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Abstract

Lung transplantation is the method of choice for the treatment of end-stage
pulmonary diseases. A limited donor supply has dramatically increased the waiting
time for transplant recipients. Approximately 4000 patients are currently on the
transplant waiting list. Unfortunately, up to 10-20% of these patients will die
from their underlying lung disease before an organ becomes available. Currently,
only 10-20% of cadaveric donor organs offered for transplantation are judged to
be acceptable under the current selection criteria. Of the donor lungs selected for
transplantation, 15-30% of them fail due to primary graft dysfunction (PGD). PGD
is a severe allograft ischemia-reperfusion (I/R) injury syndrome occurring in the
hours following transplantation. It significantly affects morbidity as well as early
and late mortality. This has resulted in an intense pressure to search for alternative
selection criteria for selecting suitable donor lungs. In this study, we attempt to
further our understanding of the gene products involved in PGD by observing the
changes in gene expression across donor lungs that developed PGD versus those
that did not. Owur second goal is to use a machine learning technique - support
vector machine, to distinguish donor lungs suitable for transplantation versus those
that are not, based on the gene expression data. Results from microarray analysis
produced a set of differentially expressed transcripts that were involved in signalling
and apoptosis pathways. Various transcripts particular to stress-sensitive pathways
were also identified. Results also indicate that the metallothionein gene, specifically
metallothionein 3, may protect donor lungs from developing PGD. A classification
accuracy of 70% was achieved, when a set of 100 differentially expressed transcripts
was used to differentiate unsuitable donor lungs from suitable ones. This is the first
such attempt to combine the identification of a molecular signature for PGD, using
human samples, with machine learning methods for class (donor lung) prediction.

Introduction a major shortage of donor organs and the in-

cidence of primary graft dysfunction (PGD).
Lung transplantation has gained widespread PGD is a severe allograft ischemia-reperfusion
acceptance for the treatment of end-stage pul- (I/R) injury syndrome occurring in the hours
monary diseases. However, two significant following transplantation. It significantly af-

problems in clinical lung transplantation are



fects morbidity as well as early and late mor-
tality. Improvements in operative techniques,
donor management, and immunosuppressive
protocols have decreased perioperative mortal-
ity to below 10% at most experienced lung
transplant centers [1, 2]. The one- and five-
year survival rates have improved to 76% and
49%, respectively [1]. These results, however,
continue to lag behind those achieved for other
solid organ transplants. The occurrence of
PGD after lung transplantation significantly
increases the duration of mechanical ventila-
tion, hospital length of stay and short-term
mortality after lung transplantation [3]. Sur-
vivors of PGD have a significantly protracted
recovery with impaired physical function up to
one year after transplantation and an increased
risk of death extending beyond the first year
after transplantation [3, 4].

The current criteria used to evaluate po-
tential donor lungs appear to be inadequate
at predicting how these lungs will function
post-transplantation [5, 6, 7]. Donor organs
are evaluated for lung transplantation on the
basis of criteria that are primarily histori-
cally founded and largely arbitrary [8]. Rel-
atively crude measures of lung function such
as chest radiography, arterial oxygen tension
on blood gases, and bronchoscopy are cur-
rently used to assess the quality of poten-
tial donor lungs. That these tools are inad-
equate in evaluating organs from prospective
donors is evidenced by two recent develop-
ments. First, the liberalisation of the selec-
tion criteria and the use of ‘marginal’ donor
lungs by many centers have not had a nega-
tive impact on outcome after transplantation
[9, 10, 11]. A recent study showed no signif-
icant difference in a number of indices for in-
fection and inflammation between donor lungs
that were accepted and rejected for transplan-
tation [7]. Second, the incidence of PGD or
I/R injury, after transplantation remains un-
changed at 10-20% despite the increased use of
marginal donor lungs and improvements in all
areas of lung transplantation [2, 4, 12]. The
use of marginal donor lungs, extended graft
cold ischemic times, recipient pathophysiology

and current donor selection criteria have shown
no correlation with the occurrence of PGD in
most cases [13, 14, 15, 16, 17].

A limited donor supply has dramatically
increased the waiting time for transplant recip-
ients. Approximately 4,000 patients are cur-
rently on the transplant waiting list and this
has resulted in intense pressure to search for
alternative strategies. Unfortunately, up to
10-20% of these patients on the waiting list
will die from their underlying lung disease be-
fore an organ becomes available. Currently,
only 10-20% of cadaveric donor organs offered
for transplantation are judged to be acceptable
under the current selection criteria [18]. More
biologically meaningful donor selection criteria
may result in significant expansion of the num-
ber of lungs accepted from this potential donor
pool [5].

The results of the above mentioned stud-
ies suggest that there may be complex, oc-
cult biological factors present in donor lungs
which contribute to the development of PGD
that are not detected by the current donor or-
gan evaluation. Gene expression profiling is
a powerful, high-performance tool of molec-
ular biology that allows the analysis of the
levels of expression of thousands of genes si-
multaneously. It has been previously used to
study some transcripts involved in I/R using
a rat model, but the study did not differenti-
ate the suitable lungs from the unsuitable [19].
Therefore, this is the first report, according to
our knowledge, where gene expression profiling
has been used on human samples, along with
the application of machine learning techniques
to automatically distinguish unsuitable donor
lungs from suitable donor lungs.

Our objective is two fold - the first is to
obtain a set of genes involved in PGD and
identify new gene products relevant to allograft
transplantation; and the second is to use this
set of genes for classification of donor lungs
into PGD positive (i.e. lungs that develop
PGD) or PGD negative (i.e. lungs that do not
develop PGD) categories. The first objective
would provide greater insights into the mecha-
nism of PGD as well as extend the work of [19].



The set of genes identified as being involved
in PGD can be designated as the ‘molecular
signature’ of PGD. As many donor lungs that
may be actually good are discarded by the cur-
rent selection criteria employed by physicians,
it would be useful to classify unseen donor
lungs, using the molecular signature coupled
with machine learning techniques, thereby in-
creasing the possibility of having more avail-
able lungs for transplantation. This is the mo-
tivation behind our second objective.

Results and Discussion

The characteristics of the donor lungs are de-
picted in Table 1. The operative factors and
the characteristics of the patients who have
been identified with PGD versus those that
have not, are shown in Table 2 and Table 3,
respectively.

Pathways and gene products involved
in PGD

First, the upregulated transcripts were anal-
ysed using the Ingenuity Pathway Analysis
(IPA) software. There were 23 upregulated
transcripts, of which 13 were focus genes. Fo-
cus genes are the genes that map onto the Inge-
nuity Pathways Knowledge Base (IPKB). The
network generated from these genes are shown
in Figure 1.

Network 1 primarily centres around tu-
mor protein p53 (TP53). The focus genes are
shown in red coloured shapes and more de-
tails on these nodes are given in Table 4. Fig-
ure 2 shows the location of the different gene
products and the canonical pathways present
in Network 1. The legend for the network is
shown in Figure 7.

It is natural to expect many pathways re-
lated to apoptosis and cell signalling as over
50% of the donor lungs (PGD positive and
PGD negative) were involved in some kind of
trauma. Interestingly, a few transcripts iden-
tified are also cancer related genes. There is
growing evidence of genetic parallels between
lung development and several types of cancer

[20, 21]. The authors of [22] have shown that
Wnt signalling, cell cycle, and apoptosis path-
ways play important roles in lung development.
We also have noticed an increased presence of
genes in these pathways in our study (Figure
2).

Next, we analysed the 42 downregulated
transcripts using IPA, and obtained 11 focus
genes. The network created from these 11
genes is shown in Figure 3.

Network 2 shows a lot of activity around
(-5 integrin (ITGB5) and GRB2-associated
binding protein 2 (GAB2). The focus genes
are shown in green coloured shapes and further
description of these nodes are given in Table
5. Figure 4 shows the location of the differ-
ent gene products and the canonical pathways
present in Network 2. The legend for the net-
work is shown in Figure 7.

Again, we observe similar pathways, as
the ones present in Network 1, in Network 2.
This is to be expected because a pathway can
consist of up and downregulated genes.

Both the networks show the presence of
nuclear factor-kB (NF-kB), stress-activated
protein kinases /N Hj-terminal Jun kinase
(SAPK/JNK) and p38 mitogen-activated pro-
tein kinase (MAPK) signalling pathways. NF-
kB plays a vital role in mediating immune
and inflammatory responses, and apoptosis.
It regulates the expression of a large num-
ber of genes. Many of the gene products
regulated by NF-kB in turn activate NF-
kB, such as vascular endothelial growth fac-
tor (VEGF), and receptor for advanced gly-
cation end product (RAGE). Activation of
NF-kB involves the phosphorylation-induced,
proteasome-mediated degradation of the in-
hibitory subunit - inhibitory protein xB. This
protein is phosphorylated by an upstream ser-
ine kinase, which, in turn is phosphorylated
and activated by additional upstream serine
kinases. SAPK/JNK are members of the su-
perfamily of MAP serine/threonine protein ki-
nases. This family also includes p38 MAP ki-
nases (p38 MAPK) and extracellular signal-
related kinases (ERK) [23]. JNK/SAPK and
p38 MAPK are known as stress-activated ki-



Table 1: Clinical donor characteristics

Characteristics PGD (n=T7) No PGD (n=24) p value
Age (years) 26.6 £+ 8.9 24.0 £ 9.8 0.53
PaO2 (mm Hg) 106.7 £ 805 149.7 £ 80.0 0.17
Smoking history (pack-years) 1.5 + 2.07 2.9 + 6.32 0.59
Gender 1% M, 29% F 83% M, 17% F 0.78
Cause of death 57% Trauma, 43% NonTr | 75% Trauma, 25% NonTr 0.66
Chest X-ray (CXR) 57% Abnl, 43% NI 33% Abnl, 66% NI 0.52

Table 2: Operative factors

Factors PGD (n=7) No PGD (n=24) p value
Recipient Diagnosis 28.5% COPD, 28.5% CF, 43% Other | 33% COPD, 33% CF, 33% Other 0.98
First lung ischemic time (min) 208 + 44 240 £ 51 0.18
Second lung ischemic time (min) 330 + 72 321 + 51 0.69
Cardiopulmonary bypass (CPB) 72% 17% 0.02

Table 3: Outcomes of the patients with PGD and without PGD

Outcome PGD (n=7) | No PGD (n=24) | p value
Days on ventilator 9.7 £ 11.7 2.0 £3.7 0.01
ICU stay (days) 11.3 £ 12.6 2.9 £ 3.6 0.006
Total length of stay (days) 20.3 + 13 13.4 + 8.1 0.09
Perioperative Mortality 28.5% 0% 0.02
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Figure 1: Network 1 - upregulated genes in PGD. This network primarily centres around tumor protein p53
(TP53). The focus genes are shown in red coloured shapes. Further details on the focus genes are provided
in Table 4. The legend for this figure is Figure 7
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Figure 2: Network 1 with the canonical pathways overlaid. The focus genes are shown in red coloured
shapes. The location of the different gene products are also depicted. Further details on the focus genes are
provided in Table 4. The legend for this figure is Figure 7



Table 4: Description of the upregulated transcripts from our DE list present in Network 1

Symbol Gene Name Canonical Pathways Role in Cell and diseases associ-

ated with

TP53 tumor protein p53 Apoptosis Signalling, Cell Cycle: G1/S | apoptosis, growth, cell cycle progres-

Checkpoint Regulation, Cell Cycle: | sion, cell death, proliferation, G1 phase,

G2/M DNA Damage Checkpoint | transformation, senescence, G2 phase,

Regulation, Hypoxia Signalling in the | quantity Disease: cancer, neopla-

Cardiovascular System, PI3K/AKT | sia, tumorigenesis, lymphoid cancer,

Signalling, SAPK/JNK Signalling, | lung cancer, head and neck cancer,

Wnt/B-catenin Signalling breast cancer, brain cancer, squamous-
cell carcinoma, metastasis, skin cancer,
lymphomagenesis, Li-Fraumeni syn-
drome, liver cancer, hyperplasia, lung
neoplasm, breast carcinoma, brain neo-
plasm, non-small cell lung cancer, dys-
plasia, etc.

IFI16 ~y-interferon in- | unknown differentiation, apoptosis, proliferation,
ducible protein cell cycle progression, contact growth
16 inhibition, morphology, accumulation,

DNA damage response, G1/S phase
transition, senescence

TRIO triple functional | unknown invasiveness, transformation, tumori-
domain  (PTPRF genicity, morphology, reorganisation
interacting)

CFTR cystic fibrosis | unknown binding, communication, whole-cell
transmembrane conductance, quantity, regulatory vol-
conductance regu- ume decrease, size, acidification, forma-
lator, ATP-binding tion Disease: hepatic system disorder,
cassette inflammation, HIV infection, cystic fi-

brosis
LMNB1 lamin B1 unknown apoptosis, disassembly, formation

SOS1 son of seven- | B Cell Receptor Signalling, EGF | transformation, growth, proliferation,
less homolog 1 | Signalling, ERK/MAPK Signalling, | morphology, invasion, ruffling, break-
(Drosophila) Estrogen Receptor Signalling, FGF | down, maturation, reorganization, dif-

Signalling, IGF-1 Signalling, IL-2 | ferentiation Disease: tumorigenesis,
Signalling, IL-4 Signalling, IL-6 Sig- | infection
nalling, Insulin Receptor Signalling,
Integrin Signalling, Natural Killer
Cell Signalling, Neuregulin Signalling,
Neurotrophin/Trk Signalling, PDGF
Signalling, PI3K/AKT Signalling,
PPAR Signalling, PTEN Signalling,
SAPK/JNK Signalling, T Cell Recep-
tor Signalling, TGF-&beta; Signalling,
VEGF Signalling
DONSON | downstream neigh- | unknown unknown
bor of SON
SLC27A2 | solute carrier fam- | Fatty acid metabolism unknown
ily 27 (fatty acid
transporter)

RNF19 ring finger protein | unknown biogenesis, cell death, quantity
19

NRP2 neuropilin 2 unknown chemorepulsion, fasciculation, penetra-

tion, guidance, development, collapse,
innervation, defasciculation. Disease:
hemorrhage

ABCA1 ATP-binding cas- | unknown binding, quantity, phagocytosis, en-
sette, sub-family A gulfment, apoptosis, uptake, depletion
(ABC1) Disease: tangier disease, atheroscle-

rosis, microhemorrhage, cerebral amy-
loid angiopathy, hemorrhage, coro-
nary artery disease, membranoprolifer-
ative glomerulonephritis, primary hy-
poalphalipoproteinemia

XPOT7 exportin 7 unknown unknown

MT3 metallothionein unknown cell death, damage, inhibition, prolifer-

3  (growth in-
hibitory factor
(neurotrophic))

ation, growth Disease: limbic seizure,
hypoxia, breast cancer
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Figure 3: Network 2 - downregulated genes in PGD. This network shows a lot of activity around 3-5 inte-
grin (ITGB5) and GRB2-associated binding protein 2 (GAB2). The focus genes are shown in green coloured
shapes. Further details on the focus genes are provided in Table 5. The legend for this figure is Figure 7
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Figure 4: Network 2 with the canonical pathways overlaid. The focus genes are shown in green coloured
shapes. The location of the different gene products are also depicted. Further details on the focus genes are
provided in Table 5. The legend for this figure is Figure 7
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Table 5: Description of the downregulated transcripts from our DE list present in Network 2

Symbol Gene Name Canonical Pathways Role in Cell and diseases associ-
ated with
ITGB5 (-5 integrin Integrin Signalling binding, migration, adhesion, invasion,

cell spreading, internalization, killing,
cell death, outgrowth, anoikis Dis-
ease: tumorigenesis, melanoma, acute
myeloid leukemia, glioblastoma multi-
forme, prostatic carcinoma

GAB2 GRB2-associated

binding protein 2 Signalling

B Cell Receptor Signalling, PI3K/AKT | proliferation, growth, differentiation,

degranulation, phagocytosis, survival,
adhesion, size, quantity, apoptosis Dis-
ease: systemic anaphylaxis, passive cu-
taneous anaphylaxis

STAMBP | STAM binding pro- | unknown

tein

apoptosis, cytostasis, proliferation, sur-
vival, cell death

BANP BTG3 associated | unknown
nuclear protein

cell cycle progression

P4HA1 procollagen-
proline, 2-
oxoglutarate
4-dioxygenase (pro-
line 4-hydroxylase),
alpha polypeptide I

Arginine and Proline Metabolism

unknown

RPLP2 ribosomal protein, | unknown

large, P2

unknown

HRASLS3 | HRAS-like suppres- | unknown
sor 3

colony formation, apoptosis, prolifera-
tion Disease: tumorigenesis

RPL36A

ribosomal protein | unknown

L36a

unknown

nases, and are responsive to numerous exoge-
nous and endogenous stress-inducing stimuli,
such as reactive oxygen species (ROS), oxida-
tive stress, osmotic stress, proinflammatory cy-
tokines, heat shock, and ultraviolet irradiation.
Oxidative stress is defined as a persistent im-
balance between the production of highly re-
active molecular species (primarily oxygen and
nitrogen) and antioxidant defences, finally re-
sulting in tissue damage. There is evidence
in literature that NF-xB, SAPK/JNK and p38
MAPK signalling pathways are stress-sensitive
intracellular signalling systems, activation of
which results in the increased expression of nu-
merous gene products that cause cellular dam-
age [24].

Gene products associated with stress-
activated pathways emerged from both our
study as well as the study in the rat model for
ischemia-reperfusion injury [19]. As the exper-
imental protocol, and animal model are differ-
ent, one would not expect too much of an over-
lap. As suggested by the recent articles in Na-
ture Biotechnology by the MicroArray Quality

Control (MAQC) project [25], it is better to fo-
cus on pathways and broad functional relation-
ships, rather than on individual genes. They
state that ‘even under the best circumstances,
gene lists will still differ somewhat from per-
son to person and place to place’. In our work,
we have observed a good deal of overlap in the
functional categories / pathways of the identi-
fied transcripts. As not all animal model stud-
ies translate well into human analysis, our in-
vestigation takes the study performed by [19]
a step further by performing the analysis on
human samples and showing consensus.

An exciting observation was that the met-
allothionein family of gene products was iden-
tified as being upregulated in both studies. We
use the results from [19] and one can observe
the expression level of metallothionein in mi-
croarray and RT-PCR in Figure 5. As can be
seen, the levels of expression are much lower in
microarray. However, RT-PCR confirms that
it does have an increased expression. Hence,
the rat study as well as ours do confirm the
elevated expression of metallothionein.
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Figure 5: Metallothionein expression in microarray vs. RT-PCR in the rat study [19]. The level
of expression of metallothionein is increased when verified by RT-PCR. This confirms that metal-

lothionein does get upregulated.

In order to further study metallothionein,
we extracted the metallotheionein 3 (MT3)
pathway from Network 1. The MT3 pathway
is shown in Figure 6.

Though the exact function of MT3 is not
well known, there are a few studies that have
explained the possible roles of metallothionein.
A recent study has shown that metalloth-
ioneins have positive effects during the early
phase of islet transplantation [26]. Another
study has shown that the metallothionein gene
is upregulated in wound margins particularly
in regions of high mitotic activity [27]. These
observations reflect its role in promoting cell
proliferation and reepithelialiation. Further-
more, selected growth factors may modulate
metallothionein gene expression and hence, the
ability of cells to proliferate [27]. As can be
seen from Figure 6, M'T3 is connected to NF-
kB1. In human fibroblasts, NF-xB protein
consisting of p50 [NFKB1]| and of p65 v-rel
reticuloendotheliosis viral oncogene homolog A
(RELA) increases expression of human MT3
mRNA. We already have discussed the impor-

tance of NF-kB in immune and inflammatory
responses pathways. There is also an indi-
rect relationship between MT3 and epidermal
growth factor (EGF). EGF is involved in EGF
signalling, ephrin receptor signalling, neureg-
ulin signalling, and NF-xB signalling. EGF’s
role in the cell is proliferation, migration, mito-
genesis, apoptosis, growth, chemotaxis, trans-
formation, stimulation, S phase, and differen-
tiation. All this information on MT3 indicates
that it is a valuable gene associated with PGD
and needs to be analysed in more detail. The
overexpression of metallothionein may protect
the lung graft from PGD. We feel that this
is one of the most important insights into the
mechanism of PGD.

Classification of donor lungs using
SVM

The set of 100 ranked transcripts, obtained
using RankGene, was used for the classifica-
tion of donor lungs into PGD positive and
PGD negative classes by SVM. The classifica-
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Figure 6: Network 3 - Metallothionein pathway. In human fibroblasts, NF-xB protein consisting
of p50 [NFKB1] and of p65 v-rel reticuloendotheliosis viral oncogene homolog A (RELA) increases
expression of human MT3 mRNA. The overexpression of metallothionein may protect the lung
graft from PGD. The legend for this figure is Figure 7
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tion accuracy of SVM in differentiating the two
classes was 70%. This indicates that this set
of transcripts does play a vital role in distin-
guishing unsuitable and suitable donor lungs.
The SVM did better at identifying the
suitable lungs (i.e. low false negative). Con-
sidering that the motivation behind using ma-
chine learning for the selection of suitable
donor lungs was to detect those that otherwise
would have been discarded, this observation is
promising. The unsuitable donor lungs were
more often misclassified and this can be at-
tributed to the fact that there were very few
unsuitable donor lungs in the dataset (16 un-
suitable lungs versus 34 suitable lungs) and
subsequently, an even smaller number in the
training set. Furthermore, our dataset had
been pre-selected by physicians based on clin-
ical criteria. Hence, the dataset did not have
truly unsuitable donor lungs, i.e., lungs consid-
ered unsuitable by clinical criteria. Obviously,
certain lungs that passed the selection criteria,
developed PGD. In essence, these were lungs
that seemed to be good by the current clini-
cal criteria. Hence, the gene expression pat-
terns of the unsuitable donor lungs are very
similar to the patterns of suitable lungs.
fact, when the gene expression values of the
DE transcripts were compared between PGD
positive and PGD negative lungs, the differ-
ence was marginal. These observations are not
surprising as both sets of lungs were consid-
ered suitable by clinical criteria, and there-
fore the difference between them would be very
minimal. After all, the lung transplant centre
at Washington University, Saint Louis, is the
largest in the world and also considered as one
of the best in the United States of America.
The SVM had difficulty in recognising
some unsuitable donor lungs as it was not be-
ing trained on the gene expression pattern of
a large number of unsuitable donor lungs, or,
for that matter, on a large number of truly un-
suitable donor lungs. Given the fact that we
had only 50 samples, in which we did not have
truly unsuitable lungs, the classification per-
formance is good. Increasing the sample size
in both categories would lead to a more accu-

In
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rate and possibly larger set of DE transcript
involved in PGD, as well as improved classifi-
cation results.

As the differences at the macroscopic
level between PGD positive and PGD nega-
tive donor lungs are minimised after employ-
ing the clinical selection criteria, gene expres-
sion profiling would help in emphasising what-
ever small differences there may be. SVMs are
capable of using these marginal differences to
identify suitable and unsuitable donor lungs.
This is where machine learning plays a valu-
able role - assisting physicians and not neces-
sarily overruling them. Hence, machine learn-
ing methods, such as SVMs, can be used in
conjunction with clinical criteria to identify
unsuitable donor lungs, thereby further de-
creasing the chances of using donor lungs that
would develop PGD.

Conclusion

The incorporation of biological information
into donor lung evaluation, based on studies
such as this one, may deem many of the ex-
cluded organs as suitable for transplantation,
directly impacting the mortality of patients on
the lung transplant waiting list. Studies show
that 15-30% of patients develop clinically sig-
nificant primary graft dysfunction (PGD) after
lung transplantation. PGD is the single most
significant factor in determining perioperative
morbidity and mortality and has a devastating
impact on outcome following lung transplanta-
tion. It is the primary factor determining du-
ration of mechanical ventilatory support and
length of ICU and hospital stay following lung
transplantation. Perioperative mortality rates
for those with clinically significant PGD are as
high as 40-60%. One year survival rates fall
from 69% to 40% and 2-year rates from 66%
to 27% in those who suffer significant PGD.
Furthermore, those that survive complications
of PGD endure lengthy hospitalisation periods
and a protracted and often compromised re-
covery, evidenced by inferior exercise tolerance
and pulmonary function testing and the inabil-



ity to achieve independent lifestyles. More-
over, PGD is now being identified as a risk
factor for acute and chronic rejection.

In this study, gene expression profiling of
donor lung samples was used to determine gene
products that are associated with the devel-
opment of PGD after transplantation. It also
resulted in analysing possibly relevant path-
ways involved in PGD. When biological mark-
ers were used to differentiate between PGD
positive and PGD negative lungs, a good clas-
sification accuracy was achieved. The incor-
poration of biological markers into donor or-
gan evaluation will have a significant impact
on outcomes after lung transplantation, by po-
tentially expanding the donor pool of organs
selected for transplantation and by identifying
lungs at risk for the development of PGD post-
transplant, which would allow pre-treatment
of these high risk organs or matching of these
organs to relatively lower risk recipients. Fur-
ther identification and elucidation of genetic
markers in donor lungs associated with PGD
could have a significant impact on lowering the
incidence and preventing the morbidity and
mortality of PGD after lung transplantation.
Our results indicate that we have successfully
achieved both our objectives.

Materials and Methods

Donor Lung Sampling

From August 2003 to January 2005, biopsies of
50 donor lungs used for bilateral sequential lung
transplantation at Washington University School
of Medicine were obtained from the anterior right
middle lobe or lingula immediately prior to cold-
flushing and these samples were immediately snap-
frozen in liquid nitrogen and then stored in a -
70 Celsius freezer until used for analysis. Speci-
mens were sampled using standard techniques for
open lung wedge biopsy. An area of lung tissue
approximately 1 x 1 cm was isolated and excised
using 2 staple lines from a 30 mm EndoGIA sta-
pler (US Surgical, Norwalk, CT). This protocol was
approved by the Human Studies Committee and In-
stitutional Review Board at Washington University
School of Medicine and protection of human sub-
jects, namely recipients, was afforded by detailed
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informed consent before entrance into this research
protocol.

RNA Isolation

Single isolates of donor lung samples were ho-
mogenised in the presence of RNAzolB and finally
dissolved in RNase-free H20. 25 g of total RNA was
treated with DNase using the Qiagen RNase-free
DNase kit and samples were further purified us-
ing RNeasy spin columns (Qiagen, Valencia, CA).
Total RNA treated with DNase was dissolved in
RNase-free H20 to a final concentration of 0.2 g/ 1.
RNA quality was assessed by 1% agarose gel elec-
trophoresis in the presence of ethidium bromide.
Samples that did not reveal intact and approxi-
mately equal 18S and 28S ribosomal bands were
excluded from further study.

cDNA Synthesis and Gene Expression
Profiling

This study used commercially available high-
density microarrays (Affymetrix, Santa Clara, CA)
that produce gene expression levels on 22,278 probe
sets (Affymetrix Human Genome U133Av2.0 Ar-
ray). Each donor lung biopsy was analysed on a
different GeneChip. Preparation of cDNA, hybridi-
sation, and scanning of the arrays were performed
according to the manufacturer’s instructions. The
arrays were scanned using the Affymetrix GeneAr-
ray scanner. Image analysis was performed with
the Affymetrix GeneChip software. We also per-
formed a quality control test on the dataset and
results indicated that the dataset quality was good.

Data

The data from all 50 gene chips was normalised us-
ing the GCRMA method developed by [28]. The
50 donor lung samples were divided into two groups
- those that developed PGD after transplantation
(PGD positive) and those that did not (PGD neg-
ative). PGD was defined as T0 Grade III dysfunc-
tion according to International Society for Heart
and Lung Transplantation criteria - that is, a ra-
tio of partial pressure of arterial oxygen (PaOs) to
fraction of inspired oxygen (FiOs) less than 200
on the first arterial blood gas in the intensive care
unit after transplantation (generally 4-6 hours after
actual reperfusion) [29]. Sixteen samples were clas-
sified as PGD positive according to this definition
and the remaining thirty-four were PGD negative.



Transcripts Selection

As data quality is important, we calculated
the quality of our dataset using the R package
‘affyQCReport’ [30] and results were favourable.
We then proceeded to the next step in our study
- the identification of differentially expressed (DE)
transcripts. The objective was to find a set of DE
transcripts/probes that could be used as a molec-
ular signature for the condition. DE transcript ex-
traction falls into two broad categories - wrapper
methods and filter methods. In wrapper transcript
selection methods, the DE transcript identification
phase is integrated with the classification phase. In
filter methods, the DE transcript extraction phase
is independent of the classification phase. In this
study, we used two packages for the identification
of DE transcripts - RankGene [31], and significance
analysis of microarrays (SAM) [32].

RankGene is a programme for analysing gene
expression data, feature selection and ranking
genes based on the predictive power of each
gene/transcript to classify samples into functional
or disease categories. It supports eight different
measures for quantifying a gene’s ability to distin-
guish between classes. For our analysis, we used
the t-statistics measure of predictability. SAM is
an open-source software which identifies DE genes
based on the change in gene expression relative to
the standard deviation of repeated measurements
[32]. It uses the false discovery rate (FDR) and
g-value method presented in [33] to select genes.
The g-value is analogous to the p-value and is cor-
rected, through a permutation process, for the nat-
ural variability of the expression data. The ¢g-value
of a transcript is the FDR for the transcript list
that includes that transcript and all transcripts
that are more significant. SAM also provides a tail
strength (TS) value which measures the deviation
of each p-value from its expected value. Therefore,
large positive TS values indicate evidence against
the null hypothesis, i.e., there are more small p-
values than one would expect by chance [34].

We first ran RankGene on the complete set of
probes. Since we were interested in the most highly
DE transcripts, we chose to take the top 100 tran-
scripts from the ranked list for further analysis. On
this list of 100 DE transcripts, we applied SAM.
SAM output 81 up and down regulated transcripts
based on a FDR of 0% and a TS of 92.7%. After av-
eraging the values of and removing multiple probes
matching to the same gene name, 23 upregulated
and 42 downregulated transcripts were obtained.
These sets of up and down regulated transcripts
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were used for further analysis in Ingenuity Path-
way Analysis software.

Pathway analysis

Ingenuity Pathway Analysis (IPA) (www.ingenuity.com)

was used to perform pathway analysis on the two
sets of DE transcripts - upregulated and down-
regulated, to identify networks of genes that are
known to interact functionally. IPA uses the In-
genuity Pathways Knowledge Base(IPKB) which
contains large amounts of indivually modelled re-
lationships between objects (e.g., genes, proteins
and mRNAs) to dynamically generate significant
biological/gene expression networks and pathways.
The identified DE transcripts from our analysis
that are mapped onto the IPKB are called ‘focus
genes’. These are used as starting points for build-
ing the networks. First, IPA queries the IPKB for
interactions between the focus genes and all other
genes stored in IPKB and then generates a set of
networks/pathways with a maximum of 35 genes.
A p value for each network is calculated according
to the user’s list of DE genes. This is accomplished
by comparing the number of focus genes that are
present in a given pathway, relative to the total
number of occurrences of those genes in all path-
ways stored in IPKB. The score of the network is
shown as the negative logarithm of the p value,
indicating the likelihood of the focus genes in a
network being found together by random chance.
In our study, we further analysed networks that
had a network score of 10 or higher. This network
analysis is an exploratory in silico approach and
does not necessarily indicate that the pathway or
network actually exists.

Support Vector Machines

Originally developed by Vapnik [35], the support
vector machine (SVM) is a statistical learning tool
which has been extensively used for binary classifi-
cation with great success. Ranging from classifica-
tion of cancer [36] to determination of haemodialy-
sis dosage [37], SVMs have proven to be an effective
tool in a wide-range of applications.

SVM was used for the classification of patient
samples into PGD positive or PGD negative cat-
egories. The dataset consisted of 50 patient sam-
ples and 100 transcripts (ranked transcripts from
RankGene). Following is the manner in which SVM
was used. The dataset is divided into training and
test(unseen by the classifier) sets. The test set is



also the validation set because although the user
knows the classes of the samples in the test set,
the classifier does not see the samples in the test
set while it is training. The SVM is trained on
the training set. The classifier performance is mea-
sured by the prediction accuracy on the test set.
It is quite well known that the set of significant
genes (SG) from a particular set of training data
is very often very different from one chosen from
Obtaining a SG
set from the complete dataset (i.e. from all 50 pa-

a different set of training data.

tient samples), leads to a selection bias. In order
to avoid selection bias, an external cross-validation
(CV) was performed i.e. the classifier performance
was measured using only the set of genes (i.e. a
subset of the 100 transcripts) obtained from the
training set and not from the complete dataset of
50 patients. Ten fold CV was carried out rather
than leave-one-out (LOO) CV as the variability in
the list of SG is much lower with 10 fold CV and
this is what is preferred.
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