
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2007-10

2007

Real-time Query Scheduling for Wireless Sensor Networks Real-time Query Scheduling for Wireless Sensor Networks

Octav Chipara, Chenyang Lu, and Gruia-Catalin Roman

Recent years have seen the emergence of wireless sensor network (WSN) systems that require

high data rate real-time communication. This paper proposes Real-Time Query Scheduling

(RTQS), a novel approach to conflict-free transmission scheduling for real-time queries in WSNs.

We show that there is an inherent trade-off between prioritization and throughput in conflict-free

query scheduling. RTQS provides three new real-time scheduling algorithms. The non-

preemptive query scheduling algorithm achieves high throughput while introducing priority

inversions. The preemptive query scheduling algorithm eliminates priority inversion at the cost

of reduced throughput. The slack stealing query scheduling algorithm combines the benefits of

preemptive and... Read complete abstract on page 2. Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Chipara, Octav; Lu, Chenyang; and Roman, Gruia-Catalin, "Real-time Query Scheduling for Wireless Sensor
Networks" Report Number: WUCSE-2007-10 (2007). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/115

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Washington University St. Louis: Open Scholarship

https://core.ac.uk/display/233234118?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F115&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F115&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F115&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F115&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F115&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F115&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F115&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/115?utm_source=openscholarship.wustl.edu%2Fcse_research%2F115&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/115

Real-time Query Scheduling for Wireless Sensor Networks Real-time Query Scheduling for Wireless Sensor Networks

Octav Chipara, Chenyang Lu, and Gruia-Catalin Roman

Complete Abstract: Complete Abstract:

Recent years have seen the emergence of wireless sensor network (WSN) systems that require high data
rate real-time communication. This paper proposes Real-Time Query Scheduling (RTQS), a novel approach
to conflict-free transmission scheduling for real-time queries in WSNs. We show that there is an inherent
trade-off between prioritization and throughput in conflict-free query scheduling. RTQS provides three new
real-time scheduling algorithms. The non-preemptive query scheduling algorithm achieves high
throughput while introducing priority inversions. The preemptive query scheduling algorithm eliminates
priority inversion at the cost of reduced throughput. The slack stealing query scheduling algorithm
combines the benefits of preemptive and non-preemptive scheduling by improving the throughput while
meeting query deadlines. We provide schedulability analysis for each scheduling algorithm. The analysis
and advantages of our scheduling algorithms are validated through NS2 simulations.

https://openscholarship.wustl.edu/cse_research/115?utm_source=openscholarship.wustl.edu%2Fcse_research%2F115&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/115?utm_source=openscholarship.wustl.edu%2Fcse_research%2F115&utm_medium=PDF&utm_campaign=PDFCoverPages

Department of Computer Science & Engineering

2007-10

Real-time Query Scheduling for Wireless Sensor Networks

Authors: Octav Chipara, Chenyang Lu, Gruia-Catalin Roman

Corresponding Author: ochipara@cse.wustl.edu

Abstract: Recent years have seen the emergence of wireless sensor network (WSN) systems that require high
data rate real-time communication. This paper proposes Real-Time Query Scheduling (RTQS), a novel
approach to conflict-free transmission scheduling for real-time queries in WSNs. We show that there is an
inherent trade-off between prioritization and throughput in conflict-free query scheduling. RTQS provides three
new real-time scheduling algorithms. The non-preemptive query scheduling algorithm achieves high throughput
while introducing priority inversions. The preemptive query scheduling algorithm eliminates priority inversion at
the cost of reduced throughput. The slack stealing query scheduling algorithm combines the benefits of
preemptive and non-preemptive scheduling by improving the throughput while meeting query deadlines. We
provide schedulability analysis for each scheduling algorithm. The analysis and advantages of our scheduling
algorithms are validated through NS2 simulations.

Type of Report: Other

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160

Real-time Query Scheduling for Sensor Networks
Octav Chipara, Chenyang Lu, Gruia-Catalin Roman

Washington University in St. Louis

Abstract—Recent years have seen the emergence of wireless
sensor network (WSN) systems that require high data rate
real-time communication. This paper proposes Real-Time Query
Scheduling (RTQS), a novel approach to conflict-free trans-
mission scheduling for real-time queries in WSNs. We show
that there is an inherent trade-off between prioritization and
throughput in conflict-free query scheduling. RTQS provides
three new real-time scheduling algorithms. The non-preemptive
query scheduling algorithm achieves high throughput while
introducing priority inversions. The preemptive query scheduling
algorithm eliminates priority inversion at the cost of reduced
throughput. The slack stealing query scheduling algorithm com-
bines the benefits of preemptive and non-preemptive scheduling
by improving the throughput while meeting query deadlines. We
provide schedulability analysis for each scheduling algorithm.
The analysis and advantages of our scheduling algorithms are
validated through NS2 simulations.

I. INTRODUCTION

Recent years have seen the emergence of wireless sensor
networks (WSNs) that must support real-time communication
at high data rates. Representative examples include patient
monitoring [1], mine worker search and rescue [2], and
structural health monitoring [3]. Such systems pose significant
challenges. First, the system must handle different types of
traffic with different deadlines. For example, during an earth-
quake, the acceleration sensors mounted on a building must
be sampled and their data delivered to the base station in a
timely fashion to detect any structural damage. Such traffic
should have higher priority than temperature data collected
for climate control. Thus, a real-time communication protocol
should provide effective prioritization between different traffic
classes while meeting their respective deadlines. Second, the
communication protocol must support high throughput since
the system may generate high volumes of traffic. For example,
during an earthquake, acceleration sensors may need to be
sampled at high rates, generating high network loads when
many sensors are deployed for fine-grained monitoring. Third,
the systems we consider are typically mission critical requiring
guarantees that packets are delivered before their deadlines.
Therefore, the communication protocols must have predictable
temporal properties.

A query service allows an application or user to periodically
collect data from sensors to a base station. In this paper,
we propose Real-Time Query Scheduling (RTQS), a novel
approach to scheduling the transmissions of real-time queries
in WSNs. In contrast to earlier work on TDMA scheduling for
general-purpose wireless networks, RTQS takes advantage of
the unique characteristics of WSN queries such as many-to-
one communication, in-network aggregation, and periodic tim-
ing properties to construct conflict-free transmission schedules

with differentiated and predictable temporal properties. This
paper makes four contributions. First, through analysis and
experiments, we show that query scheduling has an inherent
tradeoff between prioritization and throughput. Second, we
developed three scheduling algorithms which support pre-
emptive, nonpreemptive, and slack stealing query scheduling.
The nonpreemptive query scheduling algorithm achieves high
throughput at the cost of some priority inversion while non-
preemptive query scheduling algorithm achieves good priori-
tization by eliminating priority inversions. The slack stealing
scheduling algorithm combines the advantages of preemptive
and non-preemptive scheduling algorithms by improving the
throughput while meeting all query deadlines. Third, by taking
advantage of the predictability of the constructed schedules we
derive theoretical upper bounds of the query latency of each
scheduling algorithm to guarantee that the admitted queries
meet their deadlines. Finally, through simulations, we show
the advantages of RTQS over contention-based and TDMA-
based protocols and we assess the tightness of the theoretical
upper bounds on query latency.

The paper is organized as follows. Section II compares our
approach to existing work. Section III describes the query and
network models. Section IV details the design and analysis
of RTQS. Section V provides simulation results. Section VI
concludes the paper.

II. RELATED WORK

Real-time communication protocols can be categorized into
contention-based and TDMA-based protocols. In a contention-
based approach, real-time communication is supported through
probabilistic service differentiation. This is usually achieved
by adapting various parameters of the CSMA/CA mechanism
such as the contention window or initial back-off [4][5]. Rate
and admission control [6][7] are often necessary to handle
overload conditions in contention-based protocols. However,
these protocols have two inherent drawbacks. First, packet
latency is highly variable due to the random back-off mech-
anisms. Second, the throughput is low under heavy load due
to high channel contention.

TDMA protocols can provide predictable packet latencies
and support high data rates which makes them an attractive
approach for real-time communication. The 802.15.4 standard
for low data rate WSNs has a reservation mechanism for
providing predictable delays in single hop networks. A more
flexible slot reservation mechanism is proposed in [8] where
slots are allocated based on delay or bandwidth requirements.
Two recent papers proposed real-time communication proto-
cols for robots [9][10]. Both protocols assume that at least one
robot has complete knowledge of the robots positions and/or

network topology. While the protocols may work well for
small teams of robots, they are not suitable for queries in large-
scale WSNs. Implicit EDF [11] provides prioritization in a one
hop cell. The protocol supports multi-hop communication by
assigning different frequencies to cells with potential conflicts.
However, the protocol does not provide prioritization for
transmitting packets across cells. In contrast, RTQS provides
prioritization even in large multi-hop networks.

Two recent protocols that support real-time flows in WSNs
have been proposed. In [2] a scheduling based solution is
proposed to support voice streaming over real-time flows.
In contrast, the real-time chains protocol [12] extends a
contention-based scheme called Black Burst to support packet
prioritization over real-time flows. However, these protocols
only support real-time flows involving only one or a few data
sources. In contrast, RTQS is optimized for real-time queries
that collect sensor data from many sources.

In early work we proposed DCQS [13], a TDMA protocol
that achieves high throughput by exploiting explicit query
information provided by the query service. However, DCQS
does not support query prioritization or real-time communica-
tion, which is the focus of this paper.

III. SYSTEM MODELS

In this section, we characterize the query services for which
RTQS is designed and then describe our network model.

A. Query Model

We assume a common query model in which source nodes
produce data reports periodically. This model fits many appli-
cations that gather data from the environment at user specified
rates. Such applications generally use existing query services
such as TinyDB [14]. A query l is characterized by the fol-
lowing parameters: a function for in-network aggregation[14],
the query period Pl, the start time of the query φl, a query
deadline Dl, and a static priority. A new query instance is
released in the beginning of each period to gather data from
the WSN. We use Il,u to refer to the uth instance of query l
whose release time is rl,u = φl + u · Pl. For briefness, in the
remainder of the paper we will refer to a query instance as an
instance. The priority of an instance is given by the priority
of its query. If two instances have the same query priority, the
instance with the earliest release time has higher priority.

A query service usually works as follows: a user issues a
query through a base station, which disseminates the query
parameters to all nodes. To facilitate data collection and in-
network aggregation, a routing tree rooted at the base station
is maintained [14]. To perform in-network aggregation, each
non-leaf node waits to receive the data reports from its
children, produces a new data report by aggregating its data
and the children’s data reports, and then sends it to its parent.

B. Network Model

RTQS works by scheduling conflict-free transmissions
in slots. To facilitate this we introduce the Interference-
Communication (IC) graph. The IC graph, IC(E,V), has
all nodes as vertices and has two types of directed edges:

communication and interference edges. A communication edge−→
ab indicates that a packet transmitted by a may be received by
b. A subset of the communication edges forms the routing tree
used for data aggregation. An interference edge

−→
ab indicates

that a’s transmission interferes with any transmission intended
for b even though a’s transmission may not be correctly
received by b. The IC graph is used to determine if two
transmissions can be scheduled concurrently. We say that two
transmissions,

−→
ab and

−→
cd are conflict-free (

−→
ab ‖

−→
cd) and can

be scheduled concurrently if (1) a, b, c, and d are distinct and
(2)

−→
ad and

−→
cb are not communication/interference edges in E.

The IC graph accounts for link asymmetry and irregular
communication and interference ranges observed in WSN[15].
The IC graph may be computed and stored in a distributed
fashion: a node needs to know only its incoming/outgoing
communication and interference edges. In [15], Zhou et al.
present RID, a practical solution for constructing the IC graph
of a WSN. A node can use RID to determine its adjacent
communication and interference edges.

We assume that clocks are synchronized. Clock synchro-
nization is a fundamental service in WSN as many applications
must time-stamp their sensor readings to infer meaningful
information about the observed events. There exist several
approaches for time synchronization in WSNs [2].

IV. REAL-TIME QUERY SCHEDULING

RTQS supports real-time communication through conflict-
free transmission scheduling that achieves predictable and
differentiated query latencies. Our approach to query schedul-
ing relies on two components: a planner and a scheduler.
The planner constructs a plan for executing each query. All
instances of a query are executed according to the same
plan. A plan is an ordered sequence of steps, each comprised
of a set of conflict-free transmissions. RTQS employs the
same distributed algorithm as DCQS to construct plans. The
scheduler divides time into slots. The scheduler runs on every
node to determine the slot when each step in a plan is executed.
To improve the throughput, the scheduler may execute steps
in the plans of different query instances in the same slot as
long as no conflicting transmissions are executed in that slot.

RTQS works as follows: when a query is submitted, RTQS
identifies a plan for its execution and its schedulability analy-
sis. As discussed in Section IV-A, it is often the case that many
queries can be executed using the same plan. Therefore, RTQS
may reuse a previously constructed plan. When no plan may
be reused, the planner constructs a new one. RTQS determines
if a query meets its deadline using our schedulability analysis.
If the query is schedulable, the parameters of the query are
disseminated; otherwise, the query is rejected. At run-time the
scheduler executes all admitted queries.

In contrast to DCQS which does not support real-time
communication, the key contribution of RTQS is the design
and analysis of three real-time scheduling algorithms. Each
scheduling algorithm achieves a different tradeoff between
query prioritization and throughput. The Nonpreemptive Query
Scheduling (NQS) algorithm achieves high throughput at the

cost of some priority inversion, while the Preemptive Query
Scheduling (PQS) algorithm eliminates priority inversion for
better prioritization. The Slack-stealing Query Scheduling
(SQS) algorithm combines the benefits of NQS and PQS by
improving the throughput while meeting all deadlines.

A. Constructing plans
A plan has two properties: (1) The plan respects the prece-

dence constraints introduced by data aggregation: a node is
assigned to transmit in a later step than any of its children. (2)
Each node is assigned in sufficient steps to transmit its entire
data report. We use Tl[i] to denote the set of transmissions
assigned to step i (0 ≤ i < Ll) in the plan of query l, where Ll

is the length of the plan. To facilitate in-network aggregation,
a node waits to receive the data reports from all its children
before transmitting the aggregated data report to its parent.
Therefore, to reduce the query latency, the planner assigns the
transmissions of a node with a larger depth in the routing tree
to an earlier step in the plan. This strategy reduces the query
latency because it reduces the time a node waits for the data
reports from all its children.

Fig. 1 shows an IC graph and the plan constructed by the
planner. The solid lines indicate the communication edges
which are part of the routing tree while the dashed lines
indicate interference edges. The plan in Fig. 1 is constructed
assuming that the data report generated by a node can be
transmitted in a single step. The planner assigns conflict-free
transmissions in each step. For example, transmissions −→ne
and −→po are assigned to step Tl[1] since they do not conflict.
The precedence constraints introduced by aggregation are
respected. For example, nodes p and l are assigned in earlier
steps than their parent o. In [13] we proposed a distributed
algorithm for constructing plans based on the IC graph. Upon
the completion of the algorithm each node knows in what steps
it transmits and receives. We omit the details of the algorithm
due to space limit.

The plan of a query l depends only on the IC graph, the
set of source nodes, and on l’s aggregation function. The
channel properties of a WSN remains stable within a time
window as shown in a recent empirical study[16]. The issue of
handling changes in the IC graph is discussed in Section IV-H.
It is important to note that queries with the same aggregation
function and set of sources but having different temporal
properties (i.e., period, start time, deadline) or priorities can
be executed according to the same plan. We note that real-
time applications such as structural health monitoring often
involve similar queries with different rates. Those systems
therefore may use the same plan for multiple concurrent
queries. Furthermore, even queries with different aggregation
functions may be executed according to the same plan. Let
Wl[n] be the number of steps in which node n must be
assigned to transmits l’s data report. If the planner constructs
a plan for a query l, the same plan can be reused to execute a
query h if Wl[i] = Wh[i] for all nodes i. Examples of queries
that share the same plan are the queries for the maximum
temperature and the average humidity in a building. For both

a

b

c

d

e

f

g
r

h

k

s

j

t

I

m
z

w

n
o

p q 01

1

2

2

2

2

3

3

3

3

3

4

4

4

4

2

5

5

6

Plan: Tq[0] Tq[1] Tq[2] Tq[4]Tq[3] Tq[5] Tq[6]
d=>ab=>ac=>ae=>a

m=>dj=>dl=>d
g=>b

f=>b

h=>c
k=>c
o=>e

n=>e

w=>mz=>m t=>j
r=>gs=>h

p=>o
q=>o

Fig. 1. IC graph and associated plan.
queries a node transmits one data report in a single step (i.e.,
Wmax[i] = Wavg[i] = 1 for all nodes i) if the slot size
is sufficiently large to hold two values. For the max query,
the outgoing packet includes the maximum value of the data
reports from itself and its children. For the average query, the
packet includes the sum of the values and the number of data
sources that contributed to the sum. Henceforth, we assume all
queries share a same plan and minimum step distance when
presenting the query scheduling algorithms and analysis. We
discuss extensions to support queries with different plans in
Section IV-G.

B. Overview of Real-time Query Scheduling

The scheduler executes a query instance according to the
plan of its query. The scheduler improves the query throughput
by executing multiple instances concurrently without conflict
such that: (1) All steps executed in a slot are conflict-free. Two
steps of instances Il,u and Ih,v are conflict free (Il,u.i ‖ Ih,v.j)
if all pairs of transmissions in Tl[Il,u.i]∪Th[Ih,v.j] are conflict
free. (2) The steps of each plan are executed in order: if step
Il,u.i is executed in slot si, step Il,u.j is executed in slot
sj < si then Il,u.j < Il,u.i. This ensures that the precedence
constraints required by aggregation are preserved.

The scheduler maintains a record of the properties of all
admitted queries. Additionally, the scheduler knows the step
numbers in which the host node is assigned to transmit or
receive in each plan and the plan’s length. RTQS supports both
preemptive and nonpreemptive query scheduling. A nonpre-
emptive scheduler controls only the start of an instance; once
an instance starts executing, a nonpreemptive scheduler cannot
preempt it. In contrast, a preemptive scheduler may preempt
an instance to allow a higher priority instance to execute when
the two cannot be executed concurrently.

First, consider a brute-force approach for constructing a
preemptive scheduler: in every slot s, a brute-force scheduler
would consider the released instances in order of their priority
and execute all steps that do not conflict in s. Unfortunately,
the processing time of this approach is high, since each pair
of steps must be checked for conflicts. Since the scheduler
dynamically determines the steps that are executed in a slot,
the scheduling algorithm must have low time complexity.

To reduce the time complexity of the scheduler we intro-
duced the concept of minimum step distance in [13]. Let Il,u.i
and Ih,v.j be two steps in the plans of any instances Il,u and
Ih,v , respectively. We define the step distance between Il,u.i
and Ih,v.j as |Il,u.i − Ih,v.j|. The minimum step distance
∆(l, h) is the smallest step distance between Il,u and Ih,v

such that the two steps Il,u.i and Ih,v.j may be executed
concurrently without conflict:

|Il,u.i− Ih,v.j| ≥ ∆(l, h) ⇒ Il,u.i ‖ Ih,v.j

∀Il,u.i < L, Ih,v.j < L

Therefore, to ensure that no conflicting transmission are ex-
ecuted in a slot, it is sufficient to enforce a minimum step
distance between any two steps. Intuitively, the minimum
step distance captures the degree of parallelism that may be
achieved in query execution due to spatial reuse. In the worst
case, when ∆(l, h) = L, a single instance is executed at a time.
A distributed algorithm for computing ∆(l, h) is presented in
[13]. The minimum step distance ∆(l, h) depends on the IC
graph and the plans of l and h. The number of minimum step
distances that a scheduler stores is quadratic in the number of
plans. Two pairs of queries (l, h) and (m,n) have the same
minimum step distance if (l,m) and (h, n) have the same
plan. Therefore, despite the quadratic number of minimum
step distances that must be stored the memory cost is small
since the planner uses only few plans.
C. Nonpreemptive Query Scheduling (NQS)

To efficiently enforce the minimum step distance for NQS,
we take advantage of the fact that once an instance is started,
it cannot be preempted. As such, the earliest time at which
an instance Il,u may start (i.e., execute step Il,u.i = 0) is
after the previous instance Ih,v completes step Ih,v.j = ∆−1
(since |∆ − 0| ≥ ∆). Since the execution of Il,u and Ih,v

cannot be preempted, if we enforce the minimum step distance
between the start of the two instances then their concurrent
execution is conflict-free for their remaining steps since steps
Il,u.i = x and Ih,v.j = x + ∆ are executed in the same
slot and |(x + ∆) − x| ≥ ∆. Therefore, to guarantee that a
nonpreemptive scheduler executes conflict-free transmissions
in each slot, it suffices to enforce a minimum step distance of
∆ between the start time of any two instances.

NQS maintains two queues: a run queue and a release
queue. The release queue is a priority queue keyed by the
query instance priority and contains all instances released but
not being executed. The run queue is a FIFO queue and
contains the instances to be executed in slot s. Although the
run queue may contain multiple instances, a node is involved
in transmitting/receiving for at most one instance (otherwise,
it would be involved in two conflicting operations). A node n
determines if it transmits/receives in slot s by checking if it is
assigned to transmit/receive in any of the steps to be executed
in slot s. If a node does not transmit or receive in slot s, it
turns off its radio for the duration of the slot.

NQS enforces a minimum step distance of at least ∆
between the start time of any two instances by starting an
instance in two cases: (1) when there are no instances being
executed (i.e., run=∅) and (2) when the step distance between
the head of the release queue (i.e., the highest priority instance
that is released) and the tail of the run queue (i.e., the last
instance that started) is larger ∆. When an instance starts, it
is moved from the release queue to the run queue.

Consider the example shown in Fig. 3(a) where three
queries, Qhi, Qmed and Qlo are executed according to the
shown workload parameters. Each query is executed according
to the same plan of length L = 15 and minimum step distance
∆ = 8. We assign higher priority to queries with tighter
deadlines. The upward arrows indicate the release time of

event: new instance Il,u is released
release = release ∪ {Il,u}

event: start of new slot s
for each Il,u ∈ release

if (may-resume(Il,u) = true) then resume(Il,u)
for each Il,u ∈ run

execute-step(Il,u)

resume(Il,u):
run = run ∪ {Il,u}; release = release − {Il,u}
add Il,u to all mayConflict[x] such that |Il,u.i − x| < ∆

preempt(S):
run = run − S; release = release ∪ S
remove Il,u from all mayConflict

may-resume(Il,u):
if (mayConflict[Il,u.i] = ∅) then return true
if (Il,u has higher priority all instances in mayConflict[Il,u.i])

preempt(mayConflict[Il,u.i]); return true
return false

execute-step(Il,u):
determine if node should send/recv in Il,u.i
Il,u.i = Il,u.i + 1
if Il,u.i = L then run = run − {Il,u}
mayConflict[Il,u.i − ∆]=mayConflict[Il,u.i − ∆ + 1] − {Il,u}
mayConflict[Il,u.i + ∆]=mayConflict[Il,u.i + ∆] ∪ {Il,u}

Fig. 2. PQS pseudocode
an instance. Ilo (in the example we drop the instance count
since it is always zero) is released and starts its execution
in slot 0 since no other instance is executing (run=∅). The
first instances of Qmed and Qhi are released in slots 2 and
6, respectively. However, neither may start until slot 8 when
Ilo completes 8 steps (i.e., when Ilo.i = 8 ≥ ∆) resulting in
priority inversions. NQS provides prioritization by starting Ihi

which is the highest priority instance in release in 8. Similarly,
in slot 16, NQS starts Imed after Ihi completes ∆ = 8 steps.

When a new instance is released, NQS inserts it in the
release queue. Since the release queue is a priority queue
which may be implemented as a heap, this operation takes
O(log |release|). In each slot, NQS determines what instances
should start executing. This operation takes constant time,
since it involves comparing the step distance between the
instances at the head of release queue and tail of run queue
with the minimum step distance. To determine if a node should
send, receive, or sleep, NQS iterates through the instances
in the run queue. This requires O(|run|) time if each node
maintains a bit vector indicating whether it transmits, receives,
or sleeps in each step of a plan. Thus, the complexity of the
operations performed in a slot is O(|run|).

D. Preemptive Query Scheduling (PQS)
A drawback of NQS is that it introduces priority inversions.

To overcome this, we devised PQS which preempts the in-
stances that conflict with the execution of a higher priority
instance eliminating priority inversions.

NQS’s mechanism for enforcing the minimum step distance
assumes that instances are not preempted. Therefore, we
must derive a new and efficient mechanism for enforcing the
minimum step distance that supports preemption for PQS. To
enforce the minimum step distance PQS maintains Lq may-
Conflict sets. Each mayConflict[x] set contains the instances
which are in the run queue and conflict with any instance
executing step x in its plan: mayConflict[x] = {Ih,v ∈ run
||x− Ih,v.i| < ∆}.

PQS (see Fig. 2) maintains a run queue and a release queue

which are keyed by the query instance priority. When a new
instance is released, it is added to the release queue. In each
slot, PQS determines the instances that will be executed and
those that will be preempted in that slot and then executes the
instance in the run queue.

PQS starts/resumes an instance Il,u (Il,u ∈ release) in two
cases. (1) If the next step Il,u.i of Il,u may be executed
concurrently with the instances in the run queue without
conflict, PQS starts/resumes it. To determine if this is the case,
it suffices for PQS to check if mayConflict[Il,u.i] is empty.
When an instance is started or resumed, it is moved from the
release queue to the run queue. The membership of Il,u in
the mayConflict sets is updated to reflect that Il,u is executed
in the current slot: Il,u is added to all mayConflict[x] sets
such that |Il,u.i− x| < ∆ since the execution of any of those
steps would conflict with the execution of step Il,u.i. (2) Il,u

is also started/resumed if it has higher priority than all other
instances in mayConflict[Il,u.i] since otherwise there will be
a priority inversion. For Il,u to be executed without conflict,
all instance in mayConflict[Il,u.i] must be preempted. When
an instance is preempted, it is moved from the run queue to
the release queue and it is removed from all mayConflict sets.
As above, Il,u is added to all mayConflict[x] sets such that
|Il,u.i− x| < ∆.

After an instance executes a step, its membership in the
mayConflict sets must also be updated. Since step Il,u.i is
executed in slot s, in the next slot (when Il,u executes step
Il,u.i + 1) Il,u will not conflict with an instance executing
step Il,u.i − ∆ but will conflict with an instance executing
step Il,u.i + ∆. Accordingly, Il,u is removed from mayCon-
flict[Il,u.i−∆] and added to mayConflict[Il,u.i + ∆].

Fig. 3(b) shows the schedule of PQS for the same workload
used in the example for NQS. Instance Ilo starts in slot 0 since
no other instances have been released (mayConflict[0]= ∅).
Imed is released in slot 2. Since mayConflict[0]= {Ilo}
and Imed has higher priority than Ilo, PQS preempts Ilo.
Consequently, Ilo is removed from run and all mayConflict
sets, and it is added to the release queue. Imed is added to
run queue and to all mayConflict[x] sets where 0 ≤ x < 8.
Ihi is released in slot 6. Since mayConflict[0] = {Imed} and
Ihi has higher priority then Imed, PQS preempts Imed and
starts Ihi. The mayConflict sets are updated accordingly. An
interesting case occurs in slot 16, when Ihi executes step 10.
At this point, mayConflict[2] = ∅ since Imed was preempted
and Ihi completed 10 steps (|10 − 2| ≥ 8). As a result, Ilo

may execute step 2 in its plan while Ihi executes step 10
without conflict. Ihi and Ilo are executed concurrently until
step 18 because their step distance exceeds the minimum step
distance. In the beginning of slot 18, mayConflict[4]={Ilo}.
Note that Ihi is not a member of this set since |12− 4| ≥ 8.
Since the step counter of Imed is 4 and Imed has higher
priority than Ilo, PQS preempts Ilo and resumes Imed. PQS
then updates the conflict sets by removing Ilo from all of them
and adding Imed to mayConflict[x] sets where |x−4| < 8. Ilo

resumes in slot 36 when mayConflict[4] becomes empty. The
example shows that PQS achieves more effective prioritization

than NQS by providing lower latencies for Ihi and Imed.
However, the query throughput is lower because the degree of
concurrency is lower (there is less overlap in the execution of
instances). This exemplifies the fundamental tradeoff between
prioritization and throughput in query scheduling. In the next
section, we will characterize this tradeoff analytically.

When an instance is released, it is added to the release
queue which takes O(log |release|) time. In every slot, PQS
iterates through the instances in release to determine if they
may be resumed. If we organize the mayConflict sets as
balanced trees keyed by instance priority, the time complexity
of this operation is O(|release| · log |run|). We note that the
resume and preempt functions take constant time since an
instance Il,u may be a member of at most 2∆ mayConflict
sets and ∆ does not depend on the number of instances in
release or run. Similar to NQS, O(|run|) is necessary for a
node to determine if it transmits, receives, or sleeps in a slot.
Thus, the time complexity of operations performed per slot is
O(|release| · log |run|+ |run|).
E. Analysis of NQS and PQS

In this section, we present theoretical upper bounds on query
latency for NQS and PQS. To determine if a query meets its
deadline, we compute its worst-case response time, which is
the maximum query latency of any of its instances. The base
station calculates the worst-case response time of a query when
it is issued. If a query’s worst-case response time is smaller
than its deadline then the query is schedulable and admitted
for execution. We assume that the deadlines are shorter than
the periods. For convenience, we use the slot size as the time
unit and drop the instance count from our instance notation.

Analysis of NQS. Since NQS is a nonpreemptive schedul-
ing algorithm, to compute the response time of a query l we
must compute the worst-case interference of higher priority
instances and the maximum blocking time of l due to the
nonpreemptive execution of lower priority instances.

Property 1: An instance is blocked for at most ∆−1 slots.
Proof: Consider the following two cases based on when

an instance Il is released. (1) If all executing lower priority
instances have completed at least ∆ steps, NQS starts Il

without blocking. (2) If a lower priority instance which did not
completed ∆ steps is executing, Il is blocked. Note that there
can be only one lower priority instance that blocks Il, because
the interval between the starting times of two consecutive
instances must be at least ∆. Hence there can only be one
executing instance that has not completed ∆ steps when Il

is released. The longest blocking time occurs when the low
priority instance has completed one step when Il is released.
In this case Il is blocked for ∆− 1 slots.

Property 2: A higher priority instance interferes with a
lower priority instance for at most ∆ slots.

Proof: NQS starts the highest priority instance when
the last started instance has completed at least ∆ steps.
Therefore, every high priority instance delays the execution
of a low priority instance by at most ∆ slots. The worst-
case interference occurs when the lower and higher priority
instances are released simultaneously.

2

0
0 1 2 3 4 5 6 7 8 9

1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1 2 3 4 5 6 7 8 9

4
0 1 2 3 4 5 6 7 8 9

5
0

Qhi

Qmed

Qlo

Slots:

0 1

0

100

3

12

3

4 12

4 12

10-2=∆
12-4=∆

12-4=∆
14

0

14-0=∆

(a) Schedule constructed by NQS

2

0
0 1 2 3 4 5 6 7 8 9

1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1 2 3 4 5 6 7 8 9

4
0 1 2 3 4 5 6 7 8 9

5
0

Qhi

Qmed

Qlo

Slots:

0 1

0

100

3

12

3

4 12

4 12

10-2=∆
12-4=∆

12-4=∆
14

0

14-0=∆

(b) Schedule constructed by PQS

0
0 1 2 3 4 5 6 7 8 9

1
0 1 2 3 4 5 6 7 8 9

2
0 1 2 3 4 5 6 7 8 9

3
0 1 2 3 4 5 6 7 8 9

4
0 1 2 3 4 5 6 7 8 9

5
0

Qhi

Qmed

Qlo

Slots:

0 1

0

0

2

10

14

0

10-2=∆108
8-0=∆

4≤Shi

(c) Schedule constructed by SQS
Fig. 3. Scheduling with different prioritization policies. Workload: Phi=30, Dhi =20,Pmed=65, Dmed =28, Plo=93, Dlo =93.

Note that since NQS is non-preemptive, the response time
Rl of query l is the sum of its plan’s length L (the execution
time) and the worst-case delay Wl that any instance suffers
(due to blocking and interference) before it is started: Rl =
Wl + L.

To compute Wl we construct a recurrent equation similar
to the approach used in response time analysis [17]. Consider
the execution of an instance Il. According to Property 1, a
lower priority instance blocks Il for at most ∆ − 1 slots. In
addition, a higher priority instance Ih may delay the execution
of Il by at most ∆ steps. The number of instances of a higher
priority query h that interfere with Il is upper-bounded by
dWl

Ph
e. Therefore, the delay before Il starts executing is:

Wl = (∆− 1) +
∑

h∈hp(l)

dWl

Ph
e ·∆ (1)

where hp(l) is the set of queries with priority higher than or
equal to l’s priority. Wl can be computed by solving (1) using
a fixed point algorithm similar to that of the response time
analysis [17].

Note that our analysis differs from the classical processor
response time analysis in that multiple transmissions may
occur concurrently without conflict in the WSN due to spatial
reuse of the wireless channel. This is captured in our analysis
in that a higher priority instance may delay a lower priority
instance by at most ∆, which is usually smaller than the
execution time of the instance (i.e., the plan’s length L).

Analysis of PQS. A higher priority instance cannot be
blocked by a lower priority instance under PQS1. We observe
that after an instance completes ∆ steps, no newly released
instance will interfere with its execution because their step
distance would be at least ∆, allowing them to execute con-
currently. Therefore, we split Il into two parts: a preemptable
part of length ∆ and nonpreemptable part of length L − ∆.
Higher priority instances may interfere with Il only during
its preemptable part. Thus, the response time of a query l is
the sum of response time of the preemptable part R′

l and the
length of the nonpreeptable part: Rl = L−∆ + R′

l.
A query h with higher priority than l interferes with l for at

most dR′
l

Ph
e · Cmax(l, h) slots, where Cmax(l, h) is the worst-

case interference of an instance of h on an instance of l. Thus,
worst-case response time of the preemptable part of l is:

R′
l = ∆ +

∑
h∈hp(l)

dR′
l

Ph
e · Cmax(l, h) (2)

where ∆ is the length (execution time) of the preemptable part.
After finding the worst-case interference, R′

l may be computed
by solving (2) using a similar fixed point algorithm as the
response time analysis [17]. Then, the worst-case response
time of the query may be determined. Next, we determine the
worst-case interference.

1Our analysis assumes that every instance is released in the beginning of
a slot, which is the time granularity of our scheduling algorithms. Strictly
speaking, a higher priority instance may still be blocked by at most one slot.
This blocking term can be easily incorporated into our analysis.

Theorem 1: An instance Il is interfered by a higher priority
instance Ih for at most Cmax(l, h) = min(2∆, L) slots.

Proof: We analyze Ih’s interference on Il in the following
cases.

(1) If Ih is released no later than Il, then Ih’s interference
on Il is at most ∆, since Il may start when Ih completes ∆
steps.

(2) If Ih is released while Il is executing its nonpreemptable
part, the interference is zero.

(3) If Ih is released while Il is executing its preemptable
part, Ih preempts Il. Let x be the number of steps Il has
completed, when Ih preempted it. We note that x < ∆ since
Il is executing its preemptable part. There are three sub-cases.
(3a) If Ih is not preempted by any higher priority instance, then
Il will be resumed after Ih completes ∆ + x steps to enforce
the minimum step distance between Il and Ih. Thus, the
interference is C = ∆ + x. If Ih is preempted after executing
y < ∆ steps we must consider two cases as illustrated in
Fig. 4. Recall that plans start with step 0. (3b) If x ≥ y,
PQS resumes Ih before Il due to the minimum step distance
constraint. In this case, Ih’s interference on Il is C = ∆ + x.
(3c) If x < y, then Il is resumed before Ih and it may execute
up to (x−y) steps until Ih is resumed. Thus, Ih’s interference
on Il is C = ∆ + y.

From all the above cases, Ih’s worst-case interference on
Il is C = ∆ + max(x, y). Since x < ∆ and y < ∆, then
Cmax ≤ 2∆. However, when L < 2∆, Ih finishes before Il

reaches 2∆; in this case the interference is only L. Thus, Ih’s
worst-case interference on Il is Cmax = min(2∆, L).

It is important to note that preempting an instance results in
higher interference than the nonpreemptive case. As shown in
the above proof, the interference cost in the preemptive case is
C = ∆+max(x, y) compared to ∆ in the nonpreemptive case.
Therefore, preemption incurs max(x, y) slots of additional in-
terference compared to the no preemption case. The additional
interference in the preemptive case results in a lower degree
of concurrency and hence lower query throughput. This shows
the inherent trade-off between prioritization and throughput in
conflict-free query scheduling.
F. Slack Stealing Query Scheduling (SQS)

SQS combines the benefits of NQS and PQS in that it
improves query throughput while meeting all deadlines. The
design of SQS is based on the observation that preemption
lowers throughput, and hence it should be used only when
necessary for meeting deadlines. We define the slack of a query
l, Sl, to be the maximum number of slots that an instance of l
allows a lower priority instance to execute before preempting
it. SQS has two components: an admission algorithm and
a scheduling algorithm. The admission algorithm runs on
the base station and determines the slack and schedulability
of each query when it is issued. The scheduling algorithm
executes admitted queries based on their slacks.

SQS Scheduler. SQS may start an instance Ih,v in any
slot in the interval [rh,v, rh,v + Sh], where Sh is the slack

x-1

y-1

∆+y

y

x

Case (3b) If x≥y C= [(y-1)+1] + [(∆ + x - 1) + y + 1] = x + ∆

l

∆+x-1h

m

x-1

y-1

∆+x

x
Case (3c) If x<y C= [(y-1)+1] + [(∆ + y - 1) - y + 1] = y + ∆

∆+y-1

yy-1

y

∆+y-1

Fig. 4. Interference of Ih on Il under PQS

of query h and rh,v is the release time of the vth instance of
h. Intuitively, SQS can dynamically determine the best time
within the interval to start Ih,v such that Ih,v’s interference
on lower priority instances is reduced. Since a lower priority
instance Il,u is not interfered by Ih,v if Il,u has completed ∆
steps, SQS postpones the start of the higher priority instance
Ih,v if the lower priority instance Il,u has completed at least
∆ − Sh steps. An advantage of the slack stealing approach
is that it opportunistically avoids preemption and the related
throughput reduction when allowed by query deadlines.

SQS requires a minor modification to PQS. Specifically,
we change how the release of an instance Ih,v is handled.
If mayConflict[0] is empty, Ih,v is released immediately. If
SQS determines that all the instances in mayConflict[0] have
completed executing at least ∆− Sh steps in their plan, SQS
delays Ih,v and adds it to the release queue. Otherwise, SQS
adds Ih,v to release, preempts all instances in mayConflict[0],
and resumes the execution of the highest priority instance in
release (which is not necessarily Ih,v).

Fig. 3(c) shows the schedule under SQS with the same
workload as the one used to illustrate NQS and PQS. Assume
that the admission algorithm of SQS determined that Qhi and
Qmed have slacks Shi = 5 and Smed = 2, respectively. Ilo is
released and starts its execution in slot 0. Imed is released
in slot 2. SQS preempts Ilo, because even if Imed would
be postponed for Smed = 2 slots, Ilo would not complete
∆ = 8 steps. Ihi is released in slot 6. SQS decides to continue
executing Imed because in 4 ≤ Shi slots, Imed will complete
executing ∆ = 8 steps , i.e., SQS avoids preempting Imed by
allowing it to steal 4 slots from Ihi. SQS uses preemption in
slot 2 but not in slot 6. This highlights that SQS dynamically
decides when preemption is necessary to improve throughput
while meeting all deadlines.

Admission Algorithm. The admission algorithm deter-
mines the schedulability and slacks of queries. It considers
queries in decreasing order of their priorities. For each query,
it performs a binary search in [0,∆] to find the maximum
slack that allows the query to meet its deadline. Note that
there is no benefit for a lower priority instance to steal more
than ∆ slots from a higher priority instance since they may
be executed in parallel when their step distance is at least ∆.
The admission algorithm tests whether the query can meet
its deadline by computing its worst-case response time as a
function of the slack. If the query is unschedulable with zero
slack, it is rejected; otherwise, it is admitted.

To compute the worst-case response time of a query we
split a query instance into two parts: a preemptable part and
a nonpreemptable part. Under PQS, the preemptable part is
∆ slots. In contrast, under SQS, an instance may steal from
a higher priority instance at least ml = minx∈hp(l)Sx steps.
Thus, the length of the preemptable part is at most ∆−ml slots
under SQS; the length of the nonpreemptable part is therefore
L − (∆ − ml) slots. Hence, the worst-case response time of
query l with slack Sl is:

Rl(Sl) = L− (∆−ml) + R′
l(Sl) (3)

where R′ is the worst-case response time the preemptable part.
Theorem 2: Under SQS, an instance Il may be interfered

by a higher priority instance Ih for at most Cmax = min(2∆−
ml, L) slots, where ml = minx∈hp(l) Sx.

Proof: We initially assume L > 2∆ − ml. Similar to
PQS the worst-case interference occurs when a higher priority
instance is released during Il’s preemptable part. In this case,
Il either (1) steals slack from one or more higher priority
instances or (2) does not steal slack from any higher priority
instance.

(1) When Il steals slack we consider the following two
sub-cases depending on whether Il successfully steals enough
slack to complete ∆ steps.

(1a) Il completes ∆ steps without being preempted. In this
case Ih’s interference on Il is zero.

(1b) Otherwise, Il is preempted after executing x steps by
a higher priority instance Im (not necessarily Ih). Next, we
show that the execution of Im does not affect Ih’s interference
on Il. As a result, it would be sufficient to only consider the
case when Ih itself preempts Il. We note that Im must have a
higher priority than Ih since SQS always resumes the highest
priority instance in release when an instance is preempted.
Ih’s interference on Il is not affected by Im if neither Il nor
Ih execute while Im executes its preemptable part (i.e., the
relative phasing of Il and Ih remains the same). Ih cannot
execute because it cannot start before Im completes ∆ steps
(due to minimum step distance). Note that Il cannot steal slack
from Im as Il is in release. Il cannot execute as Ih must be
started before Il resumes (since Ih’s next step is 0, Il’s next
step is x > 0, and hence the step distance between Im and Ih

is higher than that between Im and Il). Since, Ih cannot start
before Im completes ∆ steps, Il also cannot start before Im

completes ∆ steps.
We now consider the case when Ih is the instance that

preempts Il. Similar to Theorem 1 we consider sub-cases
depending on whether Ih is preempted. If Ih is not preempted,
according to the proof of Theorem 1, Ih’s interference on Il

is C = ∆ + x. However, unlike in PQS where x < ∆, for
SQS we have a tighter bound on x: x < ∆−ml. Hence, Ih’s
interference on Il is Cmax = 2∆−ml. If Ih is preempted by
a higher priority instance, let y be the number of steps Ih has
completed before it is preempted. We note that y < ml, since
ml is the smallest slack of any query whose priority is higher
or equal to l. Similar to PQS, the worst-case interference in the
two cases is: C(x) = ∆ + max(x, y). However, unlike PQS,
we have tighter bounds on x and y: x < ml and y < ml. Thus,
the worst-case interference of Ih on Il is Cmax = 2∆−ml.

(2) In this case Il is preempted by Ih. This case is handled
similarly to (1b).

Similar to PQS, when L < 2∆ − ml the interference cost
is reduced L. Therefore the worst-case interference of Ih on
Il is min(2∆−ml, L).

To compute R′
l we must account for the jitter introduced by

slack stealing, i.e., a higher priority instance Ih may delay its

start by at most Sh. Accordingly, R′ is:

R′
l(Sl) = (∆−ml)+Sl +

∑
h∈hp(l)

dR
′
l(Sl) + Sh

Ph
e ·Cmax(l, h)

where, ∆ − ml is the maximum length (execution time) of
the preemptable part, Sl is the maximum time interval when
Il may be blocked by a lower priority instance due to slack
stealing, and Cmax(l, h) is the worst-case interference.

G. Handling Multiple Plans
We did not present our algorithms or analysis in the case

when there are multiple plans due to the space limit. In
the following we highlight the major changes necessary for
handling multiple plans. When there are multiple plans the
scheduler maintains a minimum step distance for each pair of
plans. To ensure conflict-free transmission when there multiple
plans, PQS starts the instance Il,u at the head of the release
queue only if its step distance with any instance Ih,v in the
run queue is larger then ∆(l, h). To generalize PQS and
SQS, we add a dimension to the mayConflict sets: we define
mayConflict[x][c] to include the instances Ih,v in run which
are executed according to plan c and conflict with any instance
Il,u executing step x in its plan. The functions of PQS and
SQS must be updated to consider C mayConflict sets instead
of a single mayConflict set. We note that the time complexity
of the algorithms does not change even when there are multiple
plans.

To extended our analysis to handle multiple plans there
are two key changes must be made. First, the interference
and blocking terms must be computed in terms of pairs of
plans. Second, for PQS and SQS, we split the execution of an
instance Il,u into a preemptable part and a nonpreemptable
part. The sizes of the two parts must be reevaluated. For
PQS, the length of the preemptable part becomes ∆M (l) =
maxx ∆(l, x) since we must consider the worst-case minimum
step distance for which an instance may interfere with one of
l’s instances. Accordingly, the length of the nonpreemptable
part becomes L − ∆M (l). Similarly, for SQS, the size of
the preemptable part is ∆M (l) − ml while the size of the
nonpreemptable part is L− (∆M (l)−ml).
H. Handling Packet Loss and Topology Changes

RTQS can be extended to handle both transient and persis-
tent packet loss. To handle persistent packet loss, the routing
tree must be changed which in turn triggers a recalculation
of the plans and minimum step distances. To reduce such
reconfiguration overhead, we can modify the routing tree
protocol to allow a node to have multiple parents and switch
among them in response to packet loss. We modified the
planner to construct plans as if a node transmits to all its
parents even though in reality it transmits to only one parent
at a time. As a result, RTQS can handle a range of topology
changes without recomputing the plans or minimum step
distances. Transient packet loss can be handled via Automatic
Repeat-reQuest (ARQ) which RTQS supports by increasing
the slot size to accommodate multiple transmissions. As in
any other TDMA approach, this solution improves reliability
at the cost of throughput due to the increased slot size.

V. SIMULATIONS

We implemented RTQS in NS2. Since we are interested
in supporting high data rate applications such as structural
health monitoring we configured our simulator according to
the 802.11b settings having a bandwidth of 2Mbps. This is
reasonable since several real-world structural health monitor-
ing systems use 802.11b interfaces to meet their bandwidth
requirements. An overview of these deployments may be
found in [3]. At the physical layer a two-ray propagation
model is used. We model interference according to the Signal-
to-Interference-plus-Noise-Ratio (SINR) model, according to
which a packet is received correctly if its reception strength
divided by the sum of the reception strengths of all other
concurrent packet transmissions is greater than a threshold (10
dbm in our simulations).

In the beginning of the simulation, the IC graph is con-
structed using the method described in [15]. The node closest
to the center of the topology is selected as the base station.
The base station initiates the construction of the routing tree
by flooding setup requests. A node may receive multiple setup
requests from different nodes. The node selects as its parent
the node that has the best link quality indicator among those
with smaller depth than itself. We determined the slot size as
follows: We assume that a node samples its accelerometer at
100Hz and buffers 50 16-bit data points before transmitting
its data report to its parent. To reduce the number of transmis-
sions, data merging is employed: a node waits to receive the
data reports from its children and merges their readings with
its own in a single data report which it sends to its parent. In
our experiments, the maximum number of descendants of any
node is 20, so the maximum size of a data report containing
16-bit measurements is 2KB. Accordingly, we set slot size to
8.3ms, which is large enough to transmit 2KB of data. In our
simulations, all queries are executed according to the same
plan as every node sends its data report in a slot.

For comparison we consider three baselines: 802.11e,
DCQS[13] and DRAND[18]. We did not use 802.15.4 as
a baseline, since the standard is designed for low data rate
applications and hence is unsuitable for our target high data
rate applications. 802.11e is a representative contention-based
protocol that supports prioritization in wireless networks. In
our simulations we use the Enhanced Distributed Channel
Access (EDCA) function of 802.11e since it is designed for
ad hoc networks. EDCA prioritizes packets using different
values for the initial backoff, initial contention window, and
maximum contention window of the CSMA/CA protocol.
We configured these parameters according to their defaults
in 802.11e. We used the 802.11e NS2 module from [19].
DRAND is a recently proposed TDMA protocol. DCQS is a
query scheduling algorithm that constructs TDMA schedules
to execute queries. However, neither DCQS nor DRAND
support prioritization or real-time transmission scheduling.

We use response time and data fidelity to compare the
performance of the protocols. The response time of a query
instance is the time between its release time and completion
time, i.e., when the base station receives the last data report

0.125
0.25

0.5
1
2
4

16

 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Av
g.

 re
sp

on
se

 ti
m

e
(s

)

Total query rate (Hz)

EDCA(H)
EDCA(M)
EDCA(L)

Fig. 5. 802.11e EDCA response time

0.125

0.25

0.5

1

2

4

16

 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Av
g.

 re
sp

on
se

 ti
m

e
(s

)

Total query rate (Hz)

DRAND(H)
DRAND(M)
DRAND(L)
DCQS(H)
DCQS(M)
DCQS(L)

Fig. 6. DRAND/DCQS response time

0.125
0.25

0.5
1
2
4

16

 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Av
g.

 re
sp

on
se

 ti
m

e
(s

)

Total query rate (Hz)

PQS(H)
PQS(M)
PQS(L)

Fig. 7. PQS response time

0.125
0.25

0.5
1
2
4

16

 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Av
g.

 re
sp

on
se

 ti
m

e
(s

)

Total query rate (Hz)

NQS(H)
NQS(M)
NQS(L)

Fig. 8. NQS response time

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Av
g.

 d
at

a
fid

el
ity

Total query rate (Hz)

EDCA(H)
EDCA(M)
EDCA(L)

Fig. 9. 802.11e EDCA fidelity

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Av
g.

 d
at

a
fid

el
ity

Total query rate (Hz)

DRAND(H)
DRAND(M)
DRAND(L)
DCQS(H)
DCQS(M)
DCQS(L)

Fig. 10. DRAND/DCQS fidelity

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Av
g.

 d
at

a
fid

el
ity

Total query rate (Hz)

PQS(H)
PQS(M)
PQS(L)

Fig. 11. PQS fidelity

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Av
g.

 d
at

a
fid

el
ity

Total query rate (Hz)

NQS(H)
NQS(M)
NQS(L)

Fig. 12. NQS fidelity
for that instance. During the simulations data reports may
be dropped preventing some sources from contributing to the
query result. The data fidelity of a query instance is the ratio
of the number of sources that contributed to the aggregated
data reports received by the base station and the total number
of sources.

In the following we compare the performance of NQS and
PQS with the baselines (see Section V-A) and evaluate the
RTQS algorithms under different workloads and validate our
response time analysis (see Section V-B).

A. Comparison with Baselines
The results presented in this section are the average of

five runs on different topologies. The 90% confidence interval
of each data point is also presented. All experiments are
performed in a 750m ×750m area divided into 75m × 75m
grids in which a node is placed at random. We simulate
three queries with high, medium and low priorities. The query
priorities are determined based on their deadlines: the tighter
the deadline, the higher the priority. The ratios of the query
periods QH :QM :QL are 1:2.2:4.7. The deadlines are equal to
the periods.

Figs. 5 - 12 show the average response time and data
fidelity of different protocols as the total query rate is increased
from 1.43Hz to 2.87Hz. 802.11e EDCA provides prioritization
between queries: when the total query rate is 1.43Hz, the
average response times of QH and QL are 0.34s and 0.74s,
respectively (see Fig. 5). However, 802.11e EDCA has poor
data fidelity for all queries (see Fig. 9). The poor performance
of 802.11e EDCA is due to high channel contention, which
results in significant packet delays and packet drops. This
demonstrate the disadvantage of contention-based protocols
for high data rate queries in WSNs.

The TDMA protocols, DCQS and DRAND (see Figs. 6 and
10), have significantly higher data fidelity than 802.11e EDCA.
The data fidelity results indicate that DCQS provides a higher
throughput than DRAND. Moreover, DCQS provides lower re-
sponse time than DRAND (see Fig. 6). DCQS performs better
because it exploits the inter-node dependencies introduced by
queries in WSNs. However, neither protocol provides query
prioritization since all queries have similar response times.

In contrast to DCQS and DRAND, PQS provides query
prioritization as seen in their response times. For instance,
when the total query rate is 2.51Hz, PQS provides an average
response time of 0.38s for QH , which is 75% lower than the

average response time of 1.48s for QL (see Fig. 7). PQS
achieves the same query throughput as DRAND, but lower
than DCQS due to the high cost of preemption (see Section
IV-E). PQS achieves close to 100% fidelity when the total
query rate is lower than 2.51Hz (see Fig. 11). For higher query
rates, the fidelity drops because the offered load exceeds PQS’s
capacity (the schedulability test failed at these rates). NQS
also provides query prioritization (the y-axis has a log scale),
but the differences in response times are smaller than in PQS
due to the priority inversions of non-preemptive scheduling
(see 8). In contrast to PQS, NQS has close to 100% data
fidelity for all queries when the total query rate is as high as
2.87Hz. Therefore, NQS achieves higher throughput than PQS.
The comparison of PQS and NQS shows the tradeoff between
prioritization and throughput predicted by our analysis.

B. Comparison of RTQS Algorithms
In this subsection we compare the performance of all

RTQS algorithms and validate their response time analysis.
In this section we consider four queries Q0, Q1, Q2, and
Q3 in decreasing order of priority. The ratios of their periods
Q0:Q1:Q2:Q3 is 1:1.2:2.2:3.2. To evaluate the RTQS algo-
rithms under a broad range of workloads, we perform two
experiments. In the first experiment, we fix the deadlines of
the queries and vary their rates. In second experiment, we fix
the rates of the queries and vary the deadline of the highest
priority query.

Experiment 1. Figs. 13 - 15 show the measured and the
theoretical maximum response times of NQS, PQS, and SQS
under different total query rates. The dotted horizontal lines
indicate the query deadlines. NQS meets all deadlines when
the total query rate is within 2.85Hz. In contrast, PQS supports
a lower query rate since Q3 misses its deadline when the total
query rate is 2.23Hz. The long response time of Q3 is due to
the high preemption cost suffered by the low priority queries
under PQS. This indicates that PQS is unsuitable for workloads
in which the low priority queries have tight deadlines.

Similar to NQS, SQS can support a higher query rate
than PQS without missing deadlines. In this experiment, the
deadlines are lax and hence preemption is not necessary for
meeting them. As such, SQS dynamically avoids preemption
and the associated throughput reduction. SQS achieves a
slightly lower throughput than NQS because it is limited by
the conservative response time analysis. When the admission
algorithm decides that the queries are unschedulable, it cannot

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
M

ax
. r

es
po

ns
e

tim
e

(s
)

Total query rate (Hz)

Q0Q1Q2Q3Th-Q0Th-Q1Th-Q2Th-Q3

Fig. 13. NQS max. response time

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

M
ax

. r
es

po
ns

e
tim

e
(s

)

Total query rate (Hz)

Q0Q1Q2Q3Th-Q0Th-Q1Th-Q2Th-Q3

Fig. 14. PQS max. response time

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

M
ax

. r
es

po
ns

e
tim

e
(s

)

Total query rate (Hz)

Q0Q1Q2Q3Th-Q0Th-Q1Th-Q2Th-Q3

Fig. 15. SQS max. response time

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

M
ax

. r
es

po
ns

e
tim

e
(s

)

Q0 deadline (s)

Q0Q1Q2Q3Th-Q0Th-Q1Th-Q2Th-Q3

Fig. 16. NQS max. response time

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

M
ax

. r
es

po
ns

e
tim

e
(s

)

Q0 deadline (s)

Q0Q1Q2Q3Th-Q0Th-Q1Th-Q2Th-Q3

Fig. 17. PQS max. response time

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

M
ax

. r
es

po
ns

e
tim

e
(s

)

Q0 deadline (s)

Q0Q1Q2Q3Th-Q0Th-Q1Th-Q2Th-Q3

Fig. 18. SQS max. response time
find a slack assignment for the queries. Therefore we cannot
run SQS at a rate beyond its theoretical bound. In contrast,
we may increase the rate further under NQS, which achieves
a higher throughput than its theoretical bounds because its
response time analysis is derived based on worst-case arrival
patterns which do not always occur in our simulations.

Experiment 2. In this experiment we increase the deadline
of the lowest priority query and vary the deadline of the
highest priority query Q0. This experiment evaluates the RTQS
algorithms when the low priority queries have lax deadlines.
Figs. 16 - 18 show the maximum response times of NQS,
PQS, and SQS, respectively. For clarity, only Q0’s deadline is
plotted since the other queries always meet their deadlines in
this experiment. PQS meets Q0’s deadline when it is 0.39s.
In contrast, NQS meets its deadline only when Q0’s deadline
reaches 0.69s.

NQS misses Q0’s deadline when it is tight due to the priority
inversion under non-preemptive scheduling. This indicates
that NQS is unsuitable for high priority queries with tight
deadlines. Interestingly, under SQS, the response time of Q0

changes depending on its deadline (Fig. 18). As the deadline
becomes tighter, the response time of Q0 also decreases and
remains below the deadline. We also see an increase in the
response times of the lower priority queries as Q0’s deadline
is decreased. This is because as Q0’s deadline decreases the
lower priority queries may steal less slack from Q0. This
shows that SQS adapts effectively based on query deadlines.

In all experiments, the measured response times of all
RTQS algorithms are lower than the worst-case response times
derived using our analysis. Hence, our analysis is correct. The
difference between the simulation results and the theoretical
bounds are expected because the analysis is based on worst-
case arrival patterns which do not always occur in simulations.

VI. CONCLUSIONS

High data rate real-time queries are important services for
a broad range of emerging sensor network applications. This
paper proposes RTQS, a novel approach designed for real-
time communication in WSN queries. We observe that there
exists a tradeoff between throughput and prioritization under
preemptive and non-preemptive conflict-free query scheduling.
We then present the design and schedulability analysis of three
new real-time scheduling algorithms for prioritized transmis-
sion scheduling. NQS achieves high throughput at the cost of
priority inversion, while PQS eliminates priority inversion at
the cost of query throughput due to the high preemption cost in

conflict-free query scheduling. SQS combines the advantages
of NQS and PQS to achieve high query throughput while
meeting query deadlines. NS2 simulations results demonstrate
that both NQS and PQS achieve significantly better real-
time performance than representative contention-based and
TDMA protocols. Moreover, SQS can maintain desirable real-
time performance by adapting to different workloads. The
simulations also validate our worst-case response time analysis
of each of the RTQS algorithms.

REFERENCES

[1] K. Lorincz, D. J. Malan, T. R. F. Fulford-Jones, A. Nawoj, A. Clavel,
V. Shnayder, G. Mainland, M. Welsh, and S. Moulton, “Sensor networks
for emergency response: Challenges and opportunities,” IEEE Pervasive
Computing, vol. 3, no. 4, pp. 16–23, 2004.

[2] R. Mangharam, A. Rowe, R. Suzuki, and R. Rajkumar, “Voice over
sensor networks,” in RTSS 06, 2006.

[3] J. P. Lynch and K. J. Loh, “A Summary Review of Wireless Sensors
and Sensor Networks for Structural Health Monitoring,” The Shock and
Vibration Digest, vol. 38, no. 2, pp. 91–128, 2006.

[4] V. Kanodia, C. Li, A. Sabharwal, B. Sadeghi, and E. Knightly, “Dis-
tributed multi-hop scheduling and medium access with delay and
throughput constraints,” in MobiCom ’01.

[5] C. Lu, B. M. Blum, T. F. Abdelzaher, J. A. Stankovic, and T. He, “RAP:
A real-time communication architecture for large-scale wireless sensor
networks,” in RTAS, 2002.

[6] K. Karenos, V. Kalogeraki, and S. Krishnamurthy, “A rate control
framework for supporting multiple classes of traffic in sensor networks,”
in RTSS, 2005.

[7] G.-S. Ahn, A. T. Campbell, A. Veres, and L.-H. Sun, “Swan: service
differentiation in stateless wireless ad hoc networks,” in INFOCOM ’02.

[8] A. Koubaa, M. Alves, and E. Tovar, “i-game: an implicit gts allocation
mechanism in ieee 802.15.4 for time-sensitive wireless sensor networks,”
in ECRTS, 2006.

[9] T. Facchinetti, L. Almeida, G. C. Buttazzo, and C. Marchini, “Real-time
resource reservation protocol for wireless mobile ad hoc networks,” in
RTSS ’04.

[10] H. Li, P. Shenoy, and K. Ramamritham, “Scheduling messages with
deadlines in multi-hop real-time sensor networks,” in RTAS ’05.

[11] M. Caccamo, L. Y. Zhang, L. Sha, and G. Buttazzo, “An implicit
prioritized access protocol for wireless sensor networks,” in RTSS, 2002.

[12] B. D. Bui, R. Pellizzoni, M. Caccamo, C. F. Cheah, and A. Tzakis, “Soft
real-time chains for multi-hop wireless ad-hoc networks,” RTAS ’07.

[13] O. Chipara, C. Lu, and J. A. Stankovich, “Dynamic conflict-free query
scheduling for wireless sensor networks,” in ICNP, 2006.

[14] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “TAG: a
tiny aggregation service for ad-hoc sensor networks,” in OSDI, 2002.

[15] G. Zhou, T. He, J. A. Stankovic, and T. F. Abdelzaher, “RID: radio
interference detection in wireless sensor networks,” in INFOCOM, 2005.

[16] A. Meliou, D. Chu, J. Hellerstein, C. Guestrin, and W. Hong, “Data
gathering tours in sensor networks,” in IPSN ’06.

[17] A. N. Audsley, A. Burns, M. Richardson, and K. Tindell, “Applying new
scheduling theory to static priority pre-emptive scheduling,” Software
Engineering Journal, 1993.

[18] I. Rhee, A. Warrior, J. Min, and L. Xu, “DRAND: Distributed random-
ized TDMA scheduling for wireless ad hoc networks,” in MobiHoc, ’06.

[19] M. Lacage, “Ns2 802.11b/e support. http://yans.inria.fr/ns-2-80211/.”

	Real-time Query Scheduling for Wireless Sensor Networks
	Recommended Citation
	Real-time Query Scheduling for Wireless Sensor Networks

	tmp.1415913124.pdf.CLt48

