution system
described in section 4.1. At that time, the compilation and the linkage of object code is

automatic and load modules can be directly executed in the STL system.
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5.2 PERFORMANCE MEASUREMENT

Three puzzles are used to compare the performance between the interpreter based
version and the compiler based version. The first puzzle is the definition Fibonacci
numbers defined in Figure 12. The second puzzle is the factorial program defined in
Figure 7.1 and the third puzzle is the prime number generator defined in Figure 20. This
puzzle uses puzzles defined in Figures 16 to 19. These three programs are chosen
because they use the iteration construct alone, recursion alone and the combined usage of
iteration and recursion. -

For analysis purpose, the screen managements of the interpreter are turned off
because the compiled versions of the puzzles omit all invocations to the screen manager.
Figure 30 through 32 summarize the comparison of the interpreter vs compiler version of

the system for varions input parameters.

[ ] Interpreter Based Version

Compiler Based Version

16 1
14 +
12+
10 I-
Time in
Seconds

o] S 10 1S 20 25 30 35 40 45 S0
Number Entered

Figure 30:  Performance Comparison of the Fibonacci Program
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141
124
10 4+

Time in
Seconds 61

0 1 2 3 4 S 6 7 8 9 10
Number Entered

Figure 31: Performance Comparison of the Factorial Program

120 -

100 1

80+

time in seconds 60 4
40 +

20+

2 3 4 5 6 7 8 9 10 11 1213 14 15

Sieve number

Figure 32: Performance Comparison of The Prime Number Generator

The compiler can produce a speedup factor of about 2 or 3 depending on the
program being run and the input. In the compiled version of an STL program, there is an

overhead during start up for initializing global variables. However, the true nature of the
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differences between the compiled version and the interpreted version become apparent as

larger numbers are used in the comparison,

In common programming languages, the speedup of a compiled version over an

Interpreted version is usually more than the STL compiler currently achieves. There are a

number of reasons why the speedup is not as much as expected:

(1)

(2)

3

The object code of the compiler is in the C language. There is overhead
involved in C subroutine calls. A compiler generating assembler code
reduces this problem.
The code generated by the compiler is not optimized. For exampie, in all
the rules, the call to <GenerateInputList> can be eliminated when the box
being translated has no input arrow.
The box graph is not analyzed to determine the real intention of the graph
before code generation. This leads to the structural resemblance of the
output (the C code) with the input (the boxgraph). In many situations,
especially in scientific programming, a STL program can be expressed
with one or two expressions in a one-dimensional program. For example,
the factorial function can be expressed as

fact(x) := 1 forx=0

fact(x) := x * fact(x - 1) forx >0
Therefore, a box graph structure can usually be broken up to determine the
linguistic meaning which can in turn be expressed in other programming

language more efficiently.

5.3 CONCLUSION

In this thesis, a new picture language is presented, in which programs are

expressed in two-dimensional structures and data can either be text, numbers or images.

Except for entering textual and numeric data, a program can be created solely by using a
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pointing device such as a mouse. The language can express high-level constructs such as
recursion, iteration, parallel processing and exception handling,

The problem and solution of compiling from a picture language into a one-
dimensional language is shown. The first version of the compiler was implemented on a
Macintosh™" and its performance was measured. The object code size of the different

parts of the compiler are:

Parser 22K bytes
Semantic Analysis 14Kbytes
Scheduler 4K bytes

Code Generator 10K bytes

Macro Expansion Package 17K bytes
In summary, this thesis has:

(1) Introduced the major concepts of the Show and Tell Language through examples.
(2) Demonstrated how this language can be compiled into a common one-dimensional
programming language. The main idea is to translate inconsistency, which
is most fundamental in STL, into exception handling capability similar to

that in Ada.
(3) Compared the performance between a compiled version and an interpreted
version. The limitation and possible enhancements for future compiler

construction has been addressed.

Future research will involve defining a formal syntax for such a two-dimensional
language and a parsing algorithm based on that formalism. The parser and the semantic
analysis in the STL compiler are ad hoc because of the lack of grammar for this language.

There are at least two approaches in defining a syntax for a two-dimensional

"Macintosh is a trademark of Apple Computer, Inc.
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programming language. The first approach is to define a two-dimensional meta-language
for specifying the syntax of the object language. Lexical elements are also two-
dimensional objects. The second approach is to use a known one-dimensional meta-
language to specify the set of one-dimensional representations of two-dimensional
program constructs. Attempts to define a formal grammar for the STL using the second
approach can be found in (14) and (15).

The success of two-dimensional programming languages will depend on their
availability and performance. Building 2 compiler for such a language will help in the
performance. In the near future it is expected that a large database will become available
to end users through laser disk technology. A visual programming languages such as

STL may make it easier for users to extract useful information from large databases.
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APPENDIX 7.1

A Complete Example
7.1.1 Input To The Editor
The event recognizer gathers all the events generated by the user or the system,
analyzes them and then distributes them to different parts of the system. The event types
and event sequence for the entering the puzzle of Figure 7.1 is as follows:

Types of event: box select, mousedown, mouseup, line select, single click,
double click.

Events for drawing Figure 7.1:

box select, mousedown(149, 70), mouseup(305, 183)
box select, mousedown(156, 137), mouseup(196, 171)
box select, mousedown(262, 88), mouseup(296, 124)
box select, mousedown(215, 137), mouseup(251, 171)
box select, mousedown(157, 89), mouseup(192, 121)
box select, mousedown(225, 99), mouseup(240, 109)
box select, mousedown(70, 81), mouseup(136, 182)
box select, mousedown(86, 98), mouseup(121, 126)
box select, mousedown(87, 142), mouseup(120, 171)
box select, mousedown(127, 203), mouseup(200, 237)
box select, mousedown(126, 27), mouseup(198, 60)
line select, single click(198, 42), single click(233, 42),
double click(233, 137)
line select, single click(232, 171), single click(232, 219),
double click(219, 200)
line select, single click(102, 171), single click(102, 219),
double click(127, 219)
line select, single click(126, 43), single click(103, 43),
double click(103, 98)
line select, single click(175, 121), double click(175, 137)
line select, single click(196, 155}, double click(215, 155)
line select, single click(225, 104), double click(104, 192)
line select, single click(104, 240), double click(104,262)

In Figure 7.1, the number on each box and arrow corresponds to the subscript on
the box and arrow array in the box graph. These numbers are internal to the system and

are not shown on a normal STL screen.
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Figure 7.1:  STL puzzle representing the factorial function

7.1.2  Output Of The Editor

There are three main structures in a box graph: the box array, arrow array and dot
array. Each box has a list of inports and a list of outports. An inport is a dot on the
intersection of a box with an incoming arrow. Similarly, an outport is a dot on the
intersection of a box with an outgoing arrow. The inport and outport field of a box points
to the first inport or the first outport. The next port on a box can be traced by following
the next_port field of the dot. The son field of a box points to the largest box inside the
box. The list of boxes inside a box can be traced by following first the son field and then
the brother field of the rest. The boxtype field denotes the type of a box. In STL, the
type of a box can either be simple, base, iteration, file or structure. The scope field

denotes whether a box is opened or closed.
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For arrow and dot, the key fields are self-explanatory, except for the porttype,
next_dot and pre_dot fields. The porttype field denotes whether the dot is an inport or

outport. The next_dot and pre_dot fields point to the next or previous dot on the same

arrow. The following is the output of the editor.

Box Graph:

boxsize 11, arrowsize 8, dotsize 22

Box[0] : (149 79, 305 183)
inport 1, outport 6
son 1, brother 6, dad -1
Boxtype 0, scope 1

Box[2] : (262 88, 296 124)
inport 21, outport -1
son -1, brother 3, dad 0
Boxtype 0, scope 0

Box{4] : (157 89, 192 121)
inport 19, outport 14
son -1, brother 5, dad 0
Boxtype 0, scope 1

Box[6] : (70 81, 136 182)
inport 12, outport 9
son 7, brother 9, dad -1
Boxtype 0, scope 1

Box[8] : (87 143, 120 171)
inport -1, outport §
son -1, brother -1, dad 6
Boxtype 0, scope 1

Box[10] : (126 27, 198 60)
inport -1, outport 0
son -1, brother -1, dad -1
Boxtype 7, scope 1

Box[1] : (156 137, 196 171)
inport 15, outport 16
son -1, brother 2, dad 0
Boxtype 0, scope 1

Box[3] : (215 137, 251 171)
inport 4, outport 5
son -1, brother 4, dad 0
Boxtype 0, scope 1

Box[5] : (225 99, 240 109)
inport 2, outport 20
son -1, brother -1, dad 0
Boxtype 0, scope 1

Box[7] : (86 98, 121 126)
inport 13, outport -1
son -1, brother 8, dad 6
Boxtype 0, scope 1

Box[9] : (127 203, 200 237)
inport 7, outport -1
son -1, brother 10, dad -1
Boxtype 7, scope 1

Arrow[0] : dot 0, next arrow 1, pre arrow -1
Arrow[1] : dot 5, next arrow 2, pre arrow ()
Arrow([2] : dot 8, next arrow 3, pre arrow 1
Arrow[3] : dot 11, next arrow 4, pre arrow 2
Arrow{4] : dot 14, next arrow 5, pre arrow 3
Arrow(5] : dot 16, next arrow 6, pre arrow 4
Arrow[6] : dot 18, next arrow 7, pre arrow 5
Arrow[7] : dot 20, next arrow -1, pre arrow 6



Dot[0] (198,42)
onbox 10, onarrow 0, porttype 1
next_dot 1, pre_dot -1
next_port 11, pre_port -1

Dot]2] (233,99)
onbox 5, onarrow 0, porttype 0
next_dot 3, pre_dot 1

next_port -1, pre_port -1

Dot{4] (233,137)
onbox 3, onarrow 0, porttype 0
next_dot -1, pre_dot 3
next_port 17, pre_port -1

Dot[6] (232,183)
onbox 0, onarrow 1, porttype 1
next_dot 7, pre_dot 5
next_port -1, pre_port -1

Dot[8] (102,171)
onbox 8, onarrow 2, porttype 1
next_dot 9, pre_dot -1
next_port -1, pre_port -1

Dot[10] (127,219)
onbox 9, onarrow 2, porttype 0
next_dot -1, pre dot 9
next_port -1, pre port 7

Dotf12} (103,81)
onbox 6, onarrow 3, porttype 0
next_dot 13, pre_dot 11
next_port -1, pre_port -1

Dot[14] (175,121)
onbox 4, onarrow 4, porttype 1
next_dot 15, pre_dot -1
next_port -1, pre_port -1

Dot[16] (196,155)
onbox 1, onarrow 5, porttype 1
next_dot 17, pre dot -1
next_port -1, pre_port -1

Dot[18] (225,104)
onbox 5, onarrow 6, porttype 1
next_dot 19, pre_dot -1
next_port -1, pre_port 3

Dot[1] (233,79)
onbox 0, onarrow 0, porttype 0
next_dot 2, pre dot 0
next_port -1, pre port -1

Dot[3] (233,109)
onbox 5, onarrow 0, porttype 1
next_dot 4, pre_dot 2
next_port 18, pre_port 20

Dot[5] (232,171)
onbox 3, onarrow 1, porttype 1
next_dot 6, pre_dot -1
next_port -1, pre_port -1

Dot[7] (200,219)
onbox 9, onarrow 1, porttype 0
next_dot -1, pre_dot 6
next_port 10, pre_port -1

Dot[9] (102,182)
onbox 6, onarrow 2, porttype 1
next_dot 10, pre_dot 8
next_port -1, pre_port -1

Dot[11] (126,43)
onbox 10, onarrow 3, porttype 1
next dot 12, pre_dot -1
next_port -1, pre_port 0

Dot{13] (103,98)
onbox 7, onarrow 3, porttype 0
next_dot -1, pre_dot 12
next_port -1, pre_port -1

Dot[15] (175,137)
onbox 1, onarrow 4, porttype 0
next_dot -1, pre_dot 14
next port -1, pre_port -1

Dot[17] (215,155)
onbox 3, onarrow 5, porttype 0
next dot -1, pre_dot 16
next_port -1, pre_port 4

Dot[19] (192,104)
onbox 4, onarrow 6, porttype 0
next_dot -1, pre_dot 18
next_port -1, pre_port -1



Dot[20] (240,104)
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Dot[21] (262,104)

onbox 5, onarrow 7, porttype 1 onbox 2, onarrow 7, porttype 0
next_dot 21, pre_dot -1 next_dot -1, pre_dot 20
next_port 3, pre_port -1 next_port -1, pre_port -1

7.1.3  Output Of The Scheduler

B10
BO

B6

BYS

7.1.4 Output Of The Code Generator

#include "compile.h"
VALUE ST271800);
static VALUE boxvalue{11];

static int TTLbox = 11;
stafic int TTLin=1;
static int TTLout = 1;
static int TTLarw = §;
static int boxinit = 0;
VALUE ST27180(STarg)

VALUE STarg;

{

VALUE STinbox[1];
VALUE SToutbox[1];
VALUE avalue[§];
VALUE aportval(8];
int astatus[8];
VALUE termnpin;
VALUE tempout;
VALUE STreturn;

int STindex;

for(STindex = 0; STindex < &; STindex++) {
avalue[STindex] = NULL;
aportval[STindex] = NULL;
astatus{STindex] = running;

if(!boxinit) {
STboxinit(boxvalue, "ST27180 box", TTLbox);
boxinit = 1;
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3

vm_Reset(STarg);

for(STindex = 0; STindex < TTLin; STindex++)
STinbox[STindex] = vin_Copy(vm_GetNext(STarg));

for(STindex = 0; STindex < TTL out; STindex++)
SToutbox[STindex] = NULL;

tempin = NULL,;

tempout = NULL;

STreturn = NULL;

/* Box 10 */

vm_Delete(tempin);

tempin = vin_ListVal();

vm_Delete(tempout);

tempout = NULL;

tempout = doprimitive(STinbox[0], tempin);

vin_Reset(tempout);

vin_Delete(avalue[3]);

avalue[3] = vm_Copy(vm_GetNext(tempout));

astatus[3] = running;

vmn_Delete(avalue[0]);

avalue[0] = vm_Copy(vm_GetNext(tempout));

astatus[0] = running;

BEGIN

/* Box 0 */

/* Box 5 */
vm_Delete(tempin);
tempin = vm_ListVal();
vm_Delete(tempout);
tempout = NULL;
if(astatus[0] != dead)

vm_Add(tempin,vm_Copy(avalue[0]));

tempout = doprimitive(boxvalue[5], tempin);
vm_Reset(tempout);
vmn_Delete(avalue[6]);
avalue[6] = vm_Copy(vm_GetNext(tempout));
astatus[6] = running;
vm_Delete(avalue[0]);
avalue[Q] = vm_Copy(vm_GetNext(tempout));
astatus[0] = running;
vm_Delete(avalue[7]);
avalue[7] = vm_Copy(vm_GetNext(tempout));
astatus[7] = running;

/* Box 2 */
vmn_Delete(tempin);
tempin = vm_ListVal();
vm_Delete(tempout);
tempout = NULL;
if(astatus[7] != dead)

vm_Add(tempin,vin_Copy(avalue[7]));

tempout = doprimitive(boxvalue[2], tempin);
vm_Reset(tempout);

/* Box 4 %/



/*Box 1 */

/* Box 3 */
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BEGIN
vm_Delete(tempin);
tempin = vm_ListVal();
vm_Delete(tempout);
tempout = NULL;
if(astatus[6] != dead)
vm_Add(tempin,vm_Copy(avalue[6]));
tempout = doprimitive(boxvalue[4], tempin);
vm_Reset(tempout);
vin_Delete(avalue[4]);
avalue[4] = vm_Copy(vm_GetNext(tempout));
astatus[4] = running;
EXCEPTION
WHEN(inconsistent)
astatus[4] = dead;
END

BEGIN
vin_Delete(tempin);
tempin = vm_ListVal();
vm_Delete(tempout);
tempout = NULL;
if(astatus[4] != dead)
vm_Add(tempin,vm_Copy(avalue[4]));
tempout = ST27180(tempin);
vm_Reset(tempout);
vm_Delete(avalue[5]);
avalue[5] = vmn_Copy(vm_GetNext(tempout));
astatus[3] = running;
EXCEPTION
WHEN(inconsistent)
astatus[5] = dead;
END

BEGIN
vm_Delete(tempin);
tempin = vm_ListVal();
vm_Delete(tempout);
tempout = NULL;
if(astatus[5] != dead)
vin_Add(tempin,vin_Copy(avalue[5]));
if(astatusfQ] != dead)
vm_Add(tempin,vm_Copy(avalue[0]));
tempout = doprimitive(boxvalue[3], tempin);
vm_Reset(tempout);
vmn_Delete(avalue[1]);
avalue[l] = vm_Copy(vm_GetNext(tempout));
astatus[1] = running;
EXCEPTION
WHEN(inconsistent)
astatus{1] = dead;
END



/* Box 6 */
/*Box 7 */

/* Box 8 */

/* Box 9 */
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EXCEPTION
WHEN(inconsistent)
astatus[1] = dead;
END

BEGIN

vin_Delete(tempin);

tempin = vim_ListVal();

vm_Delete(tempout);

tempout = NULL;

if(astatus[3] != dead)
vm_Add(tcmpin,vm_Copy(avalue[3]));

tempout = doprimitive(boxvalue[ 7], tempin):

vm_Reset(tempout);

vm_Delete(tempin);
tempin = vi_ListVal();
vm_Delete(tempout);
tempout = NULL;
tempout = doprimitive(boxvalue[8], tempin);
vm_Reset(tempout);
vin_Delete(avalue[2]);
avalue[2] = vm_Copy(vm_Gcthxt(tempout));
astatus[2] = running;
EXCEPTION

WHEN(inconsistent)

astatus[2] = dead;

END

vm_Delete(tempin);

tempin = vin_ListVal();

vm_Delete(tempout);

tempout = NULL;

if(astatus[2] != dead)
vm_Add(tempin,vm“Copy(avalue[Z]));

if(astatus[1] != dead)
vm_Add(tempin,vin_Copy(avalue[1]));

tempout = doprimitive(boxvalue[9], tempin);

vin_Reset(tempout);

SToutbox[0] = vm_Copy(vm_GetNext(tempout));

STreturn = vm_ListVai();

for(STindex = 0; STindex < TTLout; STindex++)
vin_Add(STreturn, vm_Copy(SToutbox[STindex]));

STarwdelete(avalue, TTLarw);

STarwdelete(aportval, TTLarw);

STboxdelete(STinbox, TTLin);

STboxdelete(SToutbox, TTLout);

vm_Delete(tempin);

vm_Delete(tempout);

return{STreturn);
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APPENDIX 7.2

A Compiete Rule Set for Code Generation

The following are the translation rules. Each rule accepts a different numbers of
arguments. The characters in bold are the actual output. Names in angle brackets are

calls to another translation rule.

R1:  Rule Name: SimpleBox
Arguments: BoxNumber, InArrowSize, OutArrowSize, InArrowList,
OutArrowList
BoxType: closed box, open box, base box
BoxContent: empty, number, text, picture
Output: < GenerateInputList(InArrowSize, InArmrowList) >
if the box is an input box then output the following:
tempout = doprimitive(STinbox[InBoxNumber],
tempin);
else output the following:
tempout = doprimitive(boxvalue[BoxNumber],
tempin);

if the box is an output box then output the following:
vm_Reset(tempout);
SToutbox[OutBoxNumber] =
vin_Copy(vm_GetNext(tempout));
else output the following:
< AssignOutput(OutArrowSize, OutArrowList) >

R2:  Rule Name: SystemlconWithClosedBox
Arguments:  BoxNumber, InArrowSize, OutArrowSize, InArrowList,
OutArrowList
BoxType: closed box
BoxContent: systemn icon
Output: BEGIN
< GenerateInputList(In ArrowSize, InArrowList) >
tempout = doprimitive(boxvaiue[boxnumber],
tempin)
< AssignOutput(OutArrowSize, QutArrowList) >
EXCEPTION
WHEN( (inconsistent)
< MarkArrowDead(OutArrowSize, OutArrowList) >
END



R3:

R4:

Ré6:

R7:

Rule Name;
Arguments:

BoxType:

BoxContent:

Output:

Rule Name:
Arguments:

BoxType:

BoxContent:

Output:

Rule Name:
Arguments:

BoxType:

BoxContent:

Output:

Rule Name:
Arguments:
BoxType:

BoxContent:

Qutput:

Rule Name:
Arguments:
BoxType:

BoxContent:

Output:
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UserlconWithClosedBox
BoxNumber, InArrowSize, OutArrowSize, InArrowList,
OutArrowList, UserlconName
closed box
user icon
BEGIN
< GenerateInputList(In ArrowSize, InArrowList) >
tempout = UscrIconName(boxvalue[boxnumbcr],
tempin)
< AssignOutput(OutArrowSize, QutArrowList) >
EXCEPTION
WHEN(inconsistent)
T < MarkArrowDead(OQutArrowSize, OutArrowList) >

SystemIconWithOpenBox

BoxNumber, InArrowSize, OutArrowSize, InArrowList,
OutArrowList

open box

system icon

< GenerateInputList(InArrowSize, InArrowList) >

tempout = doprimiti ve(boxvalue[boxnumber], tempin)
< AssignOutput(OutArrowSize, OutArrowList) >

UserlconWithOpenBox

BoxNumber, InArrowSize, OutArrowSize, InArrowList,
OutArrowList, UserlconName

open box

user icon

< GenerateInputList(InArrowSize, InArrowList) >

tempout = UserIconName(boxvalue[boxnumber], tempin)
< AssignOutput(OutArrowSize, OutArrowList) >

ComplexClosedBox
OutArrowSize, OutArrowList, SonSize, SonNumberList
closed box
son boxes
BEGIN

< ProcessSon(SonSize, SizeNumberList) >
EXCEPTION

WHEN(inconsistent)

< MarkArrowDead(OutArrowSize, OutArrowList) >

END

ComplexOpenBox

SonSize, SonNumberList

open box

son boxes

< ProcessSon(SonSize, SonNumberList) >



RS8:

RO:

RI1O:

Rule Name:
Argurnents:
BoxType:

BoxContent:

Output:

Rule Name:
Arguments:

BoxType:

BoxContent:

Output:

Rule Name:
Arguments:

BoxType:

BoxContent;

Output:
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SeqlterationOnly
SeqPortSize, SeqPortList, SonSize, SonNumberList
iteration box
son boxes
BEGIN
< FirstSeqPortInit(SeqPortSize, SeqPortList) >
while(1) {
< SeqPortRelnit(SeqPortSize, SeqPortList) >
< ProcessSon(SonSize, SonN umberList) >

}
EXCEPTION
WHEN(inconsistent)
N < EndSeqlteration(SeqPoarSize, SeqPortList) >
END

SeqlterationWithParallelOut
SeqPortSize, SeqPortList, SonSize, SonNumberList,
ParQutSize, ParQutList
iteration box
son boxes
BEGIN
< FirstSeqPortInit(SeqPortSize, SeqPortList) >
< FirstParOutPortInit(ParOutSize, ParOutList) >
while(1) {
< SeqPortRelnit(SeqPortSize, SeqPortList) >
< ProcessSon(SonSize, SonN umberList) >
< SaveParOutValue(ParQOutSize, ParOutList) >

}
EXCEPTION
WHEN(inconsistent)
- < EndSeqlteration(SeqPortSize, SeqPortList) >
ND

< EndParlteration(ParOutSize, ParQutList) >

SeqAndParlteration
SeqPortSize, SeqPortList, SonSize, SonNumberList,
ParOutSize, ParOutList, ParInSize, ParInList
iteration box

son boxes

int il’ iz, i3’ ,in;

/* depends on how many parallel port */
int Lcount;, Leount,, Leounts, ...

Lcount; = vm_Count(aportval[1]);

ooooo

, Leount;

Lcount, = vim_Count{aportval[n]);
< FirstSeqPortInit(SeqPortSize, SeqPortList) >
< FirstParOutInit(ParOutSize, ParQutList} >
< FirstParInlnit(ParInSize, ParInList) >
for(i; = 0; ij < Lceount,; ij++) {
< ParInRelnit(1) >
for(i, = 0; i, < Lcount,; iy++) {



R11:

R12:

R13:

R14;

Rule Name:
Arguments:

Output:

Rule Name:
Arguments:

Output:

Rule Name:
Arguments;

Output:

Rule Name:
Arguments:

Output:
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< ParlnRelnit(2) >

for(i, = 0; i, < Lcount,; in++) {
< ParInRelnit(n) >
< SeqPortRelnit(SeqPortSize, SeqPortList) >
BEGIN
<ProcessSon(SonSize, SonNumberList)>
<SavePaIOutValue(ParOutSize,ParOutList)>
EXCEPTION
WHEN ((inconsistent)

END ’

}
}
< EndParlteration(ParQutSize, ParOutList) >

GenerateInputl ist

InArrowSize, InArrowList

vmm_Delete(tempin);

tempin = vm_ListVal();

vin_Delete(tempout);

tempout = NULL;

for each arrow i in the InArrowList, output the following:
if(astatus[InArrowList[i]] != dead)

vim_Add(tempin, avalue(InArrowList[i]]);
/* generate vm_add(...) for each arrow in the list */

AssignOutput

OutArrowSize, QutArrowList

vm_Reset(tempout);

for each arrow i in the OutArrowList, output the following:
vin_Delete{avalue[OutArrowList{i]]);
avalue[OutArrowList[i]] =

vm_Copy(vm_GetNext(tempout));

astatus[OutArrowList[i]] = running;

MarkArrowDead

OutArrowSize, QutArrowList

for each arrow i in the OutArrowList, output the following:
astatus[OutArrowList[i]] = dead;

ProcessSon

SonSize, SonNumberList

for each son i in the SonNumber List, output the following:
dobox(SonNumberList[i]);



R15:

R1e6:

R17:

Ri8:

R19:

R20:

Rule Name:
Arguments:

Output;

Rule Name:
Arguments:

Output:

Rule Name;
Arguments:

Output:

Rule Name;
Arguments:

Output:

Rule Name:
Arguments:

Output:

Rule Name:
Arguments:

Output:
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FirstSeqPortInit
SeqPortSize, SeqPortList(Each port in the list comes in a pair, the
from_port and the to_port)
for each sequential port i in the SeqPortList, output the following:
if(astatus[] == running)
aportval[SeqPortList.tofi]] =
vm_Copy(avalue[chPortList.from[i]]);
else
aportval[SeqPortList.to[i]] = vm_NullVal();
astatus{SeqPortList.to[i]] = running;

SegPortRelnit
SeqPortSize, SeqPortList
for each sequential port i in the SeqPortList, output the following:
if(astatus[SeqPortList.to[i]] 1= dead) {
vm_Delete(aportval[chPortList.to[i]]);
aportval[SeqPortList.tofi]] =
) vm_Copy(avalue[chPortList.to[i]]);
vm_Delete(avalue[SeqPortList.from[i]]);
avalue[SegPortList.from[i]] =
vm_Copy(aportval[SeqPortList.from[i]]);
astatus[SeqPortList.from[i]] = running;

EndSeqlteration
SeqPoarSize, SeqPortList
for each sequential port i in the SeqPortList, output the following:
vm_Delete(avalue[SeqPortList.to[i]]);
avalue[SeqPortList.to[i]] =
vm_Copy(aportval[SeqPortList.to[i]]);

FirstParOutPortInit

ParQutSize, ParQutList

for each parallel out port i in the ParQutList, output the following:
vm_Delete(aportval[ParOutList[i]]);
aportval[ParOutList[i]] = vm_ListVal();

SaveParQutValue
ParOutSize, ParQutList
for each parallel out port i in the ParQutList, output the following:
vmm_Add(aportval[ParOutList[i]],
vm_Copy(avalue[ParOutList[i]]));

FirstParInInit
ParInSize, ParInList
for each parallel in port i in the ParInList, output the following:
if(astatus{ParInList[i]] == dead)
exc_raise(inconsistent);
vm_Delete(aportval[ParInList[i]]);
aportval[ParInList[i]] =
vmm_Copy(avalueParInList[i]]);
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R21: Rule Name: ParInRelnit
Arguments:  PortNumber
Output: vm_Delete(avalue[PortNumber]);
avalue[PortNumber] =
Vm_Copy(vm_GetNext(aportval[PortNumber]));
astatus[PortNumber) = running;

R22: Rule Name: EndParlteration
Arguments:  ParQutSize, ParQutList
Output: for each parallel out port i in the ParOutList, output the following:
vm_Delete(avalue[ParOutList[i]]);
avalue[ParOutList[i]] =
vm__Copy(aportval[ParOutList[i]]);
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