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Introduction

Welcome to the MERCATOR user’s manual! MERCATOR is a CUDA/C++ system de-
signed to assist you in writing efficient CUDA applications by automatically generating
significant portions of the GPU-side application code. We hope you find it helpful; please
feel free to contact the authors with any questions or feedback.

1.1 Intended use case: modular irregular streaming ap-

plications

MERCATOR facilitates the development of applications that are

• streaming : they take many small data items as inputs, process them once, and output
or discard them;

• modular : they may be described by a (constrained) Data Flow Graph of processing
steps (i.e., nodes) connected by directed data flow edges; and

• irregular : any node may filter an input item or replace it with new output item(s)
to send downstream, and the data flow triggered by any given input is unknown at
compile time.

MERCATOR’s support for irregularity distinguishes it from systems that process Syn-
chronous Data Flow (SDF) applications, in which the I/O rate(s) of each node are known a
priori.
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Figure 1.1: Example Data Flow Graph of an application with two filtering nodes that each accept
integers and output integers. Dashed lines indicate that input items may be dropped by the filtering
nodes, which makes the data flow of this application irregular. The SOURCE and SINK nodes shown
represent input generation and output collection in the application.

Figure 1.1 shows the DFG of a simple filtering application.

1.2 MERCATOR application terminology

We use the following terminology to describe the topology of a MERCATOR application:

• A module type (or just module) is an entity whose type is defined by its function (code).

• A module instance is one occurrence of a module in an application’s DFG (i.e. one
node).

• An edge represents data flow between two module instances. Note that due to their
support for irregular data flow, the exact data movement cardinalities of edges are not
necessarily known at compile time.

• Data inputs flow into the application from a single source node, and outputs may be
emitted to one or more sink nodes.

MERCATOR supports any modular streaming application whose topology obeys the follow-
ing constraints:

1. Each instance may have multiple output edges but only a single input edge.
2



2. While input items may trigger the generation of multiple output items from a node, a
maximum number of possible output items generated for each input item is known at
compile time.

We use the following terminology to describe additional aspects of MERCATOR:

• Any code generated by MERCATOR is considered system code, while any code sup-
plied by an application programmer (the user of the system) is considered user code.

• User-supplied parameter data may be associated with MERCATOR DFG objects at
three granularities: a global set of data, module-type-specific data, and node-specific
data. This allows nodes, module types, and the overall application to maintain state
during execution.

When implemented in CUDA, the code for each module type is a separate function, with
module instances of the same type sharing function code but operating on different input
sets with potentially different parameter values. This sharing of code between instances is
important in the CUDA context where execution happens in wide SIMD. In fact, one key
contribution of MERCATOR’s execution model is to group work by module type rather than
by node to take maximal advantage of CUDA’s wide-SIMD execution.

Example DFGs labeled with MERCATOR module types and instances are shown in Fig-
ure 1.2.

1.3 System overview and basic workflow

Given the terminology in the previous section, the application support provided by MERCA-
TOR may be stated as follows: the MERCATOR system supplies CUDA code for a DFG’s
edges and provides an interface between the edges and nodes, enabling a user to generate a
fully-functional CUDA implementation of a DFG by supplying code for its module types only.
We refer to this implementation as a ‘MERCATOR application’ or just ‘application,’ even
though it is not a full runnable CUDA program without host-side driver code that launches

3



(a) DFG with two instances, each of a
different module type indicated by its
label and color.

(b) DFG with three instances of two
module types. Subscripts in the type
label distinguish instances of the same
type.

Figure 1.2: Example DFGs. SOURCE and SINK nodes have been omitted for clarity. Note that when
executing the graph in (b), MERCATOR may fire instances A1 and A2 simultaneously since they
are of the same module type.

the device-side MERCATOR application. MERCATOR provides wrapper functions that
perform these kernel calls and exposes the wrapper functions to the user via a CPU-side
(host-side) API.

The user interacts with a MERCATOR application via this host-side API, which in addition
to the function calls that initialize and run the MERCATOR application contains functions
for providing inputs and gathering outputs from it. A MERCATOR application is therefore
deployed in a fully user-defined context.

In order to generate edge code, MERCATOR must have information about an application’s
topology, which the user provides to the system in a well-defined specification format. In
order to maintain a consistent interface between nodes and edges, MERCATOR provides
the user with function headers for each module type in the application.

An overview of the MERCATOR workflow is shown in Figure 1.3. Each phase of the workflow
is described in the system documentation that follows.
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Figure 1.3: Workflow for writing a program incorporating a MERCATOR application.
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MERCATOR system documentation

In the following instructions, we highlight the user’s responsibilities and the interface between
the user and the MERCATOR system.

2.1 Initial input

We begin with the user’s initial input to the system, which consists of #pragma statements
specifying the application’s topology, module type requirements, and user-defined parameter
data types.

2.1.1 Module type specification

Information about each module type in the application– which may be multiply instantiated
in its Data Flow Graph– is provided by the user as a module specification. Specifications for
user-defined module types must conform to the following EBNF grammar. Note that here
and in all following specifications, we use the shorthand <typename> to stand in for the set
of the names of all CUDA-valid types, including user-defined types.

6



<module-spec> = "#pragma mtr module" <module-name>

{ <parameter-type> } "(" <input-stream> "->"

<output-stream>{"," <output-stream> } "|"

<elements> ":" <threads> ")"

<input-stream> = <io-type> <num-inputs>

<output-stream> = <stream-name> "<" <io-type> ">"

[":" <outputs-per-input>]

<parameter-type> = <typename>

<num-inputs> = "[" <int> "]"

<outputs-per-input> = <int> | ("?" [<int>])

<module-name> = <string>

<stream-name> = <string>

<io-type> = <typename>

<elements> = <int>

<threads> = <int>

Explanation:

The specification consists of three main parts: a description of the data type and range of
item cardinalities for each input and output stream, and the work assignment ratio. Notes
on specific symbols follow.

<parameter-type> : type name of (optional) parameter data to be associated with
this module type.

<num-inputs> : maximum number of input elements processed upon each module
firing.

<outputs-per-input> : number of output elements produced per input element. A
“?” indicates that the number of outputs per input is a priori unknown but bounded
above by the integer specified in <outputs-per-input>. The absence of a “?” indicates
a fixed known data rate. If no integer is provided, the number of outputs per input is
assumed to be 1; for example, “?” is equivalent to “?1”.
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<module-name> : chosen by user.

<stream-name> : chosen by user. Required to disambiguate output streams.

<elements> : <threads> : ratio of input elements to threads for processing.

<num-instances> : total number of instances of this module type in application’s
dataflow graph

When more output elements are produced than inputs consumed per firing, outputs are
produced on a per-element basis; that is, each input element leads to the production of (up
to) a fixed uniform number of output elements. This uniform bound is the integer specified
in <outputs-per-input>.

The current version of MERCATOR only supports an <elements>:<threads> ratio with
<elements> = 1. In other words, multiple threads may be assigned the same input item
during execution of a module, but one thread may not be assigned multiple input items.

Examples:

1. Vector addition module:

struct VectorPair {

Vector a, b;

};

#pragma mtr module addVec(VectorPair[128] ->

outStream<Vector> | 1:1)

Interpretation: The module processes up to 128 input elements per firing, each input
element being a struct containing two vectors and each output element being a single
vector. The absence of a specified number of outputs per input indicates that each
input produces a single output, no matter how many inputs are processed by a given
firing. The module assigns one thread to each input element, which implies that the
entire element-wise sum of the two vectors is computed by a single thread.
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2. Vector addition module, different mapping ratio:

#pragma mtr module addVec(VectorPair[128] ->

outStream<Vector> | 1:4)

Interpretation: Here we assume the same definition of a VectorPair as above. This
specification is identical to that of the previous example except that the module im-
plementation assigns four threads to process each input vector pair. In this case, the
user may arbitrarily divide the work of computing the vector sum among these four
threads in the module function definition.

3. Filtering module:

#pragma mtr module evalThreshold<StateInfoStruct>(myItem_t[128] ->

outStream<myItem_t> : ? | 1:1)

Interpretation: The module processes up to 128 input elements per firing, each ele-
ment being of a user-defined type, and produces either 0 or 1 output elements per
input element. The module has associated with it a parameter data object of type
StateInfoStruct.

4. Cloning module, single output stream:

#pragma mtr module cloneItem(myItem_t[128] ->

outStream<myItem_t> : 4 | 1:1)

Interpretation: The module processes up to 128 input elements per firing, each element
being of a user-defined type, and produces 4 output elements per input element.

5. Cloning module, variable output production:

#pragma mtr module cloneItem(myItem_t[128] ->

outStream<myItem_t> : ?4 | 1:1)

Interpretation: Identical to previous example except that each input element produces
between 0 and 4 output elements. In this case the MERCATOR infrastructure allocates
space for the maximum number of output elements (i.e. 512) for each firing, and the
user’s module function definition is responsible for respecting this limit.
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6. Module that combines cloning and filtering, multiple output streams:

#pragma mtr module cloneFilterItem(myItem_t[128] ->

outStream1<myItem_t>, outStream2<myItem_t>, outStream3<myItem_t> :?,

outStream4<myItem_t> :2 | 1:1)

Interpretation: The module’s output behavior varies by stream: it sends a single ele-
ment to outStream1 and outStream2, sends 0 or 1 elements to outStream3, and sends
2 elements to outStream4 per input element per firing.

Special types: SOURCE and SINK

In addition to the application module types designed by the user, MERCATOR provides
two module types that must be included in an application: SOURCE and SINK. The single
SOURCE module type serves as the data entry point into the application, taking input from
a user-facing input buffer (to be discussed later) and feeding it to the conceptual root node
of the application’s DFG. The SOURCE module type is therefore always instantiated exactly
once, and its input type and (single) output type always match the input type of the DFG’s
conceptual root node.

The SINK module type serves as a data exit point from an application, taking final output
from user-defined nodes and passing it to user-facing output buffers (to be discussed later).
Since the application’s DFG may contain multiple nodes that produce final output, and each
output stream may be of a different type, the SINK module type is parameterized by this
output type and describes a category of types rather than a monolithic type. Each SINK

type may be multiply instantiated, and its input and output type(s) will all match the final
output type it is designed to pass through.

Although the implementation of SOURCE and SINK module types is part of MERCATOR’s
system code, the user must include SOURCE and SINK modules in the input specifications
so that the system knows their input and output stream information and so that they may
be appropriately included in the application topology. Since their functionality is limited,

10



however, the amount of information required from their specification is considerably less
than from user-defined module types, and their specifications are therefore simpler.

SOURCE and SINK module types must conform to the following EBNF grammar:

<source-module-spec> = "#pragma mtr module " ( "SOURCE" | "SINK" )

"<" <io-type> ">"

<io-type> = <typename>

Here <io-type> is the input or output type processed by the module. As stated above, there
can be only one SOURCE module specified for an application, but there may be multiple SINK
modules specified if an application produces outputs of multiple types.

Examples:

1. SOURCE module:

#pragma mtr module SOURCE<int>

Interpretation: The SOURCE module, and hence the conceptual root of the application’s
DFG, accepts inputs of type int.

2. SINK modules:

#pragma mtr module SINK<int> (2.1)

#pragma mtr module SINK<MyItem> (2.2)

Interpretation: Two types of outputs may be produced by the application: integers
and the user-defined type MyItem.

11



2.1.2 Node specification

Information about each module instance (i.e., node) in the application is provided by the user
as a node specification. Node specifications must conform to the following EBNF grammar:

<node-spec> = "#pragma mtr node " <node-name>

{<parameter-type>} ":" <module-name>

<node-name> = <string>

<parameter-type> = <typename>

<module-type-name> = <module-name>

Explanation:

The specification consists of two parts: a user-chosen name for the module instance, and the
name of the module type of which it is an instance.

<node-name> : user-chosen name for this node that will be used to identify it through-
out the application.

<parameter-type> : type name of (optional) parameter data to be associated with
this node.

<module-type-name> : name of the module type of which this node is an instance;
must match the <module-name> of some previously-declared module specification.

Example:

In the following example, the relevant module specifications are given, followed by the node
specifications describing their instantiations.
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filterStage1(myItem_t -> fs1outStream<myItem_t> : ? | 1:1)

filterStage2(myItem_t[128] -> fs2outStream<myItem_t> : ? | 1:1)

node1<ThresholdStruct> : filterStage1

node2<ThresholdStruct> : filterStage1

node3<ThresholdStruct> : filterStage2

Interpretation: node1 and node2 are instances of the module type filterStage1, and
node3 is an instance of the module type filterStage2. Each node has an associated
parameter data object of type ThresholdStruct.

SOURCE and SINK nodes

The specification of SOURCE and SINK nodes must obey the following EBNF grammar:

<source-node-spec> = "#pragma mtr node " <node-name> ":SOURCE"

<sink-node-spec> = "#pragma mtr node " <node-name> ":SINK<"<io-type>">"

<node-name> = <string>

<io-type> = <typename>

Explanation:

Module instances (nodes) of the SOURCE and SINK module types are specified in the same
way as nodes of user-defined module types, with the keyword ‘SOURCE’ being used as the
(unique) SOURCE module type, and the (possibly not unique) SINK module type being spec-
ified similarly but with its output type included.

13



Example:

In the following example, the relevant module specifications are given, followed by the node
specifications describing their instantiations.

#pragma mtr module SOURCE

#pragma mtr module SINK<int>

#pragma mtr module SINK<MyItem>

· · ·

#pragma mtr node sourceNode : SOURCE

#pragma mtr node resultNode1 : SINK<MyItem>

#pragma mtr node resultNode2 : SINK<MyItem>

#pragma mtr node resultNode3 : SINK<MyItem>

#pragma mtr node resultNode4 : SINK<int>

Interpretation: sourceNode is the single source node, the nodes resultNode1-3 pro-
duce application results of type MyItem, and the node resultNode4 produces applica-
tion results of type int. The specifications of all user-defined module types and nodes
has been omitted in this example.

2.1.3 Edge specification

An edge specification describes a dataflow relationship between two nodes; i.e., it represents
an edge in the application’s Data Flow Graph. Edge specifications must conform to the
following EBNF grammar:
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<edge-spec> = <us-node> "::" <output-stream>

"->" <ds-node>

<us-node> = <node-name>

<ds-node> = <node-name>

<output-stream> = <stream-name>

Explanation:

<us-node> : upstream node in connection; must match the <node-name> in a previously-
declared node specification.

<ds-node> : downstream node in connection; must match the <node-name> in a
previously-declared node specification.

<output-stream> : stream of <us-node> to be connected to input of <ds-node>; must
match a <stream-name> in the specification of the module type of which <us-node>

is an instance.

As a result of our single-input assumption for modules, each module may appear as the
<ds-module> in only a single edge specification.

Note that since nodes of SOURCE and SINK module types are named in the same way as
those of user-defined module types, edge specifications containing them need not have a
distinct form. However, a user is expected to include the following SOURCE and SINK edge
specifications in every application:

1. A single edge specification that explicitly connects the SOURCE node to the conceptual
DFG root node.

2. An edge specification that explicitly connects each user-defined node that produces
final application output to its associated SINK node.

15



Examples

In the following examples, the relevant module and node specifications are given, followed
by the edge specification(s) describing the dataflow between the nodes.

1. Connection between two filtering modules:

filterStage1(myItem_t -> fs1outStream<myItem_t> : ? | 1:1)

filterStage2(myItem_t[128] -> fs2outStream<myItem_t> : ? | 1:1)

node1 : filterStage1

node2 : filterStage2

node1::fs1outStream -> node2

Interpretation: node1 and node2 are instances of module types filterStage1 and
filterStage2 respectively. The elements output by node1 on its fs1outStream

stream are placed on the input worklist of node2. Note: It is assumed that filterStage1
and filterStage2 instantiate different filter code, rather than the same filter code pa-
rameterized differently (e.g., a simple threshold filter with different threshold values).
An example of such a topology exists in the Viola-Jones filter cascade, in which different
filters assay different features of a candidate face image.

2. Connection requiring named streams for disambiguation:

splitItems(myItem_t[128] -> siOutStream1<int>:2,siOutStream2<int>:3 | 1:1)

filterItems(int[128] -> fiOutStream<int>:? | 1:1)

node1 : splitItems

node2 : filterItems

node1::siOutStream1 -> node2

16



Interpretation: The elements in the siOutStream1 output stream of node1 are placed
on the input worklist of node2. Note: In this case naming module output streams
enables disambiguation; both siOutStream1 and siOutStream2 have the same type,
so inferring which stream to use to connect node1 and node2 would not be possible
without a stream ID.

2.1.4 Data parameter type specification

As stated in the description of a MERCATOR application, user-defined parameter data may
be associated with module types, nodes, and the application. The parameter data types of
module types and nodes are included in their specification, but since there is no specification
for the application, its parameter data type (if present) must be specified separately. This
specification must conform to the following EBNF grammar:

<app-param-data-spec> = "#pragma mtr appdata " <parameter-name>

<parameter-name> = <typename>

Here <parameter-name> is the name of the application’s parameter data type.

Example: LinearPipe application

The set of module type, node, and edge specifications for an example MERCATOR ap-
plication are shown in the Appendix in Listing 1. This application, which we refer to as
“LinearPipe,” implements the linear pipeline of filter nodes shown in the examples in Sec-
tion 1 of this manual, with the additional property that all nodes in the pipeline may produce
final output. This allows the application to expose elements that it filters out as well as those
that pass through the filters at each stage. A diagram of the application’s topology is shown
in Figure 2.1. This application will serve as a running example for other pieces of user-
generated code in the sections that follow.
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Figure 2.1: Diagram showing the DFG of the MERCATOR filtering application named LinearPipe
described in the text. Note the existence of multiple SINK nodes.

2.2 System feedback

Based on the user’s initial input, the MERCATOR system will generate and return CUDA
code of two types: system infrastructure code and module function headers.

The system infrastructure code is not intended to be modified by the user, but along with the
user’s function definitions, it constitutes an essential part of the MERCATOR application
to be integrated into the user’s final program code.

Module function headers

MERCATOR provides a set of module function headers written in CUDA that implicitly
contain the user’s interface to the MERCATOR infrastructure code. One header is produced
for each module type, and the function bodies are to be filled in by the user. The details of

18



writing function definitions are presented in the next section. Module function headers have
the following format:

void run (

<input-type> inputItem,

<instance-type>* node)

Explanation:

<input-type> : type of elements in module’s input stream; determined by module
specification previously given by the user.

<instance-type> : type of the current node being executed.

node : the current node being executed; used for API function calls in module defini-
tion.

Since MERCATOR’s scheduling strategy involves firing multiple instances of the same
module simultaneously, the <instance-type> as well as the inputItem may vary
across threads executing the same function call.

2.3 Full program

2.3.1 Module run function definitions

If there are more threads present on the GPU device than there are items to be operated
on, MERCATOR ensures that the “extra” threads do not execute the run() function call.
This ensures that each thread that executes the function will have a valid input item passed
in through the inputItem parameter; however, it also implies that to avoid undefined be-
havior, module definitions must be written with no CUDA synchronization calls such as
__syncthreads().
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The remaining paragraphs in this section describe MERCATOR API functions accessible to
the user inside run() functions.

Accessing user-defined parameter data

Within the run() function, users may access parameter data using the following API function
calls:

• Application level: get_myAppData()

• Module type level: this->get_myModuleData()

• Module type level: this->get_myNodeData(node)

Writing output

Output may be written from within the run() function using the following API call:

node->push(item, Out::streamName)

where item is the output item to be written, and streamName is the name given to the
desired output stream by the user in the initial input specification. Here we reiterate that
although many threads may be writing to the same output stream, no synchronization code
should be included in the run() function; MERCATOR’s system code ensures the integrity
of the output streams.

Multiple threads per input element

When multiple threads are assigned to each input element (as dictated by the <elements>:<threads>
ratio in the module type input specification), the following API call may be used to access
a thread’s offset relative to all threads assigned to the same input element:

myOffset(threadIdx.x)

20



This call will return an int, which can be used to process the appropriate partition of a
shared input. For example, if many threads are assigned the same input string of which
they are intended to process consecutive substrings, each thread may find its starting point
relative to the input string with a call to myOffset .

Multiple output elements per input element

When multiple output elements may be written to an output stream for each input consumed,
either by a single thread or in the case of multiple threads per input element, an output slot
within the output stream must be specified for each push operation. This is done with an
(optional) third parameter to the function, so that the function call will be of the following
form:

node->push(item, Out::streamName, slotIdx)

where slotIdx is the desired slot within the output stream relative to all possible outputs
generated by the current input.

For example, if each thread writes four outputs to the same stream during each run()

function execution, those four writes may take the following form:

node->push(item, Out::streamName, 0) // the ’0’ parameter is optional

node->push(item, Out::streamName, 1)

node->push(item, Out::streamName, 2)

node->push(item, Out::streamName, 3)

In the case of multiple threads being assigned to the same input element, the myOffset

function may be used to specify an output slot. For example, if multiple threads are assigned
to the same input element and each thread writes a single output during each run() function
execution, that write may take the following form:

node->push(item, Out::streamName, myOffset(threadIdx.x))
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One possible set of function definitions for the headers produced for the LinearPipe appli-
cation from the input specifications shown in Listing 1 is shown in Listing 2.

2.3.2 Application data I/O

The MERCATOR infrastructure code and the user’s module definitions may be incorporated
into a host-side driver file via a single #include of the module header file. The resulting
CUDA code may be submitted to any CUDA compiler (e.g., nvcc) for compilation and
subsequently executed using any CUDA runtime.

We now turn to the portions of the MERCATOR user interface that reside on the CPU.
We begin with the data interface between user code and the MERCATOR application.
MERCATOR provides special input and output buffer types to manage host-device data
transfers, and it is these buffers with which user code interacts to move data into and out of
MERCATOR. These buffer types are parameterized by the type of data they hold.

Input buffers

Input buffers are created with a capacity and, optionally, with an initial data set; the API
signature for the input buffer constructor is the following:

InputBuffer<io-type>(int capacity, io-type* inputElements)

where inputElements is an optional parameter.

This data set must have been allocated using CUDA’s “Managed Memory”– i.e., with a call
to cudaMallocManaged() rather than the usual cudaMalloc()– so that the data will be
accessible on both host and device. If the initial data set is not provided, elements must be
added to the buffer one at a time using the API member call add(nextElement).
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Figure 2.2: Diagram showing the LinearPipe DFG as well as its data interface with the host via
input and output buffers.

Output buffers

Output buffers are created with a capacity; the API for the output buffer constructor is the
following:

OutputBuffer<io-type>(int capacity)

Data elements may be retrieved from an output buffer one at a time with the API member
call get() , which pops an item off the output buffer and returns it.

A diagram of the LinearPipe application along with its associated input and output buffers
is shown in Figure 2.2.
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2.3.3 MERCATOR application hooks

To set up and run the MERCATOR application from the user’s host-side program, a host-
side class called App in the Mercator namespace is provided, and API member calls on an
object of this class perform the necessary operations.

Setup and buffer/node association

In order to connect the buffers to the appropriate data entry/exit points of the MERCATOR
application– i.e., the appropriate SOURCE and SINK nodes– the user must specify which buffer
gets associated with which node. This is done with an API call that takes the relevant node
names and buffer objects as parameters. For the (single) input buffer, only a single name
and a single buffer object pointer must be provided; in the case of the (possibly multiple)
output buffers, a C++ STL vector of names and a vector of buffer object pointers is required.
The format of the API member call to associate buffers with SOURCE/SINK nodes, then, is
the following:

setup(inBuffer, sourceNodeName, outBufferVec, sinkNodeNameVec)

where inBuffer is a pointer to an InputBuffer object, sourceNodeName is the name (as a
string) of the source node, and outBufferVec and sinkNodeNameVec are parallel vectors
containing at each index an output buffer pointer and the name of a sink node that should
be paired.

In addition to creating the buffer/node associations, this function initializes all necessary
data structures on the GPU device. It is a blocking function call, so that when it returns,
all GPU kernel calls have been completed and the MERCATOR application is primed for
execution.
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Figure 2.3: Diagram showing the LinearPipe DFG and its interface with host-side code and data,
including I/O buffers and user-defined parameter data accessible from within the modules’ run()
functions. Two of the program’s output buffers have been omitted for clarity.

Running the MERCATOR application

Once input and output buffers have been created, the input buffer has been initialized with
data, and buffers have been associated with nodes using the setup() function call on the
Mercator::App object, the MERCATOR application may be run from a user program with
the API member call run(). This blocking function call encapsulates the entire execution
of the MERCATOR application, so that when it returns, the input buffer will be empty and
the output buffers will contain all program outputs assuming an error-free execution on the
GPU device.

Once the application has been run, data may be gathered from the output buffers using the
API calls described above.

The relevant parts of the user program for the LinearPipe application are shown in Listing 3,
and a diagram showing the full program layout is shown in Figure 2.3.
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2.3.4 Restrictions

The following restrictions on incorporating MERCATOR applications into user programs
currently exist, though we plan to eliminate them in future versions of the system:

• Single MERCATOR app: Only a single MERCATOR application may be invoked from
a single user program.

• Single-batch execution: All input and output buffers must fit into the GPU card’s
global memory simultaneously; multiple rounds of execution and I/O copying are not
supported.

A Appendix: example application code

We show here all code required to create a simple filtering application in MERCATOR and
access it from a user program.

A.1 Initial input specifications

Listing 1 shows the set of input specifications for the application.

Listing 1: Input specification for the "LinearPipe" MERCATOR application. The application
contains 2 module types in addition to the SOURCE type and a single SINK type, and consists of a
linear pipeline with shunts to SINK nodes off of each node in the pipeline.

/∗∗∗ App−l e v e l data type . ∗∗∗/
#pragma mtr appdata FilterAppData

/∗∗∗ Module ( i . e . , module type ) spec s . ∗∗∗/

// F i l t e r 1
// Note the user−de f ined parameter data o f type " F i l t e r 1 S t a t e "
#pragma mtr module F i l t e r 1 <F i l t e r 1S t a t e > (
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i n t [ 1 0 ] −> accept<int >: ?4 , r e j e c t <int >: ?4 | 1 : 1 )

// F i l t e r 2
#pragma mtr module F i l t e r 2 (

i n t [ 1 0 ] −> accept<int >: ?4 , r e j e c t <int >: ?4 | 1 : 4 )

// SOURCE Module
#pragma mtr module SOURCE<int>

// SINK Module
#pragma mtr module SINK<int>

/∗∗∗ Node ( i . e . , module i n s t anc e ) spec s . ∗∗∗/
#pragma mtr node sourceNode : SOURCE
#pragma mtr node Fi lter1_node : F i l t e r 1

// Note the user−de f ined parameter data o f type " F i l t e r 2Thre sho ldS t ruc t "
#pragma mtr node Filter2_node<Fi l t e r2Thre sho ldSt ruc t> : F i l t e r 2
#pragma mtr node s inkNodeReject1 : SINK<int>
#pragma mtr node s inkNodeReject2 : SINK<int>
#pragma mtr node sinkNodeAccept : SINK<int>

/∗∗∗ Edge specs . ∗∗∗/

// SOURCE −> F i l t e r 1
#pragma mtr edge sourceNode : : outStream −> Filter1_node

// F i l t e r 1 −> F i l t e r 2
#pragma mtr edge Fi lter1_node : : accept −> Filter2_node

// F i l t e r 1 −> Rejec t s
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#pragma mtr edge Fi lter1_node : : r e j e c t −> sinkNodeReject1

// F i l t e r 2 −> SINK
#pragma mtr edge Fi lter2_node : : accept −> sinkNodeAccept

// F i l t e r 2 −> Rejec t s
#pragma mtr edge Fi lter2_node : : r e j e c t −> sinkNodeReject2

A.2 Module type definitions

Example module type definitions are shown in Listing 2.

Listing 2: Two sample module function bodies for the module types defined in Listing 1. Filter1
conditionally writes four values either to the “accept” output stream or the “reject” output stream;
note its use of Filter1’s parameter data, the global application parameter data, and the use of slot
indices in the last parameter of the push() function. Filter2 conditionally writes a single element
to the accept or reject stream. Note its use of the myOffset() function to assign output to the
correct slot, since more than one thread is given the same input.

//// module F i l t e r 1 <UserDataExt>( i n t [ 1 0 ] −> accept<int> : ?4 , r e j e c t <int >: ?4 | 1 : 1)
__device__
void TestApp : : DerivedModule_Filter1 : : run ( int inputItem ,

Mercator : : ModuleInstance<int , DerivedModule_Filter1>∗ node )
{

int stateNum = get_myModuleData()−>stateNum ;
i f ( stateNum < 6) {
int s c a l e r = get_myAppData()−>s c a l e ;
int outputItem = inputItem ∗ s c a l e r ;
node−>push ( outputItem , Out : : accept , 0 ) ; // 0−param i s op t i ona l
node−>push ( outputItem + 1 , Out : : accept , 1 ) ;
node−>push ( outputItem + 2 , Out : : accept , 2 ) ;
node−>push ( outputItem + 3 , Out : : accept , 3 ) ;

}
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else {
node−>push ( inputItem , Out : : r e j e c t , 0 ) ;
node−>push ( inputItem + 1 , Out : : r e j e c t , 1 ) ;
node−>push ( inputItem + 2 , Out : : r e j e c t , 2 ) ;
node−>push ( inputItem + 3 , Out : : r e j e c t , 3 ) ;

}
}

//// module F i l t e r 2 ( i n t [ 1 0 ] −> accept<int >: ?4 , r e j e c t <int >: ?4 | 1 : 4)
__device__
void TestApp : : DerivedModule_Filter2 : : run ( int inputItem ,
Mercator : : ModuleInstance<int , DerivedModule_Filter2>∗ node )

{
i f ( inputItem < get_myNodeData ( node)−>thresh )

node−>push ( inputItem , Out : : accept , myOffset ( threadIdx . x ) ) ;
else

node−>push ( inputItem , Out : : r e j e c t , myOffset ( threadIdx . x ) ) ;
}

A.3 Driver code

Driver code for a user program that invokes the LinearPipe application is shown in Listing 3.

Listing 3: User code that creates MERCATOR I/O buffers, fills the input buffers with consecutive
integers, initializes and invokes the "LinearPipe" application, and reads the results from the output
buffers.

/∗∗
∗ User program tha t ac t s as t e s t harness
∗ f o r MERCATOR f i l t e r i n g a p p l i c a t i o n "LinearPipe ."
∗
∗/

#inc lude <iostream>
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#inc lude " user Input /TestApp . cuh" // headers f o r module run () f cns
#inc lude " system_headers . cuh" // o ther MERCATOR system headers

int main ( )
{

////// s e t up input b u f f e r
const int IN_BUFFER_CAPACITY = 128 ;

int∗ inBuf ferData ;
cudaMallocManaged(&inBufferData ,

IN_BUFFER_CAPACITY ∗ s izeof ( int ) ) ;
Mercator : : IO : : InputBuf fer<int>∗ i nBu f f e r =
new Mercator : : IO : : InputBuf fer<int>(inBufferData ,

IN_BUFFER_CAPACITY) ;

std : : s t r i n g sourceNodeName = "sourceNode" ;

////// s e t up output b u f f e r s
std : : vector<Mercator : : IO : : Buf ferBase∗> outBufferVec ;
std : : vector<std : : s t r i ng> sinkNodeNameVec ;

// output b u f f e r s accommodates 4 ou tpu t s / input
const int OUT_BUFFER_CAPACITY1 = 4 ∗ IN_BUFFER_CAPACITY;
const int OUT_BUFFER_CAPACITY2 = 4 ∗ OUT_BUFFER_CAPACITY1;
Mercator : : IO : : OutputBuffer<int>∗ outBuf f e r1 =
new Mercator : : IO : : OutputBuffer<int>(OUT_BUFFER_CAPACITY1) ;

outBufferVec . push_back ( outBuf f e r1 ) ;
s td : : s t r i n g sinkNodeName1 = " sinkNodeReject1 " ;
sinkNodeNameVec . push_back ( sinkNodeName1 ) ;

Mercator : : IO : : OutputBuffer<int>∗ outBuf f e r2 =
new Mercator : : IO : : OutputBuffer<int>(OUT_BUFFER_CAPACITY2) ;
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outBufferVec . push_back ( outBuf f e r2 ) ;
s td : : s t r i n g sinkNodeName2 = " sinkNodeReject2 " ;
sinkNodeNameVec . push_back ( sinkNodeName2 ) ;

Mercator : : IO : : OutputBuffer<int>∗ outBuf f e r3 =
new Mercator : : IO : : OutputBuffer<int>(OUT_BUFFER_CAPACITY2) ;

outBufferVec . push_back ( outBuf f e r3 ) ;
s td : : s t r i n g sinkNodeName3 = "sinkNodeAccept" ;
sinkNodeNameVec . push_back ( sinkNodeName3 ) ;

////// f i l l input b u f f e r
for ( int i =0; i < IN_BUFFER_CAPACITY; ++i )

inBuf f e r−>add ( i ) ;

////// c rea t e app o b j e c t
Mercator : : App∗ LinearPipe = new Mercator : : App ( ) ;

////// s e t node−, module−, app− l e v e l user data
FilterAppData∗ ful lAppData = new FilterAppData ( ) ;
LinearPipe−>set_fullAppUserData ( ful lAppData ) ;

F i l t e r 1 S t a t e ∗ f i l t e r 1 d a t a = new F i l t e r 1 S t a t e ( ) ;
LinearPipe−>set_moduleTypeUserData ( " F i l t e r 1 " , f i l t e r 1 d a t a ) ;

F i l t e r 2Thre sho ldS t ruc t ∗ f i l t e r 2nodeData =
new Fi l t e r 2Thre sho ldS t ruc t ( 4 ) ;

LinearPipe−>set_moduleInstUserData ( "Fi lter2_node " , f i l t e r 2nodeData ) ;

////// i n i t i a l i z e app o b j e c t
LinearPipe−>setup ( inBuf f e r , sourceNodeName ,

outBufferVec , sinkNodeNameVec ) ;
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////// run main func t i on
LinearPipe−>run ( ) ;

////// p r i n t con ten t s o f output b u f f e r s
outBuf fer1−>pr in t ( ) ;
outBuf fer2−>pr in t ( ) ;
outBuf fer3−>pr in t ( ) ;

cudaFree ( inBuf ferData ) ;
return 0 ;

}
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