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The Field-programmable Port eXtender (FPX) provides dynamic, fast, and flexible mechanisms to process
data streams at the ports of the Washington University Gigabit Switch (WUGS-20). In order to facilitate
the design and implementation of portable hardware modules for the Reprogrammable Application Device
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Figure 1: RAD design containing a single ingress/egress modules, SRAM interfaces, and reconfiguration
contiol.

1 Introduction

Designers may use FPX resources in a multitude of ways to perform network data processing. The entities
that perform the network data processing will be referred to as modules. Some modules may use all of the
available memory and logic resources, while others use only a single memory resource and a fraction of the
available logic resources. In the later case, multiple modules could be implemented in the RAD FPGA. In
order to support such designs, several pieces of infrastructure logic are necessary.

This document provides the necessary information for creating RAD designs containing two modules.
As shown in Fig. 1, double module RAD designs place a module on both the ingress and egress path while
providing SRAM interfaces and a reconfiguration control block. SDRAM interfaces are not implemented
at this time. ALL MODULES SHOULD CONFORM TO THE RAD MODULE INTERFACE SPECI-
FICATION. This specification is provided in a supplemental document and ensures that modules remain
interoperable and position independent.



2 RAD FPGA Overview

The Reprogrammable Application Device (RAD) in the Field-programmable Port eXtender (FPX) is a
Xilinx Virtex 1000-E Field Programmable Gate Array (FPGA). This device contains a 64x96 CLB array,
with each CLB containing 4 D-type Flip-Flops and 4 Look-Up-Tables (LUTs), for a total of 24,576 Flops
and LUTs. On-chip memory is available in 4096-bit blocks, called BlockRAMs. The device contains
96 BlockRAMs organized in 6 columns of 16 blocks each. The architecture of the Xilinx Virtex 1000-E
along with the column addressing scheme is shown in Fig. 2. Coupled with the Network Interface Device
(NID), the RAD provides logic and memory resources for network data processing, On-chip memory, two
external Zero-Byte-Turnaround (ZBT) SRAMs (Synchronous Random Access Memories), and two external
SDRAMs (Synchronous Dynamic Random Access Memories) comprise the memory resources of the RAD
FPGA.
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Figure 2: Architecture and column addressing for Xilinx Virtex 1000-E FPGA.
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3 Reconfiguration Control

In order to prevent data loss during reconfiguration, Reconfiguration Control is needed to facilitate a hand-
shake between the NID FPGA and RAD modules. As shown in the block diagram in Fig. 3, Reconfiguration
Control provides independent interfaces for each module and uses the RAD_RECONFIG lines to interface
to the NID FPGA. Note that the RAD_RECONFIG lines provide a three-way handshake between with a bit
serial module identification line. Each module interface includes a synchronous reset and reconfiguration
handshake signals, enable and ready. As shown in Fig. 4, the Reconfiguration Control state machine latches
the serial module identification bits sent from the NID FPGA for after a reconfiguration request. Based
on the module indentification bits, the module reconfiguration handshake is initiated with the appropriate
module. After this handshake is completed, Reconfiguration Control signals back to the NID FPGA that
the module is ready for reconfiguration. The NID FPGA signals when reconfiguration is complete and
Reconfiguration Control initiates a reset and enable of the module. Timing for this process is shown in
Fig. 5.

CLK — CLK MODO_RESET [—* INGRESS_RESET
RESET_I. —=| RESET_L MODO_ENABLE — INGRESS_ENABLE

MODO_READY [*—— INGRESS_READY
RAD READY —+— RAD_READY

RAD_RECONFIG[0] — RAD_RECONFIG_REQ —{ RAD_RECONFIG_REQ MOD1_RESET [~ EGRESS_RESET
RAD_RECONFIG[1] —*  RAD_RECONFIG_ID — RAD RECONFIG_ID MODI_ENABLE — EGRESS_ENABLE
RAD_RECONFIG[2] +— RAD_RECONFIG_ACK -=— RAD RECONHG_ACK MODI _READY [+— EGRESS_READY

Figure 3: Block diagram of Reconfiguration Control; implements reconfiguration handshake between NID
FPGA and RAD modules in order to prevent data loss during reconfiguration.

RESET_MOD
i

rad_reconfig_req="1"

I

rd_reconfig_req =0 modX_ready='0"

A

LATCH_BIT2

Y

LATCH_BIT1 LATCH_BITO

Figure 4: Finite state machine bubble diagram for Reconfiguration Control.

CLK
Global 100MHz clock. All signals are synchronous to this clock.
RESET.L



Global synchronous reset,
RAD READY

After the RAD is completely configured, this signal is asserted Iow to the NID.
RAD _RECONFIG REQ

This signal is driven by the NID to the RAD as RAD_RECONFIG(0). After the RAD is completely
configured, the NID will pull this signal high. When a partial reconfiguration command is issued to the
NID, it asserts this signal low to notify the RAD. The signal returns high after all reconfiguration data is
written.

RAD RECONFIG_ID

This signal is driven by the NID to the RAD as RAD_RECONFIG(1), and carries a 3 bit module
indentification in serial form. This identification specifies which module will be reconfigured and is sent
on the 3 clock cycles following the assertion of RAD_RECONFIG_REQ. The bits arrive MSB first, LSB
last. After the LSB is received, Reconfiguration Control initiates the reconfiguration handshake with the
specified module.

RAD RECONFIG_ACK

This signal is driven by the RAD to the NID as RAD_RECONFIG(2). After the RAD is completely
configured, this signal will be pulled high. After the partial reconfiguration request, module identification,
and module reconfiguration handshake is completed, this signal is asserted low to signal that partial recon-
figuration may take place without data loss. This signal returns high after reconfiguration is complete and
the module has been reset and enabled.

The following signals are duplicated for each module in the RAD FPGA. The module number (#) is
specified by the module identification.

MOD#_RESET

This signal is a localized, synchronous reset for the module. It will be asserted low for a single clock cycle
on system reset and following partial reconfiguration. All logic internal to the module should implement a
synchronous reset using this signal.

MOD#_ENABLE

This signal is asserted low to the module on the same clock cycle as RESET L following reconfiguration.
When this signal is de-asserted high, the module must stop accepting cells and flush it’s internal pipelines.

MOD# READY

This signal performs the handshake back to Reconfiguration Control. The module must puil this signal
high following reset in order to prevent reconfiguration during module operation. After MOD#_ENABLE
13 de-asserted high to the module and it has stopped accepting cells and flushed it’s internal pipelines, the
module must assert MOD# READY low in order to signal back to the control interface that it is ready for
reconfiguration.
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Figure 5: Timing diagram for Reconfiguration Control.



4 SRAM Interface

Both of the SRAMSs on the FPX board are accessible from the RAD FPGA. RAD Modules may access
SRAM by interfacing to one of the two identical SRAM Interfaces. A block diagram of the SRAM Interface
is shown in Figure 6. These interfaces simplify memory transactions by abstracting RAD modules from the
signal timing constraints of the Micron ZBT SRAM. Each memory interface arbitrates requests for memory
access using a request (mod#_req) and grant (mod#_gr) signal handshake with each module. The finite state
machine diagram for this handshake is shown in Figure 7. Once a module is granted access to memory, it
may read from memory by holding its read/write signal (mod#_rw) high and issuing the read address on its
address signals (mod#_addr{17:0]). The read data will appear on the data input signals (SRAM_D _IN[35:0])
after 4 clock cycles. A module may write to memory by asserting the read/write signal low, issuing the write
address on the address signals, and issuing the write data on the data output signals (SRAM_D_QUT[35:0]).

A module may issue a read or write on every clock cycle.

wod1_req=0 & mod?_req=0,

modi_req=0 & mod2_req=1

—— CLK

~~—— RESET_L

~——— SRAM_ADDR
—~-—“—m SRAM_DATA
—~—— SRAM_GW
~——— SRAM_CE
—~— SRAM_PINS4

modl_req
modl_gr
modi_rw
mod]_addrf17:0]
modl_d_in[35:0]
modl_d_out[35:0)

mod2_req
mod2_gr
mod2_rw
mod2_addr[17:0]
mod2_d_in{33:0]
mod2_d_out[35:0]

LT T PR

Figure 6: Block diagram for SRAM Interface.

modl_req=0 & mod2_req=0

madi_reg=1 & mod2_reg=1

MODI1_HOLD

mod]_req=1

mod2_reg=1

mod f_req=0 & mod2_req=1

MOD2_HOLD

mod1_req=0 & mod2._req=0

medl_req=1 & mod2_req=1

modl_req={ & mod2_req=1

mod]_req=0 & mod2_req=0

Figure 7: Finite state machine diagram for request/grant handshake with SRAM Interface.

Figure 8 shows an example memory transaction. The module issues a request and receives a grant on the



next clock cycle (assuming no other devices are currently using memory). The module then issues sequential
transactions: write 0, write 1, write 2, read 0, write 3, read 1, read 2, read 3. The data and addresses are the
same in this example for simplicity. Note that the grant signal is lowered before the memory transactions
are complete. After receiving the data from the last read, the module de-asserts its request signal to release
the memory.

mlq__/L__

modl_gr / : ' ; : : : ; : \
modi_sddr{17:0] )( X 2 Xo X3 X1 X') X3 X

mod[_rw

modl_douzse) L X0 Xl XZE
SRAM_ADDR momm‘mm o 5 Xo G xn Xz ><a
SRAM_DATA — : : : X1 X° Xo Xs X X Xa } : :

SRAM_PINS4

Figure 8: Timing diagram for an example memory transaction with SRAM Interface. Note that the grant
signal is deasserted prior to the end of the memory transactions. This occurs when other modules request
memory access during transactions. The module holds its request signal high until its transactions are
complete, then releases the memory.

CLK

Global 100MHz clock. All signals are synchronous to this clock.
RESET_L

Global synchronous reset. This signal is nsed to reset the finite state machine only.
SRAM_ADDR[17:0]

This 18-bit address bus carries the memory address for reads and writes from the SRAM Interface to
the memory. The SRAM Interface latches the address lines in the output D-flip-flop of the chip IOB.

SRAM_DATA[35:0]

This 36-bit tri-state data bus carries the data between the SRAM Interface and memory for reads and
writes. Write data is delayed in the SRAM Interface for two clock cycles to satisfy the timing specifications
of the Micron ZBT SRAM. The SRAM Inteface implements the necessary tri-state buffers and control.

SRAM_GW

This signal is connected to the read/write pin of the memory and is asserted low for writes, high for
reads. When a module has access to the memory, this signal is controlled by the module read/write signal.

SRAM_CE



This signal is connected to the chip enable pin of the memory. When a module is granted access to
mermory, the SRAM Interface asserts this signal low, otherwise it is pulled high.

SRAM_PINS4
This signal is currently an unused address pin that is pulled low.

The following signals are duplicated for each module connected to the interface. The module number
(#) is specified by the module identification.
mod#_req

This signal is asserted high to the SRAM interface to request and hold access to memory. The module
must hold this signal high until the memory transaction is complete,
mod#_gr

This signal is asserted high to the module when the SRAM interface grants the module access to IMEmOry.
When a contending module requests access to memory, this signal is de-asserted low. The module must
complete its current transactions and release the memory by de-asserting its request signal. Note that a
module may hold memory for several cycles after the grant signal is removed in order to complete a memory
transaction. The module designer is responsible for ensuring that starvation of a contending module does
not occur.

mod#.addr[17:0]

This 18-bit address bus carries the memory address for reads and writes from the module to the SRAM
Interface.

mod#_rw

This signal specifies the type of memory access. High assertion specifies a read, while a low assertion
specifies a write. The module should hold this signal high (READ) except when asserting it low (WRITE)
with the address and data for a write transaction to prevent overwriting valid memory contents.
mod#_d_in[35:0]

This 36-bit data bus carries read data from the SRAM Interface to the module. Read data is available 4
clock cycles after the read signal and address are asserted.
mod#_d_out[35:0]

This 36-bit data bus carries write data from the module to the SRAM Interface. Write data must be
issued during the same clock cycle that address and write (mod#.rw = 0) are asserted. Data will reside in
memory 4 clock cycles after the write signal, address, and data are issued to the SRAM Interface.

10



5 Control Cell Processor

The Control Cell Processor (CCP) allows data to be written to FPX memory devices connected to the RAD
FPGA via ATM control cells. Read and write commands may be issued for either of the two ZBT SRAM
devices or SODIMM SDRAM devices; however, only the SRAM interface is implemented at this time. A
block diagram of the CCP is shown in Figure 9.

| l

clk reset_l
—*1 soc_in soc_out [
- data_in[31:0] data_out[31:0] B2
——— tcaff out Control Cell tcaff in [*—
Processor
~—— sram!_req sram?2_req [
—* sraml_gr sram?_gr e
Re2N sram]_d_in[35:0] sram2_d_in[35:0] ot
sram_addr[17:0] sram_d_out[35:0] sram_rw

18 36

Y

i

Y

Figure 9: Block diagram of the Control Cell Processor (CCP).

The CCP examines all cell headers and captures properly formatted control cells destined for the CCP.
All cells with an incorrect HEC field are dropped. CCP control cells must arrive on the FPX Control VCI
for the RAD FPGA; hence, the ATM header fields must be VPIOx000, VCI0x0032, and a correct HEC.
RAD control cells are addressed to RAD modules using the ModuleID field. As the CCP will most likely
be included in most designs, the CCP is identified by ModuleID0x00.

The control cell format used for memory transactions depends on the destination device. The control
cell format for SRAM transactions is shown in 10. A control cell may issue read andor write commands to
either SRAM devices on the FPX. Transactions may consist of one 36-bit read or write, two 36-bit reads
or writes tofrom consecutive addresses, or one to eight 32-bit read or writes tofrom consecutive addresses.
The control cell is parsed starting with the first payload word. Following is a definition of each field in the
command word.

V (Valid command bit) identifies valid command words. 1 ~ valid command, 0 ~ invalid command. Upon
reaching the end of the control cell or the first invalid command word, the CCP prepares to send a response
cell.

D (Device bit) selects the destination device for the memory transaction. 1~ SRAM?2, 0~ SRAMI

R (ReadWrite bit) designates the type memory transaction. 1 ~read, 0 ~ write. Read response cells will
contain the data read from memory, while write response cells will simply echo the data written to memory.

F (32- or 36-bit transaction) designates the width of the data words used in the memory transaction. 1~ 36-bit,
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07 32-bit.

Count Fields For 36-bit transactions, bit eight (8) of the command word is used to select a single- or
double-word transaction. 1~ double-word, 0 ~ single-word.



Control Cell Format for 32/36 bit RAD SRAM Memory Operations

3130292827 262524232221 20191817 16151413121110 9 8 7 68 5 4 3 2 1 0O

HDR
HEC
OpCode
PL1 V|D|R ADDR(18:0) 1| WO(35:32jW1(35:32)
N T O O O I
PL2 WORD 0 (31:0)
N T Y T O O O O LI
PL3 WORD 1 (31:0)
I Y O O O I B O B I
PL4 V| DR ADDR(18:0) 0| W0(35:32) N/A
N I 1O A I B I D B B A R O I
PL5 WORD 0 (31:0)
I O I O Y O O R N A I L0
PLG VIDIR ADDR(18:0) X C7:5) | NA
T I O A I A A B O il i1
L7 WORD 0
O I T IO Y B O R I
PL8 WORD 1
T O O I O B A I A
PL9 WORD N
I T R Y A B O R O A Ll 1]
PL10 CM DATA
T O O T O B O B N I I I
PL11 Seguence # CRC
I T Y O O I O A I N

V - Valid Command:
D — Device:

R — Read or Write:
F—32 or 36 bit:

I = Valid command, 0 = Invalid, EQC
1=Device 1, 0 =Device 0

1 = Read, 0 = Write
1 =136 bit, 0 =32 bit

2 Address
36 Bit format

1 Address
306 Bit forma

"N’ Address
32 Bit forma

VPI = 0x000, VCI = 0x0023 (35) RAD Control Cell
OpCode = 0x14 SRAM Memory Operation
OpCode = 0x15 SRAM Memory Operation Response
ModuleID = 0x00 RAD Control Cell Processor

Figure 10: Control cell format for SRAM transactions.
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Control Cell Format for 64 bit RAD SDRAM Memory Operations

232221201918 17 161514131211 10 9 8 7 6 8 4 3 2 1 0

HDR
HEC
OpCode
PL1 V| D| R ADDR(24:0) éog; t
N O T 5 O Y I l. | | -

PL2 64 bit WORD 0 (63:32)

A N N W N N O e A e e Y O 64 Bit Worc
PL3 64 bit WORD 0 (31:0)

R v o s O Y A O O
PL4 64 bit WORD 1 (63:32)

N e I o O O

PL5 64 bit WORD [ (31:0)

N Y N O T v A O IO
PLG& 64 bit WORD 2 (63:32)

Y S o T v I s A O
PL7 64 bit WORD 2 (31:0)

R e e S Yy Y A O N O
PL8 64 bit WORD 3 (63:32)

O N S e 2 Y O O
PLS 64 bit WORD 3 (31:0)

S o v e T Y O O A
PL10O CM DATA

OUNE J N H Y YO T J [N O N N Y N O I
PL11 Sequence # CRC

I Y O A Y I I A B

V ~ Valid Command: 1 = Valid command, 0 = Invalid, EQC VPI = 0x000, VCI = 0x0023 (35) RAD Control Cell

D — Device: 1 =Device 1, 0 = Device 0 OpCode = 0x16 SDRAM Memory Operation

R — Read or Write: 1 = Read, 0 = Write OpCode = 0x17 SDRAM Memory Operation Response
MeoduleID = 0x00 RAD Control Cell Processor

Figure 11: Control cell format for SDRAM transactions.
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