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Abstract

We present a novel architecture and execution model for
an infrastructure supporting fault-tolerant, long-running
distributed applications spanning multiple administrative
domains. Components for both transaction processing and
persistent state are replicated across multiple servers, en-
suring that applications continue to function correctly de-
spite arbitrary (Byzantine) failure of a bounded number of
servers. We give a formal model of application execution,
based on atomic execution steps, linearizability and a sep-
aration between data objects and transactions that act on
them.

The architecture is designed for robust interoperability
across domains, in an open and shared Internet computing
infrastructure. A notable feature supporting cross-domain
applications is that they may declare invariant constraints
between data objects and furthermore declare dependencies
on constraints maintained by other applications, leading to
flexible, incidental atomicity between applications. The ar-
chitecture is highly evolvable, maintaining system availabil-
ity and integrity during upgrades to both application com-
ponents and the system software itself.

1. Introduction

The Internet revolutionized computer networking by
providing a common, global communication infrastructure.
However, building dependable and secure applications on
top of it still poses a challenge, as witnessed by intermittent
availability of Internet-based services and attacks success-
fully breaching their security. Meanwhile, demand for glob-
ally distributed yet interoperable information systems has
long been growing, as has the realization that software ar-
chitecture paradigms for traditional centralized systems do
not easily carry over to distributed and decentralized ones.

This paper gives a formal model of a novel architecture
for a globally distributed, survivable and evolvableappli-
cation infrastructure, which we call Survivable Workflow
Transaction Infrastructure (SWFTI). It features a transac-
tional programming model, based on atomic execution steps

by activetransactioncomponents that monitor and modify
the state of passiveobjectcomponents. As an example, a
transaction in a workflow application might observe an in-
put queue object, process each item that is inserted into the
queue and deposit the result into another queue object. This
model is simple yet inherently concurrent, and is well suited
to cross-domain application workflow processing. Software
can be developed assuming a sequential, failure-free envi-
ronment and the infrastructure ensures linearizability and
failure recovery for all executions, within or across admin-
istrative boundaries.

A novel feature of SWFTI is that applications can declare
and depend on invariants between data objects, even across
domains, while providing non-interference guarantees for
independent applications in the shared infrastructure.

The architecture is designed to support continued, cor-
rect execution of long-running, distributed applications in
spite of failures and attacks. To achieve this, multiple
copies of both active and passive component are hosted
on server replicas running on independent physical host
servers. Replicas engage in anagreement protocol, ensur-
ing that all non-faulty replicas in the group take identical
steps. SWFTI tolerates theByzantine failureof a bounded
number of replicas in a group, which includes both crashes
and erroneous behavior such as may result from software
bugs or intrusions by external attackers and malicious insid-
ers. This is the strongest fault model possible, since faulty
components may behave arbitrarily.

The remainder of the paper is organized as follows. Sec-
tions 2 and 3 discuss related work. Section 4 presents a se-
rial (centralized) model of SWFTI. Section 5 gives a model
of distributed SWFTI systems, with correctness formulated
in terms of the serial systems.

2. Related Work

This section discusses a Byzantine fault-tolerant algo-
rithm on which SWFTI builds, as well as related work in
Grid and peer-to-peer systems.
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2.1. Fault-tolerant state machines

The Byzantine fault-tolerance capability of SWFTI is
built upon CLBFT [6], a practical Byzantine agreement al-
gorithm for for deterministic replicated state machines in
asynchronous, distributed systems. Each replica group has
3f + 1 replicas, where at mostf can be faulty [16, 5].

A replicar is correctwith respect to a componentv if it
correctly executes its (necessarily deterministic) implemen-
tation ofv and sends and receives correct agreement proto-
col messages from enough correct replicas to reach agree-
ment. If a replica is not correct then we say it isfaulty.
CLBFT makes the relatively weak assumption that the de-
lay for message delivery does not grow faster than real time.
This assumption is necessary since distributed consensus is
impossible with arbitrary message delays [10].

The CLBFT algorithm works roughly as follows: a client
sends a request to a designatedprimary replica server. The
primary sends apre-preparemessage with the request and
a sequence number to all replicas, who send a correspond-
ing preparemessage to one another to ensure agreement on
the sequence number. Upon receiving2f prepare messages
matching its pre-prepare message, a replica broadcasts a
commitmessage to all replicas. Upon receiving commit
messages from2f + 1 replicas (possibly including its own)
a replica executes the request and sends the result to the
client. Upon receivingf + 1 matching results, the client
proceeds using that result value. Authenticity and integrity
of messages is protected using cryptographic signatures.

If a client times out waiting for a reply (possibly due to
a faulty primary) it broadcasts the request to all replicas,
which either reply with the return value (if the operation
was already committed) or forward the request to the pri-
mary and set a progress timer. If2f replicas time out, all
correct replicas switch to another primary in aview change
operation and process the request using the new primary.

2.2. Grids and peer-to-peer systems

Grid computing [12] and peer-to-peer systems [2] have
the common objective of sharing and coordinating use of re-
sources within virtual communities [17, 11]. Grid research
has historically been driven by the need of the scientific
community to share instruments and distribute large com-
putations and data sets, while research in peer systems was
spurred by decentralized file sharing networks.

Grids have traditionally been cooperatively managed by
scientific communities of modest size, with implicit trust
among participants and only partially automated infrastruc-
ture and application configuration. Efforts are under way
to scale up and commercialize grids using emerging web
services standards [1].

Peer-to-peer systems have mainly been aimed at file
sharing and publication, with high scalability, decentral-

ized resource naming and in some cases, availability de-
spite node failures and user anonymity. Many systems use
distributed hash table (DHT) algorithms such as CAN [21],
Chord [23], Pastry [20] and Tapestry [25], for resource dis-
tribution and discovery. These enable efficient decentral-
ized lookup of an object by a key value (e.g., a file name).

Like Grids, SWFTI is designed to support arbitrary ap-
plication and service types, and like peer-to-peer systems,
it is designed to work on global scales with full decen-
tralization. The main objective of SWFTI though, is the
provision of a shared infrastructure for survivable exe-
cution of complex, long-running, distributed applications,
that interact with each other through persistent data ob-
jects. SWFTI achieves this through Byzantine fault-tolerant
replication of both processing and data, and by specify-
ing a robust, transaction-oriented execution model as an
integral part of its architecture (in lieu of e.g. commu-
nicating processes). Grids, in contrast, are fairly batch-
oriented, with limited or ad-hoc application-level support
for restarting failed processes and no tolerance of Byzantine
faults. DHT-based peer-to-peer networks are decentralized
and scalable by design but, to date, mainly support storage
and routing of static data and generally tolerate only fail-
stop failures, i.e. nodes halting or leaving the network.

The goals of SWFTI also differ significantly from
those of traditional distributed operating systems, such as
Amoeba [24], Chorus [22], Clouds [9], and the V distrib-
uted system [8]. These support a traditional programming
model by making a distributed system appear to the user as
if it were a uniprocessor, offering a full complement of oper-
ating system services. SWFTI in contrast, does not hide the
distributed nature of applications. Applications are written
in terms of transactions accessing distributed objects. Ob-
jects rely on their local hosts for whatever traditional oper-
ating system services they require for their implementation.

3. Background: I/O Automata
Since SWFTI targets high-availability and safety-critical

applications, we formally model its correct executions. This
provides an unambiguous specification of the execution
model, facilitating rigorously tested or verified system im-
plementations with high design and implementation diver-
sity. It also permits us to construct formal proofs that im-
plementations satisfy specific properties of the system, in-
creasing our confidence in them. Finally, a formal exe-
cution model enables rigorous reasoning about the appli-
cations running within the infrastructure, including system
services such as security and upgrade installations, etc.

Our model is based on I/O automata [18], so we provide
a short review. An I/O automaton is an (infinite) state ma-
chine whose state transitions areactions. An I/O automaton
signatureS consists of a set of actions, denotedacts(S ),
partitioned intoinput actions, output actionsand internal
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actions, denotedin(S ), out(S ) and int(S ), respectively.
Let ext(S ) = in(S ) ∪ out(S ) be theexternal actionsof S.
An automatona is a tuple (sig, states, start, trans, tasks),
with sig an automaton signature,statesa (potentially infi-
nite) set of states,starta non-empty subset ofstates, transa
state-transition relation, with trans⊆ states× acts(sig) ×
statesandtasksan equivalence relation onext(S ). We ab-
breviateacts(sig(a)) asacts(a), and similarly forin, out
and so forth.

An execution fragmentof a is a finite sequences0,
π1, s1, π2, . . . , πr, sr or an infinite sequences0, π1,
s1, π2, . . . of alternating states and actions such that
(sk, πk+1, sk+1) ∈ trans(a) for everyk ≥ 0. An execu-
tion is an execution fragment beginning in a start state. An
executionα is fair if for each task partitionC, α is finite
and all actions inC are disabled inα’s final state orα is
infinite and there are either infinitely many occurrences of
actions fromC in α or infinitely many occurrences of states
in which all actions inC are disabled. Letexecs(a) and
fairexecs(a) be the set of all executions and fair executions
of a, respectively.

The trace of an executionα of a, denotedtrace(α), is
the subsequence ofα consisting of all the occurrences of
actions fromext(a). Any two finite execution fragments
α, α′ of a whereα′ begins with the last state ofα may be
concatenated (less the last state ofα) to yield another exe-
cution fragment ofa, denotedα · α′. The occurrence of an
actionπ in an execution or trace is called aπ event.

An action π ∈ int(a) ∪ out(a) is enabled in state
s ∈ states if there exists transition(s, π, s′) ∈ trans, for
some states′ ∈ states. Input actions are always enabled
by definition, so for everyπ ∈ in(a) and states ∈ states
there is a tuple(s, π, s′) for somes′ ∈ states. The actions
in in(a) ∪ out(a) are called thelocal actions ofa, anda is
said to bequiescentin states if none of its local actions are
enabled ins.

A collection {ai}i∈I of automata may becomposedto
form a new automatona if the signatures of each pair
ai 6= aj are compatible, meaning that each internal or out-
put action is under the control of a single automaton. For-
mally, a collection{Si}i∈I of signatures (indexed by some
countable setI) is compatibleif for each pairSi and Sj

with i 6= j we haveint(Si) ∩ acts(Sj ) = ∅, out(Si) ∩
out(Sj ) = ∅ and each action is contained in finitely many
setsacts(Si). The signature of the composed automaton
a hasout(a) =

⋃
i∈I out(ai), int(a) =

⋃
i∈I int(ai) and

in(a) =
⋃

i∈I in(ai)−
⋃

i∈I out(ai). The states of automa-
tona are defined as the Cartesian product of the states of its
component automata, that isstates(a) =

∏
i∈I states(ai).

Similarly,start(a) =
∏

i∈I start(ai). trans(a) is the set of
triples(s, π, s′) such that for alli ∈ I, if π ∈ acts(ai) then
(si, π, s′i) ∈ trans(ai) otherwisesi = s′i, with si denoting
the part of states “belonging” toai. The task equivalence

classes of the component automata become the equivalence
classes ofa, that is:

⋃
i∈I tasks(ai).

Given an execution fragmentα and some set of actions
A we define theprojectionof α on A, denotedα|A, as the
subsequence ofα comprised of all adjacent states and tran-
sitionsπr, sr whereπr ∈ A. Similarly, for a traceβ we de-
fineβ|A as the subsequence ofβ comprised of all actions in
A. Theprojectionα|ai of an executionα of a composition
automataa on one of its component automataai is defined
asα|acts(ai), with each statesr replaced by the the state
of ai in sr. Similarly, the projectionβ|ai of a traceβ of a
is defined asβ|ext(ai ). It can be shown that executions and
traces ofa yield executions and traces ofai when projected
onai, for eachi ∈ I. Conversely, given an executionαi for
eachi ∈ I and a sequenceβ of actions inext(a) such that
β|ai = trace(αi) for eachi ∈ I, there is an executionα of
a such thattrace(α) = β andα|ai = αi for eachi ∈ I.
Furthermore, ifβ is a sequence of actions inext(a) such
thatβ|ai ∈ traces(ai) for eachi ∈ I, thenβ ∈ traces(a).
These theorems enable modular reasoning about executions
and traces of composite automata.

4. Serial SWFTI systems

This section describes two formal models of SWFTI in
a sequential execution environment, to lay the groundwork
for defining correctness for distributed systems. Our base
model is a serial system with a fixed set of components.
Most information systems are not static, though, but are
continually upgraded and and evolved to meet the needs of
their users. The second model, therefore, extends the first
one to an evolvable system, whose set of components may
vary over time. Section 5 will describe the distributed and
the replicated SWFTI systems, with correctness defined in
terms of the evolvable and distributed system, respectively.

4.1. Components and operations

Objects and transactions are modeled with object and
transaction automata, respectively. LetVO andVT be dis-
joint, infinite sets ofobject identifiersandtransaction iden-
tifiers, respectively. LetV denoteVO ∪ VT . Let A(v) de-
note the automaton corresponding tov, for anyv ∈ V. We
use the letterso, t and v to denote elements ofVO, VT ,
andV, respectively, and to denote corresponding automata
A(o), A(t) andA(v), when clear from context.

An object automatono is a deterministic I/O automaton
that defines one or moreoperationsthat model, for example,
object methods. Each operation has anoperation signature
f(~P ) : W , consisting of anoperation namef , a tuple~P =
(P1, P2, . . . , Pn) of parameters typesand areturn typeW .
We use the dot notationo.f(~P ), to denote an operationf
and its objecto.
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An objecto may have multiple requests pending. To en-
sure that request and responses are correctly matched up,o
has an infinite set ofrequestinput actions for each opera-
tion f in o and each tuple~p of parameters forf , denote by
qofi(~p) for eachi ∈ N. Similarly, for each request action
qofi in o and each possible return valuew of f , o has an
infinite set ofresponseoutput actions, denotedrofi(~p) : w.

The external actions of each objecto are comprised
solely of request actions (requests, for short) and response
actions (responses, for short). The operations of each ob-
ject automatono are partitioned intoaccessorsandmuta-
tors. Intuitively, mutators can affect the future externally
observable behavior ofo whereas accessors cannot.

Since the internal state of object automata is opaque, we
let Do denote the domain ofuser-view statesof any object
o ∈ VO. A user-view state is some representation of an
object’s state that can be stored and passed around in the
system. All objects have the accessorgetData() : Do and
mutatorsetData(Do) : ∅. ThegetData operation returns
the user-view state corresponding to the current state of an
object and thesetData operation sets the current state of an
object to one corresponding to the given user-view state. We
say that objecto is in user-view stated if the getData oper-
ation ofo would returnd. We define that all states resulting
from a setData response action are start states of that ob-
ject. As a corollary, for any reachable user-view state of an
objecto, there is a reachable state ofo which is a start state.

We define a set∇ of exceptional return values, that in-
dicate run-time failures, deprecated operations or invalid
parameters and other unexpected conditions that an object
cannot handle. An operation whose signature has return
typeW is allowed to return any value inW ∪∇.

A transaction automatont is a deterministic I/O automa-
ton that invokes object operations throughoperation calls,
consisting of a pair of request and response actions. For
each operationf that t might call on some objecto and
each tuple~p of parameters off , t has request output ac-
tions, denotedqt

ofi(~p), for eachi ∈ N. For each request
output actionqt

ofi in t and each possible return valuew of
f , t has a response input action, denotedrt

ofi(~p) : w.
The external actions of each transaction automatat are

comprised of requests and responses, in addition to the input
actioncreatet and the two output actionsrequestCommit t

and requestAbort t. The createt action starts the execu-
tion of t while the other two terminate it, signalling suc-
cess or failure, respectively. Transactiont is quiescent
before acreatet action and after anrequestCommit t or
requestAbort t action.

A transaction may evaluate a Boolean expression over
object accessor return values to determine whether mutat-
ing operations should be called. Our definition is general
enough to permit various styles of transaction implementa-
tions, e.g. using explicit guards and effects or conventional

sequential programming constructs.
For each object or transaction automatonv ∈ V , let

requests(v) andresponses(v) denote the set of request and
response actions, respectively, inacts(v).

For any transactiont ∈ VT , we say that the set of objects
on whicht calls accessors only is theread setof t, denoted
R(t), and that the set of objects on whicht calls at least one
mutator is thewrite setof t, denotedW (t). Note thatR(t)
andW (t) may have elements in common.

4.2. Serial, static system

We define correct executions of the serial system, which
serve as a correctness condition for the executions of the
evolvable system. Since the modeling of the latter re-
quires components to be dynamically created, destroyed
and evolved, we proceed as if all possible component au-
tomata were a part of the model from the beginning. Only
the (finite) set of automata that “exist” in a SWFTI system
appear in its executions. Automata that have not yet been
added or that have been removed are in a quiescent state,
so their actions never appear in system executions. This is
more convenient than trying to model the creation or mod-
ification of I/O automata, and is the approach adopted in
[14, 19], for example.

4.2.1 Serial scheduler

We define for anyU ⊆ V a serial schedulerautomaton
schedU , that schedulestransactions inU for execution,
through theircreate actions. Essentially,schedU treats all
components inV \ U as non-existent. We wish to support
concurrent scheduling of multiple “instances” of a particu-
lar transaction automaton. Therefore, whenschedU intends
to invoke a transactiont ∈ U , it actually schedules a func-
tionally equivalentinvocation automatontj instead, but the
result is the same as ift had been scheduled directly. This
also simplifies our definition of execution correctness, since
we can project traces directly onto transaction invocations.
SchedulerschedU picks a freshtj each time, e.g. by using
somej greater than any whichschedU has already used.

For eacht ∈ VT and eachj ∈ N let tj denote the in-
vocation automaton that is identical tot except each of its
actions has been subscripted withj. For example,createt

is renamed tocreatetj . Let VI denote the set of all such
automata for allt ∈ VT .

Operations on objects inU may be requested by theenvi-
ronment, which represents operation calls issued by clients
(e.g. end-user principals) external to the system. We denote
a request or response action of a cliente for operationf of
o by re

ofi andqe
ofi, respectively, for any integeri ≥ 1.

Since our model captures external operation calls, nei-
ther invocation automata nor clients share actions with ob-
ject automata directly. Instead, for eacho ∈ V there is a
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request handlerrho that mediates operation requests and re-
sponses betweeno and transaction invocations and clients.

For each request actionqofi ∈ requests(o) and response
action rofi ∈ responses(o), rho has output actionsqofi

and input actionsrofi, respectively, for each integeri ≥ 1.
It also has input actionsqt

ofij and an output actionrt
ofij , re-

spectively, for each transaction invocationtj ∈ VI . Finally,
it has input actionsqe

ofi and output actionsre
ofi, respec-

tively, for each external principale and each integeri ≥ 1.
When a request actionqt

ofij or qe
ofi occurs in a request

handler, it eventually forwards it too as aqofi event. When
it gets a corresponding responserofi it eventually forwards
it back totj or e as anrt

ofij or re
ofi event, respectively.

4.2.2 Serial execution

We use serial, sequential executions as the base model
for correctness due to their intuitiveness, simplicity and
tractability in formal reasoning.

For any subsetU ⊆ V let UO denote the objects inU ,
and letUI denote the set of transaction invocation automata
for the transactions inU . For any finiteU ⊆ V we define
theserial system automatonASU as the composition of the
automata inUO ∪ UI , the request handlers of the objects
in UO and theschedU scheduler automaton, using stan-
dard I/O automata composition [18]. To prevent transac-
tions from calling non-existing objects we require that each
transaction automatat ∈ U only refers to objects inU , that
is: R(t) ∪W (t) ⊆ U .

An executionαt of a transaction invocationtj is well-
formed if trace(αt) = π · β1 · β2· . . . ·βn · π′, where
π = createtj , for each1 ≤ k ≤ n we have thatβk is a trace
of the formqt

ofij(p), qofi(p), rofi(p), rt
ofij(p), for some

operationf on someo ∈ R(t) ∪W (t), parameter listp of
f and some integeri ≥ 1, andπ′ = requestCommit tj or
π′ = requestAbort tj .

A well-formed client call fragmentis an execution frag-
mentαe such thate is a principal andtrace(αe) has the
form qe

ofi(p), qofi(p), rofi(p), re
ofi(p), for some opera-

tion f on someo ∈ R(t)∪W (t), parameter listp and some
i ∈ N.

The steps of different transactions and client calls are
not interleaved in a serial system execution. More formally,
let a well-formedcall fragmentbe a well-formed client call
fragment or a well-formed transaction invocation execution.
An executionα of ASU is aserial executionif trace(α) is
a concatenation of the traces of well-formed call fragments,
with actioncreatetj appearing at most once for anyj ≥ 1.

A transactiont is terminating if each executionαt ∈
execs(t) is finite. Similarly, an objecto is terminating if
each execution of an object operation is finite, i.e. each ex-
ecution fragmentqofi . . . rofi appearing inexecs(o) for an
operationf on o is finite. In practice, we expect all correct

components to be terminating.
An execution of a transaction invocationtj is partitioned

into two execution fragments, which we call theguardand
the effect, respectively. We define the guard as consisting
of zero or more accessor operations on objects inR(t). We
define the effect as begin empty or a sequence of accessor
operations on objects inR(t) and mutator operations on ob-
jects inW (t), beginning with a mutator operation.

4.2.3 Linearizability and fairness

Although SWFTI admits non-serialconcurrentexecutions,
we want all executions to be linearizable [15]. An execu-
tion α ∈ execs(ASU ) is linearizableif there exists a serial
executionα′ ∈ execs(ASU ) such that for each transaction
invocationtj ∈ VI we havetrace(α)|tj = trace(α′)|tj .
Said another way, the two executions “look the same” to all
transaction invocations, so they cannot tell the difference
between the concurrent execution and the serial one.

We also want our specification to capture the notion that
all transactions get fair turns to perform execution steps and
that all pending object operations are eventually performed.
We therefore let each serial system automatonASU have
for each transaction invocationtj ∈ UI an internal action
πtj

, which is always enabled. Aπtj
event schedulestj for

execution, and we put all the scheduling actions for a par-
ticular transactiont ∈ U in the same task partition ofASU .
Furthermore, we put each request handlerrho for each ob-
jecto ∈ U in a task partition of its own. This ensures that in
any α ∈ fairexecs(ASU ), all transactions and objects get
fair turns to execute.

4.3. The computation graph

Intuitively, the connections between transactions and ob-
jects correspond to the flow of information and causality in
the system; the behavior of a transaction is influenced by
the data it accesses and its mutating operations on objects
influence the future behavior of those objects.

We say that the components ofV induce acomputation
graphG = (VO + VT , E); a directed, bipartite graph over
V , with its vertices partitioned intoVO andVT . Each edge
(v1, v2) ∈ E represents potential operation calls between
v1 andv2. For anyo ∈ VO andt ∈ VT , E has an edge from
t to o iff o ∈ W (t) and an edge fromo to t iff o ∈ R(t). For
any v ∈ V , Let Ein(v) andEout(v) be the incoming and
outgoing edges ofv, respectively. LetE(v) = Ein ∪ Eout,
the incident edges ofv.

Properties of the flow of information inG may be stat-
ically analyzed, to prevent information “leaks” and reason
about the impact of changes to components, etc. Formally,
for any pathp ⊆ E connecting two objectso1, o2 ∈ VO,
let the correspondingnode pathbe the set of components in
V incident to any edge inp. Let pathsT (o1, o2) denote the
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union of all node paths fromo1 to o2 using only edges inci-
dent to transactions inT , for anyT ⊆ VT and letspanT (o)
be the union of all such node paths beginning at an objecto.
A simple property we can state is that ifo2 /∈ spanVT

(o1)
then information cannot leak withinG from objecto1 to o2.

4.4. Constraints and dependencies

A SWFTI application is some subgraph ofG, and each
object or transaction inV belongs to exactly one applica-
tion. LetA be an infinite set ofapplication identifiersand
for any componentv ∈ V, letapp(v) denote its application.

Applications may require invariants to be enforced
across multiple data objects, e.g. to ensure that each mem-
ber of one collection has a corresponding member in an-
other collection. We want the transactions that maintain an
invariant to appear to run atomically with transactions that
mutate objects involved in the invariant. To this end, we al-
low such transactions to be designated asconstraints. Let
constr ⊆ VT be the set of constraints.

We augment our definition of correct serial executions to
support constraints. Roughly, if an applicationA ∈ A in-
cludes a constraintt and some other transaction or sequence
of constraints inA updates an objecto ∈ R(t), then we
require that no other transaction ofA can witness a state
in which o has been modified andt has not yet executed.
Moreover, we allow an application to declare the fact that
its correct execution depends upon invariants enforced by
the constraints ofotherapplications. We say thatincidental
atomicity occurs when an applicationA uses objects up-
dated by constraints in applications thatA depends on.

Constraints and dependencies are a powerful mecha-
nism, since the developer of an application can define such
constraints without having any control over the implemen-
tation of the objects involved and without any knowledge
about other applications that may mutate them. Implemen-
tations have options for how and when a particular con-
straint is enforced, i.e. by running it as a sub-transaction
of transactions writing to its read set or more lazily, as other
transactions later access objects in its write set.

We formally state the correctness condition for serial ex-
ecutions with constraints and dependencies. The acyclicap-
plication dependency relationincludes pair(a1, a2) only if
applicationa1 depends onapplicationa2, which we write
asa1 ≺ a2. Let≺∗ denote the transitive, reflexive closure
of ≺ and letdepends(A) denote the set of applications on
whichA (transitively) depends, the set{B ∈ A | A ≺∗ B}.
Let constrA denote the set of constraintsrelevantto A, the
set{t ∈ constr | app(t) ∈ depends(A)}.

Let β be the trace of any serial execution of serial system
ASU , for someU ⊆ V. Let βs be any subsequence ofβ
with βs = qofi · β′ · qt

pgj , wheref is a mutator of some
objecto andg is an operation on some objectp andi, j ∈
N. Then, if t ∈ constrA for some applicationA andp ∈

spanconstrA
(o) then either there is no request fromt to o

in β′ or β′ contains acreatesk action, for each constraint
s ∈ pathsconstrA

(o, p) and somek ∈ N.

4.5. Application non-interference

Although SWFTI applications execute in a shared in-
frastructure, the correct execution of an application should
not have to rely on the correctness (safety and liveness) of
other, unrelated applications. Yet, certain undesirable inter-
actions may result when linearizability is realized through
concurrency control, e.g. when an object needed by one
application is locked by a transaction in another.

We want to provide non-interference guarantees for in-
dependent applications. Specifically, we wish to guarantee
that an applicationA cannot beblockedby an application
B /∈ depends(A). The idea is that by declaring a depen-
dency on the applications independs(A), the developer of
A has expressed a measure of trust in these applications,
whereas other applications remain untrusted.

We say that a SWFTI system guarantees
non-interference if for any transactiont ∈ A,
if t is terminating and all transactions in⋃

v1,v2∈R(t)∪W (t) pathsconstrA
(v1, v2) are terminating

and all objects{o ∈ R(t)∪W (t) | app(o) ∈ depends(A)}
are terminating, then all invocations oft will terminate.

4.6. Evolvable, serial system

A serial system automatonASU models a static SWFTI
system. We now define theevolvable serial system automa-
ton AE, that allows system components to be added, re-
moved and changed during the course of an execution.

We define theevolvable serial schedulersched∆ as shar-
ing create actions with all transaction invocation automata
in VI . Schedulersched∆ keeps in its state the set of au-
tomata that it considers to currently exist and be candidate
for scheduling. A component is “created” or “destroyed” by
adding or removing it from that set, respectively.

We introduce persistent names for components, so we
can “modify” an automaton by mapping an existing com-
ponent namex to a different automaton. Formally, letN
be an infinite set ofcomponent names(names, for short).
Schedulersched∆ stores a finite, injectivesystem compo-
nentsfunctionN 7→ V in its state, relating names of ex-
isting component to their automata. LetN andV denote
respectively the names and components appearing in the do-
main and range of that function and letVO = V ∩ VO and
VT = V ∩ VT . Schedulersched∆ only schedules transac-
tions inVT for execution.

We defineAE as the composition of all of the automata
in VO∪VI , the request handlers of the objects inVO and the
sched∆ scheduler automaton, using standard I/O automata
composition.
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Let α be an execution ofAE. For any states ∈
α let syscomp(s) denote the components function of
sched∆ in state s. We call any execution fragment
si, πi+1, si+1, πi+2, . . . , πi+n, si+n appearing inα where
for all i ≤ k ≤ i+n we havesyscomp(sk) = syscomp(si)
a stable intervalof α. A similar definition applies to any
infinite execution fragmentsi, πi+1, si+1, πi+2, . . . andi ≤
k. If a finite or infinite stable interval is not a subsequence
of any other stable interval ofα then it is amaximal stable
intervalof α.

The following claim captures the idea that the executions
of AE consist of sequences of normal, linearizable appli-
cation execution steps interspersed by evolution steps that
modify the system components function.

Claim 1: Let α ∈ execs(AE ) = α0 ·π1 ·α1 ·π2 · . . . ·πn ·
αn, where for each0 ≤ k ≤ n execution fragmentαk is a
maximal stable interval ofα. (note that eachπk is asystem
evolution stepof α, transitioning between states with non-
identical component functions). Letsk0 denote the starting
state of intervalαk of α.

If for each0 ≤ k ≤ n, Vk = syscomp(sk0) comprises
a valid serial system and actionπk follows a call fragment
thenαk is a linearizable execution ofASVk

1. The proof is
based on concatenation of (serial) executions and the fact
that there exists by definition an execution starting in any
user-view state of a serial system (Section 4.1).

5. Distributed SWFTI System

This section describes and formally models a possible
implementation of an evolvable SWFTI system where com-
ponents are assigned to replicated servers, whose replicas
each execute on a physical host.

There are two main aspects of a distributed SWFTI sys-
tem. Thelogical systemconsists of components, applica-
tions, constraints and application dependencies. Thecon-
figurationdetermines how that logical system is partitioned
into logical servers and how the servers are replicated and
mapped to physical hosts.

More formally, adistributed SWFTI systemis a tuple
Y = (logsys, config), wherelogsys is the logical system
andconfig the physical system. We letlogsys be a tuple
L = (comp, app, constr ,≺), wherecomp maps names to
components,app a function mapping components to appli-
cations,≺ an application dependency relation andconstr
the subset of transactions inVT that are constraints. We let
config be a tupleC = (server , reps, host , impl), where
server is a relation partitioning the components inV , reps
maps the partitions to (logical) replica servers,host maps
replica servers to host server machines andimpl maps com-
ponents and replicas to software implementations.

1All but the last fragment are trivially fair, since they are serial and end
in a quiescent state after a response action.

After presenting the system model we describe how its
structure is encoded in the state of data objects within the
system itself.

5.1. Servers, Replicas and Hosts
We assume a domainS of named logical servers

(servers, for short), that we use to partition the elements
of V . Theserver relation ofC is a finite functionN 7→ S,
mapping each component namex ∈ N to the one server in
S thathostscomponentcomp(x). Let comps(s) be the set
{x ∈ N | server(x) = s}. Due to non-interference re-
quirements, all the components on a particular server must
belong to the same application. That is, for any servers and
all v ∈ comps(s) we require thatapp(v) = A, with A some
application identifier inA. The partitioning into servers is
thus a subpartition of the partition into applications.

Each server isimplementedby a non-empty set ofserver
replicas (replicas, for short), drawn from a domainR of
named replicas, that can execute software and communi-
cate with other replicas over a network. Thereps relation
of C is a finite injectionS × R, mapping eachs in server
to one or more replicas that implements, called thereplica
groupof s. Since each replica is (a part of) the implemen-
tation of at most one server, we letserver(r) denotes, for
any replicar ∈ reps(s). Also, let comps(r) be a short-
hand forcomps(server(r)) and reps(x) a shorthand for
reps(server(x)), for anyx ∈ N .

Let the neighboring serversneigh(s) of a servers be
the set of servers hosting a component adjacent to some
component hosted ons, in G. Let theneighboring replicas
neigh(r) of a replicar be the set of replicas implementing
the neighboring servers ofserver(r).

Although replicas are in most respects the ultimate hosts
of servers and components, we define them as being “vir-
tual” machines on physicalhost machines(hosts, for short),
drawn from a domainH of named hosts. Thehost relation
of C is a finite relationR 7→ H, mapping each replicar for
which reps is defined to the one host inH that runs r. A
host may run multiple replicas for different servers, but we
assume that replicas on the same machine are completely
isolated from one another, e.g. through server virtualization
[3]. Let reps(h) be the set of replicas running onh, for any
h ∈ H. Let hosts(v) denote the set of hosts that run some
r ∈ reps(v), for anyv ∈ V .

5.2. Implementations
LetIv be the set ofimplementationsof an object or trans-

action automatonv ∈ V , andI the union of all such imple-
mentations. An implementationmv ∈ Iv is some repre-
sentation ofv that can be stored and executed on physical
hosts.

An object implementationmo provides implementations
of each of the operations ofo. A transaction implemen-
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tation mt calls operations on the object implementations
corresponding to objects inR(t) ∪ W (t). Each execu-
tion of a transaction implementationmt corresponds to
the execution of a fresh invocation automatontj ∈ VI .
Implementationmt implements the operationcreate() :
{commit , abort}, which resetsmt to its beginning state,
makes an arbitrary number of operation calls on object im-
plementations and terminates, returning an indication of
success or failure.

We define theexecutionof a transaction implementation
mt as the alternating sequence of operation calls it makes
and the return values passed back to it. Similarly, anex-
ecutionof an object implementationmo is the alternating
sequence of operation calls made on it and the return values
it passes back.

For any implementationmv ∈ Iv we let execs(mv )
denote the set of all possible executions ofmv, that is:
executions ofmv that could result given the right se-
quence of requests or return values, for transaction and
object implementations, respectively. Implementationmv

correctly implementscomponentv if for each execu-
tion of o1.f1(~p1), w1, o2.f2(~p2), w2, . . . , on.fn( ~pn), wn ∈
execs(mv ) there exists an execution inexecs(v) with trace
qo1f1i1(~p1), ro1f1i1(~p1):w1, qo2f2i2(~p2), ro2f2i2(~p2):w2,
. . . , qonfnin( ~pn), ronfnin( ~pn):wn, with eachij some in-
teger for1 ≤ j ≤ n. This strict correspondence is required
since CLBFT depends on all implementations of a compo-
nent behaving deterministically the same.

An object implementationmo necessarily implements
the pair of operationssetDataandgetData, allowing object
implementations to initialize their internal state in accor-
dance with the passed-in user-view state (encoded in some
generally agreed way [7] and to return their current user-
view state, respectively.

The impl relation ofC is a finite relationN ×R 7→ I,
mapping components and replicas to implementations.

5.3. System objects
The configuration of a SWFTI system is stored in data

objects within the system itself. This simplifies implemen-
tation and affords configuration state the same Byzantine
fault-tolerant protection as application state. It also serves
as a mechanism forreflection, allowing applications to ob-
serve and modify system state. Such modifications, called
system evolution steps (described in Section 4.6), occur
through atomic operation calls on system objects, ensuring
security and fault-tolerance for evolution steps.

The relations of a systemY are partitioned and mapped
onto system objects, in a way that reflects the distribution
of SWFTI system implementations. We define theprojec-
tionof systemY onto a servers in Y as a SWFTI systemYs,
whose relations map subsets of the domains of each relation
in Y to the same values as the synonymous relations inY .

Specifically, relationscomps, constrs, ≺s, servers, repss,
hosts andimpls of Ys are defined respectively for the do-
mains{x | x ∈ comps(s)}, {x | x ∈ comps(s) ∩ constr},
{app(s)}, {x | x ∈ comps(s)}, {s}, {r | r ∈ reps(s)}
and {(x ∈ comps(s), r ∈ reps(s)}. For each servers
in Y there is aserver objectnamedxs, that stores in its
state thecomps, constrs, ≺s, repss, impls andhosts rela-
tions ofYs. Server objectxs is hosted on servers, that is
server(xs) = s. Theserver relation ofY corresponds to
component data in server objects, that is,server(x) = s iff
(x, s) ∈ comps.

The implementation of server objects represents the
SWFTI replica system software that runs in (a virtualization
compartment on) the host. The exception is the implemen-
tation of the server objects for host servers, which represent
the host’s hypervisor software. Since system software is in-
cluded in configurations, it may be modified using normal
system evolution mechanisms.

5.4. Distributed scheduling

In a distributed system each server makes it schedul-
ing decisions autonomously. We fix for each logical server
s ∈ S a distributed server schedulerautomatonscheds,
that schedules transactions incomps(s) (if any) for execu-
tion. Each scheduler shares actions with the request han-
dlers of all objects inVO, as serial schedulers do. We define
thedistributed system automatonAD of a systemY as the
composition of all the automata inVO∪VI , the request han-
dlers of the objects inVO and the distributed schedulers for
each server inY .

An executionα ∈ execs(AD) is correct if there exists
a linearizable executionα′ of AE such thattrace(α) =
trace(α′) and for each statee ∈ α there exists a valid dis-
tributed SWFTI systemY such that the projection ofY
on each servers ∈ S corresponds exactly to the relations
stored in the state of server objectxs in statee. The lat-
ter condition states that the system state encoded in server
objects always corresponds to a well-formed system.

Claim 2: If the object request handlers in the system use
a standard concurrency control (locking) algorithmCCY

then each execution of AD corresponds to an execution of
a corresponding evolvable systemAE. The proof is based
on standard concurrency control theory [4] as in [19] then
executions ofAD will be linearizable.

5.5. Distributed, replicated system

A replicated SWFTI employs multiple replicas of each
server and a Byzantine fault-tolerant agreement protocol
that synchronizes the state of the replicas so that they ef-
fectively simulate a single, centralized server.
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5.5.1 Extended CLBFT algorithm

To accommodate the replication of active clients, we ex-
tended the CLBFT protocol (Section 2.1) roughly as fol-
lows [13]. Letfc andfs be the number of faulty client and
server replicas tolerated, respectively. The client replicas
run CLBFT to agree on the operation to perform as well as
a designated senderreplica, that will send results back to
client replicas, obviating the need for all server replicas to
reply to all client replicas. The client replicas send their re-
quest to the primary server replica, which, if it receives at
leastfc + 1 matching requests, proceeds to run the opera-
tion using CLBFT. The server replicas send their (signed)
results to the designated sender, which, if it receives at least
fs + 1 matching results, relays them to all client replicas.

If client replicas time out waiting for a reply, they send
their request directly to all server replicas, circumventing a
potentially faulty designated sender. The clients then agree
on a new designated sender during the subsequent opera-
tion.

5.5.2 Replica group correctness

We define the correct executions of a replicated system.
We define for each replicar two replica automata: a

server replica automatonAsr for the objects ofserver(r)
and aclient replica automatonAcr for the transactions of
server(r). A replica automaton defines the logic for a
Byzantine fault-tolerant replication algorithm and controls
the input actions of its components. Each replica automa-
ton has independent instances of its components, so we in-
troduce the setVR of replica-subscripted components, that
has for each componentv ∈ V and each replicar ∈ R an
automatonvr that is identical tov except each of its actions
has been subscripted withr. LetVRI be the setVI extended
in the same way. Note that replica automata are generic,
each server and client replica automaton is identical to re-
spectively every other server or client replica automaton,
except its actions are subscripted with an identifierr ∈ R.

A replica automatonA communicates with another
replica automatonA′ through a pair ofchannel automata
cAA′ and cA′A, for messages fromA to A′ and fromA′

to A, respectively. A channel automaton represents an
asynchronous communication link for replica protocol mes-
sages, that may reorder or duplicate messages but always
delivers any message deposited into it to the recipient in a
finite amount of time.

We define thereplicated system automatonAR of a sys-
tem Y as the composition of the component replica au-
tomata for eachr ∈ R, the components inVRO ∪ VRI and
a pair of channel automata for each pair of distinct replica
automata. We say that a protocol message between a client
and server replica issentor received, respectively, when it

is added to or removed from a channel automaton, respec-
tively.

Claim 3: Suppose the server replica automata ofAR
use the same concurrency control algorithmCC Y used to
ensure linearizability of executions ofAD. Then any exe-
cution ofAR corresponds to some linearizable execution of
AD.

We sketch the proof, which is by construction of an exe-
cution traceβ′ ∈ traces(AD) for any execution traceα ∈
execs(AR). LetQR be the set of all request and response
actions of replica-subscripted components, that is the set⋃

v∈VR requests(v)responses(v). Let β = trace(α)|QR.
We buildβ′ from an initially emptyβ′ by scanningβ, mes-
sage by message from the beginning, counting protocol
messages sent and received for request and responses and
appending events toβ′. Let f(v) be the maximum num-
ber of faulty replicas tolerated by replica groupreps(v), for
any v ∈ V . Let |q|n and |r|n denote the number of mes-
sages containing request or responseq or r, respectively, in
the prefix ofβ of lengthn. If, as a result of scanning the
n-th event inβ, we have|qt

ofij(~p)|n = f(t) + 1, we make
that the serialization point for the sending of the request, by
appendingqt

ofij(~p) to β′. Similarly, if |rt
ofij(~p) : w|n or

|rofi(~p) : w|n reachesf(t) + 1 or f(o) + 1, respectively,
we appendrt

ofij(~p) : w or rofi(~p) : w to β′, respectively.
Finally, if |qe

ofi(~p)|n or |re
ofi(~p) :w|n reaches 1 orf(o)+1,

respectively, we appendqe
ofi(~p) or re

ofi(~p) :w to β′, respec-
tively. Note that only a single external request is needed, as
external clients are not replicated, by definition.

We cannot, however, use aqofi(~p) message inAR as the
serialization point for the reception and execution of the re-
quest, since in the replicated system it signifies agreement
on the order of the request with respect to other requests,
not its execution. We therefore expandQR to include mes-
sages of the form〈prepare(q)〉r, which are sent by a server
replicar after it has received2f prepare messages match-
ing its own message forq. This is when the sequence num-
ber for the request is irrevokably decided and the request
is prepared. Though operations are executed strictly in or-
der, they may become prepared out of order. Therefore,
suppose that as a result of scanning a message with request
q = qofi(~p) for an objecto ∈ comps(s), requestq is pre-
pared with sequence numberm. Let l be the lowest request
sequence number fors for which we have not yet added a
request toβ′. If now for eachl ≤ k ≤ m requestqk for s
with sequence numberk is prepared, then we append each
qk to β′, in increasing order.

We note that the concurrency control algorithmCC Y

used forAD can also be used forAR [14]. We claim
that for any executionα ∈ fairexecs(AR), our construc-
tion yields an executionα′ ∈ execs(As) such that (i)
α′ is linearizeable; (ii)α′ is a correct execution ofAD
and (iii) α′ ∈ fairexecs(AD). Claim i) holds, since our
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construction goes from a linearizeable execution ofAR
and chooses serialization points such that the operation re-
sponses received by each transaction inα′ are the same
as those received by the transaction replicas inα. To
show ii) and iii) we appeal to two properties of E-CLBFT,
that are proven in a separate paper [13], namely (a) The
composition

∏
r∈reps(s) Asr × VRO of the server replica

automata for a servers ∈ S simulates the composition∏
o∈comps(s)∩VO

A(o)× ∏
o∈comps(s)∩VO

rho × scheds of
the corresponding objects and request handlers and dis-
tributed scheduler for servers in AD and (b) The com-
position

∏
r∈reps(s) Acr × VRI of the transaction replica

automata for a servers ∈ S simulates the composition∏
t∈comps(s)∩Vt

A(t) × scheds of the corresponding trans-
action invocations and distributed scheduler for servers in
AD. This enables us to argue that for any interaction be-
tween the replicas for a pair of serverss1, s2 ∈ S our con-
struction will yield an execution inAD where the same in-
teractions take place.

6. Conclusions and Future Work

We have described the architecture of SWFTI, an in-
frastructure for survivable applications, that uses replicated
physical hosts to tolerate a bounded number of Byzantine
faulty hosts.

We described its transactional programming abstraction,
based on active transaction components with transient state
performing atomic operations on passive object components
that persistently retain their state. The infrastructure allows
replication of both data objects and the active transaction
components acting on them, so that fault-tolerance is ex-
tended to the whole of an application, not just its state. This
is particularly valuable for long-running application that
must maintain progress in spite of failures and attacks. Sys-
tem evolution is explicitly captured in the execution model
and configuration state is survivably maintained in data ob-
jects within the system itself, with evolution steps occurring
as atomic object operations.

We defined formally the executions of a serial and static
SWFTI system, including fairness and a novel way to spec-
ify transitive, inter-application invariant constraints. We de-
fined the correctness of an evolvable, replicated system in
terms of tree increasingly abstract models. The replicated
system simulates the distributed system, which simulates
the evolvable serial system, which simulates a sequence of
static serial systems.

We are currently working on a reference implementa-
tion of our architecture, to validate its feasibility and per-
formance. We are also working on algorithms for non-
interfering concurrency control and for secure, atomic and
scalable upgrades of SWFTI applications and system soft-
ware, as well as the fully decentralized security subsys-

tem underpinning the security of evolution and application
processing in general.
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