
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2003-41

2003-05-19

Intelligent Packet Discard Policies for Improved TCP Queue Intelligent Packet Discard Policies for Improved TCP Queue

Management Management

Anshul Kantawala and Jonathan S. Turner

Recent studies have shown that suitably-designed packet discard policies can dramatically

improve the performance of fair queueing mechanisms in internet routers. The Queue State

Deficit Round Robin algorithm (QSDRR) preferentially discards from long queues, but in-

troduces hysteresis into the discard policy to minimize synchronization among TCP flows.

QSDRR provides higher throughput and much better fairness than simpler queueing mech-

anisms, such as Tail-Drop, RED and Blue. However, because QSDRR discards packets that have

previously been queued, it can signficantly increase the memory bandwidth require-ments of

high performance routers. In this paper, we explore alternatives to QSDRR that provide

comparable performance,... Read complete abstract on page 2. Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

Recommended Citation Recommended Citation
Kantawala, Anshul and Turner, Jonathan S., "Intelligent Packet Discard Policies for Improved TCP Queue
Management" Report Number: WUCSE-2003-41 (2003). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/1086

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Washington University St. Louis: Open Scholarship

https://core.ac.uk/display/233234122?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1086&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1086&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1086&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1086&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1086&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1086?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1086&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/1086

Intelligent Packet Discard Policies for Improved TCP Queue Management Intelligent Packet Discard Policies for Improved TCP Queue Management

Anshul Kantawala and Jonathan S. Turner

Complete Abstract: Complete Abstract:

Recent studies have shown that suitably-designed packet discard policies can dramatically improve the
performance of fair queueing mechanisms in internet routers. The Queue State Deficit Round Robin
algorithm (QSDRR) preferentially discards from long queues, but in-troduces hysteresis into the discard
policy to minimize synchronization among TCP flows. QSDRR provides higher throughput and much
better fairness than simpler queueing mech-anisms, such as Tail-Drop, RED and Blue. However, because
QSDRR discards packets that have previously been queued, it can signficantly increase the memory
bandwidth require-ments of high performance routers. In this paper, we explore alternatives to QSDRR
that provide comparable performance, while allowing packets to be discarded on arrival, saving memory
bandwidth. Using ns-2 simulations, we show that the revised algorithms can come close to matching the
performance of QSDRR and substantially outperform RED and Blue. Given a traffic mix of TCP flows with
different round-trip times, longer round-trip time flows achieve 80% of their fair-share using the revised
algorithms, compared to 40% under RED and Blue. We observe a similar improvement in fairness for long
multi-hop paths competing against short cross-traffic paths. We also show that these algorithms can
provide good performance, when each queue is shared among multiple flows.

https://openscholarship.wustl.edu/cse_research/1086?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1086&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1086?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1086&utm_medium=PDF&utm_campaign=PDFCoverPages

Intelligent Packet Discard Policiesfor
Impr ovedTCP QueueManagement

AnshulKantawala
anshul@arl.wustl.edu
JonathanTurner
jst@arl.wustl.edu

WUCSE-2003-41

May 19,2003

Departmentof ComputerScienceandEngineering
CampusBox 1045
WashingtonUniversity
OneBrookingsDrive
St. Louis,MO 63130-4899

Abstract

Recentstudieshave shown thatsuitably-designedpacket discardpoliciescandramatically
improve theperformanceof fair queueingmechanismsin internetrouters.TheQueueState
Deficit RoundRobinalgorithm(QSDRR)preferentiallydiscardsfrom long queues,but in-
troduceshysteresisinto thediscardpolicy to minimizesynchronizationamongTCPflows.
QSDRRprovideshigherthroughputandmuchbetterfairnessthansimplerqueueingmech-
anisms,suchasTail-Drop,REDandBlue. However, becauseQSDRRdiscardspacketsthat
have previously beenqueued,it cansignficantlyincreasethememorybandwidthrequire-
mentsof high performancerouters. In this paper, we explorealternativesto QSDRRthat
provide comparableperformance,while allowing packetsto bediscardedonarrival, saving
memorybandwidth.Usingns-2simulations,weshow thattherevisedalgorithmscancome
closeto matchingtheperformanceof QSDRRandsubstantiallyoutperformREDandBlue.
Given a traffic mix of TCP flows with different round-trip times, longer round-trip time
flows achieve

�����
of their fair-shareusingtherevisedalgorithms,comparedto � ��� under

RED andBlue. We observe a similar improvementin fairnessfor long multi-hop paths
competingagainstshortcross-traffic paths.Wealsoshow thatthesealgorithmscanprovide
goodperformance,wheneachqueueis sharedamongmultiple flows.

This work is supportedin partby DARPA GrantN660001-01-1-8930

Intelligent Packet Discard Policiesfor Impr ovedTCP
QueueManagement

AnshulKantawalaandJonathanTurner
Departmentof ComputerScienceandEngineering

WashingtonUniversity
St. Louis,MO 63130�

anshul,jst� @arl.wustl.edu

Abstract

Recentstudieshave shown thatsuitably-designedpacket discardpoliciescandramatically
improve theperformanceof fair queueingmechanismsin internetrouters.TheQueueState
Deficit RoundRobinalgorithm(QSDRR)preferentiallydiscardsfrom longqueues,but in-
troduceshysteresisinto thediscardpolicy to minimizesynchronizationamongTCPflows.
QSDRRprovideshigherthroughputandmuchbetterfairnessthansimplerqueueingmech-
anisms,suchasTail-Drop,REDandBlue. However, becauseQSDRRdiscardspacketsthat
have previously beenqueued,it cansignficantlyincreasethememorybandwidthrequire-
mentsof high performancerouters. In this paper, we explorealternativesto QSDRRthat
providecomparableperformance,while allowing packetsto bediscardedonarrival, saving
memorybandwidth.Usingns-2simulations,weshow thattherevisedalgorithmscancome
closeto matchingtheperformanceof QSDRRandsubstantiallyoutperformREDandBlue.
Given a traffic mix of TCP flows with different round-trip times, longer round-trip time
flowsachieve

�����
of their fair-shareusingtherevisedalgorithms,comparedto � ��� under

RED andBlue. We observe a similar improvementin fairnessfor long multi-hop paths
competingagainstshortcross-traffic paths.Wealsoshow thatthesealgorithmscanprovide
goodperformance,wheneachqueueis sharedamongmultiple flows.

1. Intr oduction

Backboneroutersin the Internetaretypically configuredwith buffers thatareseveral timestimes
largerthantheproductof thelink bandwidthandthetypicalround-tripdelayonlongnetwork paths.
Suchbufferscandelaypacketsfor asmuchashalf asecondduringcongestionperiods.Whensuch
large queuescarry heavy TCP traffic loads,andareservicedusingtheTail-Drop policy, the large
queuesremaincloseto full mostof thetime. Thus,evenif eachTCPflow is ableto obtainits share
of the link bandwidth,theend-to-enddelayremainsvery high. This is exacerbatedfor flows with

1

2

multiple hops,sincepacketsmayexperiencehigh queueingdelaysat eachhop. This phenomenon
is well-known andhasbeendiscussedby Hashem[1] andMorris [2], amongothers.

To addressthis issue,researchershave developedalternative queueingalgorithmswhich try to
keepaveragequeuesizeslow, while still providing high throughputandlink utilization. Themost
popularof theseis RandomEarly Discard or RED [3]. RED maintainsanexponentially-weighted
moving averageof thequeuelengthwhich is usedto detectcongestion.To make it operaterobustly
underwidely varying conditions,one must either dynamicallyadjust the parametersor operate
usingrelatively largebuffer sizes[4, 5]. RecentlyanotherqueueingalgorithmcalledBlue [6], was
proposedto improve upon RED. Blue adjustsits parametersautomaticallyin responseto queue
overflow andunderflow events. Although Blue doesimprove over RED in certainscenarios,its
parametersarealsosensitive to differentcongestionconditionsandnetwork topologies.

In our previous study, we investigatedhow packet schedulersusingmultiple queuescan im-
prove performanceover existing methods.Our goal is to find schedulersthatsatisfythefollowing
objectives:

� High throughputwhenbuffers are small. Thisallows queueingdelaysto bekeptlow.

� Insensitivityto operating conditionsandtraffic. This reducestheneedto tuneparameters,or
compromiseon performance.

� Fair treatmentof different flows. This shouldhold regardlessof differencesin round-trip
delayor numberof hopstraversed.

In [7, 8] weshow thatbothREDandBluearedeficientin theserespects.Bothperformfairly poorly
whenbuffer spaceis limited to asmallfractionof theround-tripdelay.

Anotherregularly observed phenomenonfor queueswith Tail-Drop is big swingsin theoccu-
pancy of thebottlenecklink queue.Oneof themaincausesfor this is thesynchronizationof TCP
sourcesgoing throughthe bottlenecklink. Although RED andBlue try to alleviate the synchro-
nizationproblemby usinga randomdroppolicy, they do notperformwell with bufferswhicharea
fractionof thebandwidth-delayproduct.Whenbuffersareverysmall,evenwith arandomdroppol-
icy, thereis a high probabilitythatall flows suffer a packet loss.However, with per-flow queueing,
we canexplicity control thenumberof flows thatsuffer a packet lossandthussignificantlyreduce
synchronizationamongflows. While per-flow queueshave beenhistoricallyviewedastoo expen-
sive to implement,continuingtechnologyadvanceshave cut thecoststo negligible levels. Indeed,
by enablingthe useof smallermemorysizesfor buffering packets,per-flow queuescanactually
reducecostsandat thesametime cutnetwork queueingdelays.

In our prior work [7, 8], we proposedandevaluatedtwo differentpacket droppingalgorithms:
ThroughputDRR (TDRR) andQSDRR.We found that thesealgorithmssignificantlyoutperform
RED, Blue andTail-Drop for both long-lived andshortburst TCP traffic. They alsoperformrea-
sonablywell whenmultipleflowsshareasinglequeue.However, bothof theseapproachesneedthe
queuesto beorderedby throughputor length.Also,policiesthatdroppacketsthathavealreadybeen
queuedcanrequiresignificantlymorememorybandwidththanpoliciesthatdroppacketsonarrival.
In highperformancesystems,memorybandwidthcanbecomeakey limiting factor. Thus,thefocus
of this paperis to investigatebuffer managementalgorithmsthat can intelligently drop incoming

3

packetsduringcongestionwithoutmaintaininganorderedlist of queues.Ournew algorithmsmeet
all of theobjectivesoutlinedaboveandusingns-2simulations,weshow thatthey deliversignificant
performanceimprovementsover the existing methods.We alsoshow that the resulsobtainedare
comparableto what we canachieve usingQSDRR,without wastingmemorybandwidthand the
needto sortqueuesbasedon their length.

Therestof thepaperis organizedasfollows. Section2 discussestheimplementationdrawbacks
of QSDRRandTDRR.Section3 describesthenew packet dropmethodsinvestigatedhere.Section
4 documentstheconfigurationsusedfor thesimulationsandtheparametersusedfor evaluatingour
algorithms.Section5 comparestheperformanceresultsof theproposeddynamicthresholdmulti-
queuealgorithmsagainstQSDRR,RED, Blue andTail-Drop for both long-lived andshortburst
TCPtraffic andSection6 concludesthepaper.

2. Memory Bandwidth Issues

Buffer managementpoliciessuchasQSDRRandTDRRhavesomedrawbacksfor hardwareimple-
mentation.Two significantissuesthataffect hardwareperformanceare:

1. Memory bandwidth wastage
Whenbuffersarefull, QSDRRdropsa packet from thecurrentdrop queue(themethodfor
choosingthe drop queueis elaboratedin [7]). Similarly, TDRR picks the queuewith the
currenthighestexponentiallyweightedthroughput.In mostcases,this will leadto a packet
alreadyin memorybeingchosento be dropped. This leadsto higher memorybandwidth
requirements,sincethebandwidthusedto write packetsthatarelaterdroppedis wasted.

2. Queuelength sorting
All thepreviouslystudiedDRRalgorithmsin [7] needto find thelongestqueue(thedefinition
of the longestqueuevariesaccordingto thepacket droppingpolicy) for discardinga packet
duringcongestion.This resultsin a large overheadduringcongestion,sinceeachincoming
packet would potentially trigger a new searchfor the current longestqueue. One way to
reducethisoverheadis to usemorecomplex datastructureswhich reducethetime to find the
longestqueue.However, thisaddscomplexity andcostto any hardwareimplementation.

3. Algorithms

Giventheabove issuesregardingimplementationof packet droppoliciessuchasDRR,TDRR and
QSDRR,we proposeanew packet droppolicy basedonadynamicthreshold.Theoriginal ideafor
this algorithmis presentedin [9]. In [9], theauthorsproposea memorybandwidthefficient buffer
sharingpolicy amongdifferent output ports in a sharedmemorypacket switch. This algorithm
makespacket dropdecisionsbasedonly on the lengthof the incomingpacket’s destinationqueue
andthetotalamountof freebuffer space.An incomingpacket,destinedfor queue	 is discardedif

��������������������
(1)

4

where
������

is thecurrentfreebuffer space.

1. Dynamic Thr esholdDRR (DTDRR)
In ourfirst policy, weadaptedtheabovebuffer managementpolicy for useasapacketdiscard
policy for DRRpacket scheduling.Thus,anincomingpacket destinedfor queue	 is dropped
if thecurrentqueuelengthexceeds

�
timesthefreebuffer space.In all oursimulationresults,

we set
�

to 2 for evaluatingthis policy. Although this algorithmperformedvery well for
shortburstTCPflows andreasonablysizedbuffers (1000packetsor more),we foundthat it
did not performaswell asQSDRRfor long-livedTCPtraffic andvery smallbuffers (200to
400packets).

2. Discard StateDRR (DSDRR)

�
<- ����� of number of queues�! #"�$

<- %&��� of number of queues

')(+*-,/.0,1.
:

Discard packet destined for queue i
if any of the following conditions is true
1. 2)3547658 is marked for discard
2. 2)3547658#9;:=<?>@47658 and

(number of queues with discard bit set <
�
)

Then mark 2 3 47658 for discard
3. >@4A658CBD�

Then set overflow bit
Else
Enqueue packet

EF.-*-,/.�,/.
:

If 2 3 4A658 becomes empty, dicard bit is cleared

Every time period G
If overflow bit is set
If

�
<
� H"I$�

<-
�KJ;L

Else
If number of queues in discard <

��
<- number of discard queues + 1

Figure1: Algorithm for DSDRR

Takingacuefrom QSDRR,weaddsomehysteresisto thebasicDTDRRpolicy whichleadsto
DSDRR.Theideaissimilarto QSDRR.In DSDRR,oncewestartdiscardingfrom aparticular
queue,we mark it with a discardbit. Subsequentpacketsdestinedfor a queuemarkedwith
a discardbit arediscardedregardlessof the queuelength. The discardbit is clearedwhen

5

thequeuebecomesempty. Wefoundthat,althoughthispolicy helpedin desynchronizingthe
TCPflows, it marked too many queuesfor discardandthussufferedfrom poor throughput.
To alleviatethisproblem,weaddedanotherparameter, M . This is anadaptive parameterthat
limits thenumberof queuesmarkedfor discard.Every timeperiod N , if thebuffer overflows,
M is increasedby 2. If thereis no overflow in thelasttime periodandthenumberof queues
marked for discardis lessthan M , M is setto onemorethanthecurrentnumberof discard
queues.Thus,whena particularqueueexceedsthethresholdasdescribedin equation1, it is
markedfor discardonly if thetotalnumberof discardqueuesis lessthan M . Also, incoming
packetsareonly droppedif thequeueis alreadymarkedfor discardor if thequeueexceedsthe
thresholdandthetotal numberof discardqueuesis lessthan M . We foundthat thepolicy is
not sensitive to theinitial valueof M andwe initially set M to O ��� of thenumberof queues
(flows) for all oursimulationexperimentsandwelimit M to amaximumvalueof P ��� of the
numberof queues.Also,

�
is setto 0.1 and N is setto 1 secondfor our simulationruns. A

detaileddescriptionof thisalgorithmis presentedin Figure1.

4. Simulation Envir onment

In orderto evaluatetheperformanceof DRR,TDRRandQSDRR,werananumberof experiments
using ns-2. In this paper, we investigatethe performanceof our algorithmsfor both long-lived
andshort-lived TCP connections.Long-lived TCP flows stayactive for the entiredurationof the
simulation.We emulateshort-livedTCPflows usingon-off TCPsources.Theon-phasemodelsan
activeTCPflow sendingdata,while theoff-phasemodelstheinter-arrival timebetweenconnections.
To effectively comparethe times taken to serviceeachburst underdifferent algorithms,we fix
thedatatransferredperconnection(during theon-phase) to 256packets(384 KB). The idle time
betweenburstsis exponentiallydistributedwith ameanof 2 seconds.

We comparedthe performanceover a varied set of network configurationsand traffic mixes
which aredescribedbelow. In all our experiments,we usedTCP sourceswith 1500byte packets
andthedatacollectedis overa100secondsimulationinterval. WeranexperimentsusingTCPReno
andTCP Tahoeandobtainedsimilar resultsfor both; hence,we only show the resultsusingTCP
Renosources.Foreachof theconfigurations,wevariedthebottleneckqueuesizefroma100packets
to 20,000packets. 20,000packetsrepresentsa half-secondbuffer which is a commonbuffer size
deployedin currentcommercialrouters.Weranseveralsimulationsto determinethebestparameter
valuesfor RED andBlue for our simulationenvironment,to ensurea fair comparisonagainstour
multi-queuebasedalgorithms. In all our configurationsbelow, the accesslinks are10 Mb/s for
long-lived TCP flows and100 Mb/s for short-lived (on-off) TCP flows. Sincethe bottleneck-link
bandwidthis 500 Mb/s, if all long-lived TCP flows sendat the maximumrate,the overloadratio
is 2:1. For the short-lived TCP sources,a maximumrateof 100 Mb/s is neededto congestthe
bottlenecklink.

4.1.SingleBottleneckLink

The network configurationfor this setof experimentsis shown in Figure2. QSRUT&V�RXWYV[Z\Z\Z]RC^@_ are
the TCP sourcesconnectedto the bottlenecklink. The destinations,namedQa`bT&V�`cW�V[Z\Z\Zd`e^f_ , are

6

R
1

R2

500 Mb/s

50ms

0.5ms

10 Mb/s

S

S D

D

1

2

1

NS ND

2

Figure2: SingleBottleneckLink Network Configuration

directly connectedto therouter g�W . N is 100for long-livedTCPflowsand500for short-livedTCP
flows. All the TCP sourcesarestartedsimultaneouslyto simulatea worst-casescenariowhereby
TCPsourcesaresynchronizedin thenetwork. In eachof theconfigurations,thedelayshown is the
one-way link delay. Thus,round-triptime (RTT) over a link is twice thelink delayvalue.

4.2.Multiple Roundtrip-time Configuration

R
1

R2

500 Mb/s

0.5ms

S
10 Mb/s
100ms

10 Mb/s
20ms

2N

1

N
S

S
N+1

S

D1

DN

D
N+1

D
2N

Figure3: Multiple Roundtrip-timeNetwork Configuration

Thenetwork configurationfor thissetof experimentsis shown in Figure3. Thisconfigurationis
usedto evaluatetheperformanceof thedifferentqueuemanagementpoliciesgiventwo setsof TCP
flows with widely varying round-triptimesover thesamebottlenecklink. Thesourceconnection
setupis similar to the single-bottleneckconfiguration,except for the accesslink delaysfor each
sourceandthetotal numberof sources.Half of theTCPsourceshave their link delaysetto 20 ms,

7

andthe otherhalf have their link delayto 100 ms. For this configuration,N is 50 for long-lived
flowsand500for short-livedflows.

4.3.Multi-Hop Path Configuration

R2
R3R

1

10 Mb/s
0.5ms

10 Mb/s
0.5ms

500 Mb/s

50ms

500 Mb/s

50ms

E E E

500 Mb/s

50ms
R4

C C C C

S

S

N

1

1

N

1 3N

1 N 2N

D

D

N

3N

C
N+1 2N 2N+1

E
N+1

C

E
2N+1 E

Figure4: Multi-Hop PathNetwork Configuration

Thenetwork configurationfor thissetof experimentsis shown in Figure4. In thisconfiguration,
wehaveN TCPsourcestraversingthreebottlenecklinks andterminatingat gih . In addition,oneach
link, thereareanotherN TCPsourcesactingascross-traffic. We usethis configurationto evaluate
the performanceof the differentqueuemanagementpoliciesfor multi-hop TCP flows competing
with shorterone-hopcross-traffic flows. N is 50 for long-livedflows and500for short-livedflows.

5. Results

We now presenttheevaluationof our DTDRR andDSDRRpoliciesin comparisonwith QSDRR,
Blue,RED andTail-Drop. We comparethequeuemanagementpoliciesusingtheaveragegoodput
of all TCPflowsasapercentageof its fair-shareasthemetric.Wealsoshow thevariancein goodput
for asingle-bottlenecklink underthedifferentpolicies.Thevariancein goodputsis ametricof the
fairnessof thealgorithm;lower varianceimpliesbetterfairness.For all our graphs,we concentrate
onthegoodputsobtainedwhile varyingthebuffer sizefrom 100packetsto 5000packets.Sinceour
bottlenecklink speedis 500Mb/s, this translatesto a variationof buffer time from 2.4 ms to 120
ms.In all oursimulations,wenoticedthatall thepoliciesbehavedin asimilar fashionpastthe5000
packet buffer size.

5.1.Single-BottleneckLink

For this experiment,thesinglebottlenecklink configurationis used.For the long-lived TCPflow
case,we use100TCPRenosources,andfor theshortburstTCPscenario,we use500on-off TCP
Renosources.

Long-lived TCP flows

8

0
j

1000
j

2000
j

3000
j

4000
j

5000
j

Buffer Size (pkts)

0

0.05

0.1

0.15

S
ta

nd
ar

d
D

ev
ia

tio
n/

F
ai

r
S

ha
re

k

DSDRR

DTDRR

QSDRR

Blue

RED

TailDrop

Figure5: Standarddeviation relative to fair-sharefor long-lived TCP Renoflows over a single-
bottlenecklink

0
l

1000
l

2000
l

3000
l

4000
l

5000
l

Buffer Size (pkts)m
60

70

80

90

100

F
ai

r
S

ha
re

 (
%

)

DTDRR
DSDRR
QSDRR
Blue
RED
Tail Drop

Figure6: Fair shareperformancefor long-livedTCPRenoflows overasinglebottlenecklink

Figure5 shows theratio of thegoodputstandarddeviation of theTCPRenoflows to thefair share
bandwidthfor all algorithmswhile varyingthebuffer size.Evenathigherbuffer sizes,thegoodput
standarddeviationunderDTDRRandDSDRRis verysmallandtheratioto thefair sharebandwidth
is lessthan0.025whichis equivalentto thestandarddeviationratioof QSDRR.REDexhibitsabout
10 times the variancecomparedto DSDRRandDTDRR, while Blue exhibits about5 times the
variance.Overall, we observe that thegoodputstandarddeviation is betweenn �po � � of thefair
sharebandwidthfor the DSDRRandDTDRR policiescomparedto q � for Blue, O ��� for RED
and O&n � for Tail-Drop. Thus,even for a single-bottlenecklink, we observe that theDSDRRand
DTDRR policiesoffer muchbetterfairnessto a setof TCPflows andareequivalentin fairnessto
QSDRR.

Figure6 illustratestheaveragefair-sharebandwidthpercentagereceivedby theTCPRenoflows
usingdifferentbuffer sizes.For this configuration,we noticethat theperformanceunderDTDRR
is comparableto Tail-Drop for all buffer sizes. However, DSDRRdeliversperformancewhich is

9

0
r

1000
r

2000
r

3000
r

4000
r

5000
r

Buffer Size (pkts)s
1400

1600

1800

2000

2200

2400

2600

M
ea

n
G

oo
dp

ut
 (

K
b/

s)

t

Blue
RED
Tail Drop

DTDRR

QSDRR

DSDRR

(a) MeanGoodput

0
u

1000
u

2000
u

3000
u

4000
u

5000
u

Buffer Size (pkts)v1.2

1.4

1.6

1.8

2

2.2

M
ea

n
B

ur
st

 C
om

pl
et

io
n

T
im

e
(s

)

Blue
RED
Tail Drop

DSDRR

QSDRR

DTDRR

(b) MeanBurstCompletionTime

Figure7: Performanceof shortburstTCPflows overasinglebottlenecklink

very closeto QSDRRandoutperformsRED andTail-Drop, especiallyfor small buffer sizes,i.e.
under500packets.Itis interestingto notethatevenata largebuffer sizeof 5000packets,all policies
significantlyoutperformBlue, includingTail-Drop.

Short burst TCP flows

Figure7(a) shows themeangoodputachieved by theTCP flows andFigure7(b) shows themean
burst completiontimesfor the flows over a singlebottlenecklink configuration. Goodputis the
amountof actualdatatransmittedexcluding retransmissionsandduplicates.We noticethat Blue,
RED andTail-Drop have almostexactly thesameperformancein termsof meangoodputachieved
andburstcompletiontimesfor all buffer sizes,whereastheDTDRR andDSDRRpoliciesareuni-
formly better. For buffer sizeslessthan2000packets, DTDRR andDSDRRexhibit about O ���
bettergoodputperformanceover Blue, RED andTail-Drop. However, it is interestingto notethat
DTDRR is almost w ��� betterthan the non-DRRpoliciesat a buffer sizeof 5000packetsandis
very closeto QSDRR.DSDRRdoesnotperformaswell athigherbuffer sizesdueto its aggressive
droppingthresholdandkeepingqueuesin discardstate. At smallerbuffer sizes(2000packetsor
less),DSDRRperformsvery well andalmostexactly matchesthe performanceof QSDRR.The
resultsaresimilar for theburstcompletiontimes.

5.2.Multiple Round-Trip Time Configuration

In this configuration,we againusea singlebottlenecklink, but half theTCPsourceshave a 40 ms
RTT whereastheotherhalf have a 200msRTT. For long-livedTCPflows, we use100TCPReno
sourcesandfor shortburstTCPflows,we use1000on-off TCPRenosources.

Long-lived TCP flows

Figure8 showstheaveragefair-sharegoodputreceivedby TCPflowsusingthedifferentalgorithms.
As shown in Figure8(a),bothRED andBlue allow the40 msRTT flows to usealmost P ��� more

10

0
l

1000
l

2000
l

3000
l

4000
l

5000
l

Buffer Size (pkts)m
80

100

120

140

160

F
ai

r
S

ha
re

 (
%

)

DTDRR
DSDRR
QSDRR
Blue
RED
Tail Drop

(a)Flows with RTT = 40ms

0
l

1000
l

2000
l

3000
l

4000
l

5000
l

Buffer Size (pkts)m
20

40

60

80

100

F
ai

r
S

ha
re

 (
%

)

DTDRR
DSDRR
QSDRR
Blue
RED
Tail Drop

(b) Flowswith RTT = 200ms

Figure8: Fair shareperformanceof differentRTT long-lived TCP flows over a singlebottleneck
link

bandwidththan their fair share. Tail-Drop also allows the 40 ms RTT flows to usemore than
their fair shareof thebandwidthfor buffer sizessmallerthan1000packets. Both theDTDRR and
DSDRRpoliciesexhibit muchbetterperformanceallowing only O ��� extra bandwidthto beused
by the40msRTT flows. BothREDandBluediscriminateagainstlongerRTT flows,asweobserve
in Figure8(b),the200msRTT flowsachieveonly about� ��� of their fair-sharebandwidthwhereas
usingtheDTDRR andDSDRRpolicies,200msRTT flowsareableto achieve almost x ��� of their
fair-share.

At a very smallbuffer sizeof 100packets,200msRTT flows usingDTDRR andDSDRRget
about � ��� of their fair-share.However, at this buffer size,whenall the flows areactive, thereis
only onepacket per flow that canbe buffered. This causesthe poor performanceof DTDRR and
DSDRR,sinceit becomesvery difficult to singleout flows that areusingmorebandwidth. Even
with this limitation,whenwemoveto 400packets,bothDTDRRandDSDRRsignificantlyimprove
their performanceand200ms RTT flows achieve about

�����
of their fair-sharebandwidthon the

average.AlthoughQSDRRis betterat a buffer sizeof 200packets,at all buffer sizesgreaterthan
that,bothDTDRR andDSDRRareableto matchtheperformanceof QSDRR.

Short burst TCP flows

Figure9(a) shows the ratiosof the goodputsobtainedby 200 ms round-trip time flows over the
goodputsof the40 msround-triptime flows for themultiple RTT configuration.In this configura-
tion, for buffer sizesgreaterthana800packets,DTDRRandDSDRRoutperformBlueandREDby
morethan O �y��� . Althoughtheperformanceimprovementatsmallerbuffer sizesis notasdramatic,
DTDRR andDSDRRstill outperformRED andBluesignificantly. Theratioof goodputsis usedto
illustratethefairnessof eachalgorithm.Theclosertheratio is to one,thebetterthealgorithmis in
deliveringfair-shareto differentround-triptimeflows. In thiscase,evenTail-Dropperformssignif-
icantlybetterthanBlueandRED,showing thatfor short-livedflowswith differentround-triptimes,

11

0
z

1000
z

2000
z

3000
z

4000
z

5000
z

Buffer Size (pkts){
0.2

0.4

0.6

0.8

1

G
oo

dp
ut

 R
at

io
 (

20
0m

s
flo

w
s/

40
m

s
flo

w
s)

DSDRR

QSDRR

DTDRR

Tail Drop

Blue

RED

(a) GoodputRatios(200msflows/40msflows)

0
|

1000
|

2000
|

3000
|

4000
|

5000
|

Buffer Size (pkts)}
1

2

3

4

5

B
ur

st
 C

om
pl

et
io

n
T

im
e

R
at

io

Blue

RED

Tail Drop

DTDRR
QSDRR

DSDRR

(b) Burst Completion Time Ratios (200ms
flows/40msflows)

Figure9: Performanceof shortburstTCPflows overa multiple round-triptimeconfiguration

BlueandRED cannotdeliver goodfair-sharingof thebottleneckbandwidth.Figure9(b)shows the
ratiosof burstcompletiontimesof the200msround-triptimeflows over the40msround-triptime
flows. In this case,DTDRR andDSDRRremaincloseto onefor buffer sizesgreaterthan1000
(which is the ideal fairness),whereasBlue hastheworstperformance,with the200msround-trip
time flows takingalmostthreetimesthetime to completeaburstcomparedto the40 msround-trip
timeflows,evenfor 5000packet buffers.Also, theirperformanceis only O �~o n ��� worsethanQS-
DRR for smallbuffer sizes.At a buffer sizeof 5000,DTDRR andDSDRRmatchtheperformance
of QSDRR.

5.3.Multi-Hop Path Configuration

In thisconfiguration,end-to-endTCPRenoflowsgoover threehopsandhave anoverall round-trip
timeof 300ms.Thecross-traffic oneachhopconsistsof TCPRenoflowswith a round-triptimeof
100ms(onehop). For long-livedTCPflows, we use50 end-to-endand50 cross-traffic TCPReno
sourceson eachlink andfor shortburst TCP flows, we use500 end-to-endand500 cross-traffic
on-off TCPRenosourceson eachlink.

Long-lived TCP flows

Figure10illustratestheaveragefair-sharegoodputreceivedby eachsetof flows. For thisconfigura-
tion, DTDRR andDSDRRprovide almosttwice thegoodputof RED andTail Drop andfour times
the goodputprovided by Blue for end-to-endflows. As shown in Figure10(a),end-to-endflows
achievenearly

�����
of their fair-shareunderDSDRRand � ��� underDTDRR.UnderREDandTail

Drop, they canachieve only � ��� of their fair shareeven at a buffer sizeof 5000packets. Using
DTDRRandDSDRR,evenfor thesmallestbuffer size,their fair-shareis betterthanRED,but once
thebuffer sizeincreasesto 400packets,theirperformanceimprovessignificantlyandthey allow the

12

0
l

1000
l

2000
l

3000
l

4000
l

5000
l

Buffer Size (pkts)m
0

20

40

60

80

100

F
ai

r
S

ha
re

 (
%

)

RED
Tail Drop

Blue

DTDRR

DSDRR

QSDRR

(a)End-to-endTraffic

0
�

1000
�

2000
�

3000
�

4000
�

5000
�

Buffer Size (pkts)�
100

120

140

160

F
ai

r
S

ha
re

 (
%

)

RED

Tail Drop

Blue

DTDRR

DSDRR

QSDRR

(b) CrossTraffic

Figure10: Fair Shareperformanceof long-livedTCPflowsover amulti-hoppathconfiguration

end-to-endflows to achieve closeto
�����

of their fair share.We noticethat in this configuration,
DSDRR’sperformanceis verycloseto QSDRR.AlthoughDTDRR’sperformanceis slightly worse
thanDSDRRandQSDRR(about O ���) for buffer sizesgreaterthana 1000packets, it is still 1.5
timestheperformanceprovidedby RED.

For this multi-hopconfiguration,theend-to-endflows facea probabilityof packet lossat each
hopunderRED andBlue. Due to congestioncausedby thecross-traffic, RED andBlue will ran-
domly droppacketsat eachhop. Althoughthecross-traffic flows will have a greaterprobabilityof
beingpicked for a drop, the end-to-endflows alsoexperiencerandomdroppingandthusachieve
very poorgoodput.For Blue, this is furtherexacerbated,sincedueto thehigh loadfrom thecross-
traffic flows, thediscardprobabilityremainshigh at eachhop. This increasestheprobabilityof an
end-to-endflow facingpacket dropsat eachhopandthusfurtherreducingthegoodput.

Figure10(b) shows the averagegoodputfor the cross-traffic flows attachedto router gfT . For
DTDRRandDSDRR,thecross-traffic takesuptheslackin thelink andconsumesabout OyO&P o O&n ���
of its fair-sharebandwidth.For bothRED andTail Drop, thelink utilization is lower andalthough
the end-to-endflows consumeonly about � ��� of their fair-share,the cross-traffic flows consume
O&P ��� of their fair-shareandthusleaveaboutP � unutilized.Cross-traffic flowsunderBlueconsume
about O&n �Fo O-� ��� of their fair-share,leaving n �fo w ��� unutilized.

Short burst TCP flows

Figure11(a)showstheratiosof thegoodputsachievedby theend-to-endflowsover thecross-traffic
flows for themulti-hoppathconfiguration.In this configuration,we seethatthenon-DRRpolicies
performvery poorly, allowing the end-to-endflows a mere w ��� of the goodputachieved by the
cross-traffic flows. On theotherhand,DTDRR andDSDRRoutperformthenon-DRRpoliciesby
n �co w ��� for buffer sizeslessthan600packets. For buffer sizesbetween600and5000packets,
DTDRR outperformsnon-DRRpolicies by about P ��� and closely matchesthe performanceof
QSDRR.We noticethatDSDRRunderperformsDTDRR andQSDRRfor buffer sizesbelow 5000

13

0
�

1000
�

2000
�

3000
�

4000
�

5000
�

Buffer Size (pkts)

0.2

0.3

0.4

0.5

0.6

G
oo

dp
ut

 R
at

io
 (

en
d−

to
−

en
d/

cr
os

s−
tr

af
fic

)

DTDRR

QSDRR

DSDRR

Tail Drop

Blue
RED

(a) GoodputRatios (end-to-endflows/cross-traffic
flows)

0
|

1000
|

2000
|

3000
|

4000
|

5000
|

Buffer Size (pkts)}
1

2

3

4

5

B
ur

st
 C

om
pl

et
io

n
T

im
e

R
at

io

Blue

RED

Tail Drop

DSDRR

DTDRR
QSDRR

(b) Burst Completion Time Ratios (end-to-end
flows/cross-traffic flows)

Figure11: Performanceof shortburstTCPflowsover amulti-hoppathconfiguration

packets,but still outperformsnon-DRRpoliciesby n ��o P ��� . DTDRR andDSDRRarealmost2
timesbetterthanthenon-DRRpoliciesfor abuffer sizeof 5000packets.

Figure11(b)shows theratiosof burstcompletiontimesof theend-to-endflows over thecross-
traffic flows. DTDRR performsalmostaswell asQSDRRandbeatsthe non-DRRpoliciesby at
leasta factorof two. DSDRRalsoperformsreasonablywell achieving burstcompletiontime ratios
of abouta factorof O�Z�P betterthanthenon-DRRpolicies.Eventhoughtheend-to-endtraffic flows
over threebottlenecklinks comparedto justonebottleneck-linkfor thecross-traffic flows,DTDRR
andDSDRRareableto achieve a burst completiontime ratio neartwo for a buffer sizeof 5000
packets.At thesamebuffer size,thenon-DRRpoliciesachieve fairly poorratiosrangingfrom w1Z�P
to ��Z � .

Overall,wenoticethatDTDRRmatchestheperformanceof QSDRRfor shortburstTCPtraffic
while DSDRRmatchestheperformanceof QSDRRfor long-livedTCPtraffic. Although,DSDRR
is notasgoodasDTDRRfor shortburstTCPflows,it still significantlyoutperformsRED,Blueand
Tail-Drop for all configurationsandtraffic mixes.

5.4.Scalability Issues

Onedrawbackwith a fair-queueingpolicy suchasDTDRR or DSDRRis thatwe needto maintain
a separatequeuefor eachactive flow. Sinceeachqueuerequiresa certainamountof memoryfor
the linked list header, usedto implementthe queue,thereis a limit on the numberof queuesthat
a router can support. In the worst-case,theremight be as many as one queuefor every packet
stored.Sincelist headersaregenerallymuchsmallerthanthe packetsthemselves,theseverity of
thememoryimpactof multiple queuesis intrinsically limited. On theotherhand,sincelist headers
are typically storedin more expensive SRAM, while the packets are storedin DRAM, thereis

14

1� 10� 100�
Number of Buckets�

20

40

60

80

100

F
ai

r
S

ha
re

 (
%

)

Single − DTDRR
Single − DSDRR
RTT − DTDRR
RTT − DSDRR
Path − DTDRR
Path − DSDRR

Multi−Hop Path Configuration

Multiple Round−trip Time Configuration

(200ms RTT flows)

(End−to−end flows)

Single−Bottleneck Link Configuration

(a) Fair SharePercentage

1� 10� 100�
Number of Buckets�

0.00

0.05

0.10

0.15

0.20

S
ta

nd
ar

d
D

ev
ia

tio
n/

F
ai

r
S

ha
re

�

Single − DTDRR
Single − DSDRR
RTT − DTDRR
RTT − DSDRR
Path − DTDRR
Path − DSDRR

(b) StandardDeviation in goodputrelative to fair-
sharebandwidth

Figure12: Performanceof DTDRR andDSDRRfor a buffer sizeof 1000packets,with varying
numberof buckets

somelegitimateconcernaboutthe costassociatedwith usinglarge numbersof queues.Oneway
to reducetheimpactof this issueis to allow multiple flows to sharea singlequeue.While this can
reducetheperformancebenefitsobservedin theprevioussections,it maybeappropriateto tradeoff
performanceagainstcost,at leastto someextent. To addressthis issue,we ranseveralsimulations
evaluatingtheeffectsof mergingmultipleflows into asinglequeue.Figure12 illustratestheeffects
of varying thenumberof queues.Thesourcesarelong-lived TCPRenoflows andthe total buffer
spaceis fixedat 1000packets.

Figure12(a)illustratestheeffecton thegoodputreceivedby eachflow underdifferentnumbers
of queues.For themultiple round-triptime configurationandthemulti-hoppathconfiguration,we
show the goodputfor the 200 ms RTT (longerRTT) flows andthe end-to-end(multi-hop) flows
respectively. In boththeseconfigurations,theabove mentionedflows aretheoneswhich receive a
muchlowergoodputcomparedto their fair shareunderexistingpoliciessuchasRED,BlueandTail
Drop. Weobserve thattheeffect of increasingthenumberof bucketsproducesdiminishingreturns
oncewego past10buckets.In fact,thereis only amarginal increasein thegoodputreceivedwhen
wegofrom 10bucketsto 100buckets.Sinceateachbottlenecklink therearea100TCPflows, this
impliesthatour algorithmsarescalableandcanperformvery well evenwith one-tenththenumber
of queuesasflows.

Wealsopresentthestandarddeviationin goodputreceivedby eachflow for differentnumbersof
queuesin Figure12(b).Theresultsarepresentedasaratioof thestandarddeviationto thefair share
bandwidthto betterillustratethe measureof the standarddeviation. We noticethat changingthe
numberof queuesdoesnothave asignificantimpacton thestandarddeviationof thegoodputs,and
thuswe do not loseany fairnessby usingfewer queues,relative to thenumberof flows. Also, the
overall standarddeviation is below O&P � of thefair sharegoodputfor all our multi-queuepolicies,
regardlessof thenumberof queues.

15

0
�

20
�

40
�

60
�

80
�

100
�

TCP Source�0.02

0.04

0.06

0.08

0.1

Q
ue

ue
 in

 D
is

ca
rd

 S
ta

te
 (

s)

� Mean
�

(a) DSDRR

0
�

20
�

40
�

60
�

80
�

100
�

TCP Source�0

0.1

0.2

0.3

Q
ue

ue
 in

 D
is

ca
rd

 S
ta

te
 (

s)

�

Mean

(b) QSDRR

Figure13: Distribution of queuediscardtimesfor DSDRRandQSDRR

5.5.Short-Term Fairness

OneconcernregardingpoliciessuchasDSDRRandQSDRRis thatsincethey markcertainqueues
for discard,TCPflows mappedto thosequeueswouldsuffer from short-termunfairnessdueto loss
of throughput.In thissection,weaddressthisconcernby quantifyingthisunfairness,usingthetime
spentby aqueuein discardstateasametric.

Table1: Discardqueuetimestatistics

DSDRR(s) QSDRR(s)
Maximum 0.0964 0.2792
Minimum 0.0353 0.0160
Average 0.0658 0.0749
Std.Dev. 0.0085 0.0449

For our evaluation,we usethe single-bottlenecklink configurationwith 100 long-lived TCP
Renoflows anda buffer sizeof a 1000packets. Figure13 illustratesthedistribution of thetime in
discardstatefor eachqueueunderDSDRRandQSDRRfor thesimulationrun. For aqueue	 , each
point in the graphdenotesthe time in secondsthat it wasin discard-modeduring the simulation
run. Wenotethatthis is not thecumulative timethequeueis in discardmodeduringthesimulation,
but theindividual durationswhenit is markedfor discard.In thecaseof DSDRR,this impliesthat
duringeachof thesetime durations,queue	 ’s discardbit wassetandall receivedpacketsdestined
for queue	 weredropped.For QSDRR,this meansthatduringeachof thesetime durations,queue
	 wasthedrop-queue. Table1 summarizesthestaticsof thequeuediscardtimes.

Fromthegraphsandthetable,we noticethatunderDSDRR,queuesremainin discardmodes
for only about66msontheaverageand96msin theworstcase.SincetheRTT for theflows is 100

16

ms,theunfair treatmentof TCPflows lastsfor a very shorttime (lessthanoneRTT period).Also,
we notethat DSDRRis actuallybetterthanQSDRRin termsof short-termfairnessto individual
TCPflows.

6. Conclusion

This paperhasdemonstratedtechniquesthat canbe usedto intelligently drop packets on arrival
duringcongestionperiods.In previouswork, we showedthatQSDRRprovideshigherthroughput
andmuchbetterfairnessthansimplerqueueingmechanisms,suchasTail-Drop, RED andBlue.
Becauseit providesexcellentperformance,evenwhenbuffersaremuchsmallerthanthebandwidth-
delay product, it also can substantiallyreducedelaysalong congestedpaths. However, because
QSDRRdiscardspacketsthathavepreviouslybeenqueued,it cansignficantlyincreasethememory
bandwidthrequirementsof high performancerouters. In this paper, we presentedDTDRR and
DSDRRasalternativesto QSDRRthatprovidecomparableperformance,while allowing packetsto
bediscardedonarrival, saving memorybandwidth.

Throughextensive simulations,we showedthatDTDRR andDSDRRsignificantlyoutperform
RED, Blue andTail-Drop for variousconfigurationsandtraffic mixesin both theaveragegoodput
for eachflow andthevariancein goodputsandtheperformancefor bothlong-livedandshortburst
TCPflows is very closeto thatof QSDRR.We alsoshow that thesealgorithmscanprovide good
performance,wheneachqueueis sharedamongmultiple flows, andwe show that thehysteresisin
thepacket discardpolicy for DSDRRhaslittle effecton short-termfairness.

References

[1] E. Hashem,“Analysis of randomdropfor gateway congestioncontrol”, Tech.Rep.LCS TR-
465,Laboratoryfor ComputerScience,MIT, 1989.

[2] RobertMorris, “ScalableTCPCongestionControl”, in IEEE INFOCOM2000, March2000.

[3] S. Floyd andV. Jacobson,“RandomEarly DetectionGateways for CongestionAvoidance”,
IEEE/ACM TransactionsonNetworking, vol. 1, no.4, pp.397–413,Aug. 1993.

[4] S.Doran, “RED ExperienceandDifferentialQueueing”,NanogMeeting,June1998.

[5] C. VillamizarandC. Song,“High PerformanceTCPin ANSNET”, ComputerCommunication
Review, vol. 24,no.5, pp.45–60,Oct.1994.

[6] W. Feng,D. Kandlur, D. Saha,andK. Shin, “Blue: A New Classof ActiveQueueManagement
Algorithms”, Tech.Rep.CSE-TR-387-99,Universityof Michigan,Apr. 1999.

[7] Anshul Kantawala andJonathanTurner, “Efficient QueueManagementof TCP Flows”, in
SPECTS2002, July2002.

[8] Anshul Kantawala andJonathanTurner, “QueueManagementfor Short-Lived TCPFlows in
BackboneRouters”,in High-SpeedNetworkingSymposium,IEEE Globecom’02, Nov. 2002.

17

[9] A. ChoudhuryandE. Hahne,“Dynamic QueueLengthThresholdsfor Shared-MemoryPacket
Switches”,IEEE/ACM TransactionsonNetworking, vol. 6, no.2, pp.130–140,Apr. 1998.

	Intelligent Packet Discard Policies for Improved TCP Queue Management
	Recommended Citation
	Intelligent Packet Discard Policies for Improved TCP Queue Management

	tmp.1471023011.pdf.pbw6j

	Abstract: Abstract: Recent studies have shown that suitably-designed packet discard
policies can dramatically improve the performance of fair queueing
mechanisms in internet routers. The Queue State Deficit Round Robin
algorithm (QSDRR) preferentially discards from long queues, but
introduces hysteresis into the discard policy to minimize
synchronization among TCP flows. QSDRR provides higher throughput and
much better fairness than simpler queueing mechanisms, such as
Tail-Drop, RED and Blue. However, because QSDRR discards packets that
have previously been queued, it can signficantly increase the memory
bandwidth requirements of high performance routers. In this paper, we
explore alternatives to QSDRR that provide comparable performance,
while allowing packets to be discarded on arrival, saving memory
bandwidth. Using ns-2 simulations, we show that the revised algorithms
can come close to matching the performance of QSDRR and substantially
outperform RED and Blue. Given a traffic mix of TCP flows with
different round-trip times, longer round-trip time flows achieve 80%
of their fair-share using the revised algorithms, compared to 40%
under RED and Blue. We observe a similar improvement in fairness for
long multi-hop paths competing against short cross-traffic paths. We
also show that these algorithms can provide good performance, when
each queue is shared among multiple flows.
	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160
	Footer1: Department of Computer Science & Engineering - Washington University in St. Louis
	Notes:
	Email:
	Date: May 19, 2003
	Author: Authors: Kantawala, Anshul; Turner, Jonathan
	Title: Intelligent Packet Discard Policies for Improved TCP Queue Management
	ReportNumber: 2003-41
	DepartmentName: Department of Computer Science & Engineering

