
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2005-42

2005-09-08

The Open Network Laboratory (a resource for high performance The Open Network Laboratory (a resource for high performance

networking research) networking research)

John DeHart, Fred Kuhns, Jyoti Parwatikar, Jonathan Turner, and Ken Wong

The Open Network Laboratory (ONL) is a remotely accessible network testbed designed to

enable network researchers to conduct experiments using high performance routers and

applications. ONL™s Remote Laboratory Interface (RLI) allows users to easily configure a

network topology, initialize and modify the routers™ routing tables, packet classification tables

and queuing parameters. It also enables users to add software plugins to the embedded

processors available at each of the routers™ ports, enabling the introduction of new

functionality. The routers provide a large number of built-in counters to track various aspects of

system usage, and the RLI software makes these available... Read complete abstract on page 2. Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
DeHart, John; Kuhns, Fred; Parwatikar, Jyoti; Turner, Jonathan; and Wong, Ken, "The Open Network
Laboratory (a resource for high performance networking research)" Report Number: WUCSE-2005-42
(2005). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/959

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F959&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F959&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F959&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F959&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F959&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F959&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F959&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/959?utm_source=openscholarship.wustl.edu%2Fcse_research%2F959&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/959

The Open Network Laboratory (a resource for high performance networking The Open Network Laboratory (a resource for high performance networking
research) research)

John DeHart, Fred Kuhns, Jyoti Parwatikar, Jonathan Turner, and Ken Wong

Complete Abstract: Complete Abstract:

The Open Network Laboratory (ONL) is a remotely accessible network testbed designed to enable
network researchers to conduct experiments using high performance routers and applications. ONL™s
Remote Laboratory Interface (RLI) allows users to easily configure a network topology, initialize and
modify the routers™ routing tables, packet classification tables and queuing parameters. It also enables
users to add software plugins to the embedded processors available at each of the routers™ ports,
enabling the introduction of new functionality. The routers provide a large number of built-in counters to
track various aspects of system usage, and the RLI software makes these available through easy-to-use
real-time charts. This allows researchers to expose what is happening fiunder the surfacefl enabling them
to develop the insights needed to understand system behavior in complex situations and to deliver
compelling demonstrations of their ideas in a realistic operating environment. This paper provides an
overview of ONL, emphasizing how it can be used to carry out a wide range of networking experiments.

https://openscholarship.wustl.edu/cse_research/959?utm_source=openscholarship.wustl.edu%2Fcse_research%2F959&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/959?utm_source=openscholarship.wustl.edu%2Fcse_research%2F959&utm_medium=PDF&utm_campaign=PDFCoverPages

The Open Network Laboratory
a resource for high performance networking research

Abstract − The Open Network Laboratory (ONL) is a remotely accessible network testbed designed to

enable network researchers to conduct experiments using high performance routers and applications.
ONL’s Remote Laboratory Interface (RLI) allows users to easily configure a network topology, initialize
and modify the routers’ routing tables, packet classification tables and queuing parameters. It also enables
users to add software plugins to the embedded processors available at each of the routers’ ports, enabling
the introduction of new functionality. The routers provide a large number of built-in counters to track
various aspects of system usage, and the RLI software makes these available through easy-to-use real-time
charts. This allows researchers to expose what is happening “under the surface” enabling them to develop
the insights needed to understand system behavior in complex situations and to deliver compelling
demonstrations of their ideas in a realistic operating environment. This paper provides an overview of
ONL, emphasizing how it can be used to carry out a wide range of networking experiments.

Keywords: Network Testbed, High Performance Router

Authors: John DeHart, (314) 935-7329, jdd@arl.wustl.edu

Fred Kuhns, (314) 935-6598, fredk@arl.wustl.edu
Jyoti Parwatikar, (314) 935-6110, jp@arl.wustl.edu
Jonathan Turner, (314) 935-8552, jst@arl.wustl.edu
Ken Wong, (314) 935-7524, kenw@arl.wustl.edu

Affiliation: The Applied Research Laboratory,

Department of Computer Science and Engineering,
Washington University in St. Louis

Contact: Ken Wong

Department of Computer Science and Engineering
 Washington University in St. Louis
 Campus Box 1045
 St. Louis, MO 63130

(314) 935-7524, kenw@arl.wustl.edu

The Open Network Laboratory
a resource for high performance networking research

John DeHart, Fred Kuhns, Jyoti Parwatikar, Jonathan Turner and Ken Wong

The Applied Research Laboratory
Department of Computer Science and Engineering

Washington University in St. Louis
St. Louis, MO 63130

{jdd,fredk,jp,jst,kenw}@arl.wustl.edu

Abstract – The Open Network Laboratory (ONL) is a
remotely accessible network testbed designed to enable
network researchers to conduct experiments using high
performance routers and applications. ONL’s Remote
Laboratory Interface (RLI) allows users to easily configure a
network topology, initialize and modify the routers’ routing
tables, packet classification tables and queuing parameters. It
also enables users to add software plugins to the embedded
processors available at each of the routers’ ports, enabling
the introduction of new functionality. The routers provide a
large number of built-in counters to track various aspects of
system usage, and the RLI software makes these available
through easy-to-use real-time charts. This allows researchers
to expose what is happening “under the surface” enabling
them to develop the insights needed to understand system
behavior in complex situations and to deliver compelling
demonstrations of their ideas in a realistic operating
environment. This paper provides an overview of ONL,
emphasizing how it can be used to carry out a wide range of
networking experiments.

I. INTRODUCTION
As the Internet has matured and become more complex, it
has become increasingly difficult for networking
researchers to conduct research that requires experimental
modifications to the data path of high performance routers.
The closed architectures of commercial routers makes
them largely inaccessible for this type of research and in
any case, the time and effort required to make
experimental modifications to these systems, makes this
type of work prohibitively difficult for most researchers.
This is unfortunate, since many of the more exciting
opportunities for advanced network services require the
introduction of new functionality in the router data path.
The Open Network Laboratory (ONL) has been designed
as a resource for the networking research community, to
enable researchers to conduct experimental research using
high performance routers and applications. ONL
dramatically reduces the “barrier-to-entry” for this kind of
research by providing access to a remote testbed of open,
high performance routers and hosts that can be controlled
through an intuitive Remote Laboratory Interface (RLI).

ONL builds on an earlier effort at Washington
University, in which Gigabit Network Kits [5] were
produced for use by research groups at over thirty other
universities. Each kit consisted of an open high
performance switch, network interface cards and
associated software. While the kits program was
moderately successful, it became clear that most groups
found it difficult to maintain the level of expertise needed
to manage the experimental equipment and use it
effectively. They found themselves spending far too much
time on mundane system administration and too little time
using the equipment for network experiments. The more
recent, and highly successful development of Emulab [6],
provided an alternate model for how to enable
experimental network research. In developing our ideas for
the Open Network Lab, we have directly borrowed the
Emulab approach, although we have substituted high
performance routers with packet forwarding in hardware,
for Emulab’s PC-based routers. This enables researchers to
work directly with systems that are architecturally similar
to commercial routers. The routers’ packet forwarding and
queueing mechanisms are implemented using configurable
logic that can be dynamically reconfigured and each port
has an embedded processor that hosts software plugins that
can be added to provide new capabilities.

The RLI allows a remote user to easily configure
experiments and monitor components (e.g., traffic,
queues). The extensive support for real-time data
visualization allows users to develop the insights needed to
understand the behavior of new capabilities and allows
researchers to deliver compelling demonstrations of their
research ideas in a realistic operating environment.

Section II of the paper describes the architecture of
ONL showing the technical components of the testbed.
Section III describes the basic features of the Remote
Laboratory Interface showing how an experiment can be
remotely configured and monitored. Section IV discusses
more advanced features such as packet filters and queue
management. Then, Section V describes a demonstration
that features the use of router plugins and hardware filters

in a dynamic manner to mitigate a type of Denial of
Service (DoS) attack.

II. ONL ARCHITECTURE
The current equipment configuration for the Open

Network Laboratory consists of four experimental routers
called Network Service Processors (NSPs) plus 40 rack-
mounted PCs that serve as end systems and control
processors (Fig. 1). The hardware components are
grouped into four clusters with each cluster consisting of a
single NSP, a control processor (CP) that manages the
NSP, a gigabit Ethernet subnet with three connected hosts,
and two directly connected hosts. This leaves four of each
NSP’s ports uncommitted. These four ports are connected
to a Configuration Switch that serves as an “electronic
patch panel” to connect NSPs to each other or to additional
hosts. Users interact with the testbed using the RLI, which
is a standalone Java application. The RLI communicates
with the testbed through the main ONL server which relays
messages to the various testbed components. The testbed
can support simultaneous sessions by multiple users, so
long as there are sufficient resources available. A second
server (onlBSD) host is provided to facilitate preparation
of software plugins for the NSPs’ embedded processors.

The Configuration Switch is used to implement virtual
network topologies linking the routers to one another and
to hosts. When multiple experimental networks are present
in the testbed, they operate completely independently. The
configuration switch has a number of unused ports that we
plan to use to deliver additional features in the future, such
as programmable link delays and high rate traffic
generators.

The core component of our testbed is a modular, gigabit
router (Fig. 2). The system uses a cell-switched core and
the per port interface hardware includes an embedded
processor subsystem, called the Smart Port Card (SPC)
[7], and a programmable logic board, called the Field
Programmable Port Extender (FPX) [8,9], which includes
a large field programmable gate array, with four high
speed memory interfaces providing access to 2 MB of
SRAM and 128 MB of DRAM. The system supports
several different types of line cards, including one for

gigabit Ethernet (GigE). The core cell switch supports
1024 virtual circuits per port, per virtual circuit traffic
monitoring, support for multicast and two hardware
priority levels. One port of the system is typically used by
an external control processor for system management
through in-band control cells.

Packets entering the system pass first to the FPX, which
can be configured to do IP routing, flow classification and
packet scheduling. Packets that require software
processing can be diverted to the SPC on either the input
or output side of the system. The system uses a modular
design that allows easy insertion of add-on cards like the
FPX and SPC. Such cards are equipped with connectors at
either end and are stacked on top of one another. This
makes it easy to upgrade individual pieces and to configure
systems with a variety of characteristics.

The SPC includes a dual port network interface chip
(the ATM Port Interconnect Controller or APIC [10]),
which allows any portion of the traffic entering or leaving
the system to be diverted to the Pentium processor module
on the card. The APIC transfers IP packets directly to and
from processor memory over a 32 bit PC bus. In situations
where 10% of the link traffic requires software processing,
the SPC allows the execution of close to 50 instructions
per byte, which is sufficient to implement moderately
complex applications that examine and modify the packet
data.

The FPX contains two field programmable gate arrays.
The Network Interface Device (NID) can be used to
redirect any portion of the arriving traffic to the
Reprogrammable Application Device (RAD), which is a
Xilinx XCV2000E, with 80 KB of on-chip SRAM and
38,400 basic logic blocks, each containing one flip flop, a
configurable four variable logic function generator and
miscellaneous support circuits. The RAD is equipped with
2 SRAMs and 2 SDRAMs, which can operate at up to 100
MHz, giving it a raw memory bandwidth of up to 2.5
GBytes per second. The available resources allow it to
support all the core packet processing functions required of
an advanced router supporting gigabit link speeds. The
FPX supports dynamic reconfiguration of the RAD. A

ATM
Switch
Core

FPX
SPC

PP

PP

PP

.
.

.

CP

ex
te

rn
a

l
lin

ks

Lookup

.
.
. . . .

. . .

SPC plugin
env.

FPX

ATM
Switch
Core

FPX
SPC

PP

PP

PP

.
.

.

CP

ex
te

rn
a

l
lin

ks

Lookup

.
.
. . . .

. . .

SPC plugin
env.

FPX

Lookup

.
.
.

.
.
. . . .

. . .

.

SPC plugin
env.

FPX

Fig. 2. NSP Hardware.

16

control subnet

CP 23

0
GE

1 2,3

NSP1

CP 23

0
GE

1 2,3

NSP2

CP 23

0
GE

1 2,3

NSP3

CP 23

0
GE

1 2,3

NSP4

4-7 4-74-7 4-7

configuration switch

onl server

onlBSD

netBSD server
for plugin prep

192.160.1.* 192.160.4.*192.160.3.*192.160.2.*

Internet

onl

usr

1616

control subnet

CP 23

0
GE

1 2,3

NSP1

CPCP 2233

0
GE

1 2,3

NSP1

CP 23

0
GE

1 2,3

NSP2

CPCP 2233

0
GE

1 2,3

NSP2

CP 23

0
GE

1 2,3

NSP3

CPCP 2233

0
GE

1 2,3

NSP3

CP 23

0
GE

1 2,3

NSP4

CPCP 2233

0
GE

1 2,3

NSP4

4-7 4-74-7 4-7

configuration switch

onl server

onlBSDonlBSD

netBSD server
for plugin prep

192.160.1.* 192.160.4.*192.160.3.*192.160.2.*

InternetInternet

onlonl

usrusr

Fig. 1. Open Network Laboratory Configuration.

complete new RAD configuration can be downloaded in
just a few seconds.

III. THE REMOTE LAB INTERFACE
The RLI is a standalone Java application that allows a

remote user to interactively configure an experiment and
monitor a variety of measurement points within the testbed
infrastructure. This section describes the basic features of
the RLI including resource acquisition, routing table
configuration and traffic monitoring. Later sections
describe more advanced features such as bandwidth
allocation and router plugins. Additional information can
be found at http://arl.wustl.edu/projects/onl.

The first step in constructing an experiment is to define
the network components and topology. The RLI has two
viewing modes: topology configuration and monitoring.
Fig. 3 shows the main RLI panel during the configuration
phase with its main drop-down menus at the top. The user
has added components using the Topology menu. The
links are shown as dashed lines, and the hosts and NSPs
are shown in light shade indicating that the components
have not yet been bound to actual testbed resources. A
cluster consists of an NSP, with its CP, two directly
connected hosts and a gigabit Ethernet subnet with three
more hosts. Additional hosts can be added and linked to
other ports by selecting Topology ⇒ Add Host and
Topology ⇒ Add Link. The Generate Default
Routes item in the Topology menu initializes the NSPs’
routing tables so that packets sent to any host will be
routed to it along some minimum hop path.

To allocate and initialize physical resources in the
testbed, the user selects File ⇒ Commit. Assuming the
requested resources are available, the RLI display will be
adjusted as shown in Fig. 4. Note that the links are now
shown as solid lines and the components are displayed in a
darker color. This signals that the components are now
bound to actual hardware resources. The names and IP
addresses of each host can be determined by right-clicking
on the host as shown in Fig. 4. Each host has two names,
an internal name (n1p5 in the example shown in Fig. 4)
and a globally visible DNS name (onl23.arl.wustl.edu) that

can be used to open SSH connections to the host for the
purpose of running applications. The IP address shown in
the RLI display is the address assigned to the host interface
that is internal to the testbed. These addresses are not
externally visible, and like the internal names are assigned
algorithmically, making it possible to repeat an experiment
in different sessions without having to modify names and
addresses used in demonstration scripts.

A user can change the routing table at each router’s
input through the RLI. Fig. 5 shows a route being added at
input 2 of NSP 1. Since this prefix has a specified length of
32, it takes precedence over the less specific matching
prefix with length 28. Note that each entry includes an IP
address prefix with mask length, the next hop port, and a
statistics field.

The RLI can also be used to create traffic displays by
switching to “Monitoring” mode by selecting Mode ⇒

Monitoring. This provides access to the various
monitoring points within the NSPs. Fig. 6 shows a
situation where the user is monitoring the traffic generated
by ping traffic from host n1p2 to host n2p3 as it leaves
port 6 of NSP 1.

The NSPs provide mechanisms for monitoring a wide
variety of measurements, including link bandwidth,
bandwidth usage from inputs to outputs, the number of
packets matching any given route or packet filter, and the
number of packets discarded due to link overflows or

Fig. 3. Topology Construction.

Fig. 4. RLI Display Following Resource Commit.

Fig. 5. Route Table at Port 2, NSP 1.

header errors. All can be connected to real-time displays,
that can be customized in a variety of ways to best suit the
user’s needs. Experimental configurations can be saved to
a file, making it relatively easy to return to an experiment
in a later session.

IV. FILTERS, QUEUES AND BANDWIDTH
The RLI also provides the user access to more advanced

features of the hardware such as packet classification,
queueing and redirection, bandwidth sharing and
configurable parameters (e.g., link capacity). This section
describes a simple experiment in which UDP traffic from
multiple sources flowing through a bottleneck link are
given different bandwidth and queue shares. The real-time
display capability is used to verify that the system behaves
as expected.

The experiment uses the two NSP topology described in
the previous section (Fig. 4), but instead of sending ping
traffic, we use the iperf utility [11] to send UDP traffic
from the three hosts n1p2, n1p3 and n1p4 to hosts n2p2,
n2p3 and n2p4 through the bottleneck link joining port 6
of NSP 1 to port 7 of NSP 2. These flows will be mapped
to separate reserved flow queues at port 6 of NSP 1.

In order to give special treatment to these three flows,
we use General Match (GM) filters in the FPX to redirect
the UDP flows to separate reserved queues. The default
behavior at an egress port is to place packets in a common
FIFO datagram queue for the egress link. However, the
FPX has three parallel lookup tables at each port (Fig. 7):
1) a Route Table that uses longest prefix matching, 2) a
Flow Table that uses Exact Match (EM) filters, and 3) a
Filter Table that uses General Match (GM) filters. Both
EM and GM filters match on a packet’s IP address fields,
transport layer port fields and protocol field, but EM filters
differ from GM filters in two respects: GM filters allow
wild-carding of any of the fields, and they have assignable
priorities. When a packet matches multiple filters, the
highest priority entry is chosen.

 Fig. 8 shows the GM filters used to direct the three
UDP flows to queues 300-302 respectively at egress port
6. Each of the source address/mask fields match the
interfaces of the three sending hosts, and the destination
address/mask fields match packets going toward the
subnets associated with NSP 2. Since the only UDP flows
are those from our traffic generators, we have wild-carded
the application port fields.

Fig. 9 shows the configuration parameters for the
queues at port 6 of NSP 1. Since each port handles traffic
in both directions, the parameters for ingress and egress
sides are shown. In this experiment, the egress link
capacity has been set to 300 Mbps, and the internal switch
capacity has been set to 600 Mbps giving a 2:1 switch
speed advantage. The link bandwidth can be set to any rate
up to 1 Gb/s. The Egress Queue table shows the three
reserved flow qids (300-302) and the datagram queue. The
relative values of the entries in the “quantum” field
indicate the bandwidth shares of a Weighted Deficit Round
Robin (WDRR) packet scheduling algorithm. In this
example, the desired bandwidth ratios of queues 300-302
are 4:2:1 (i.e., 8000:4000:2000). The “threshold” column
indicates the discard threshold; i.e., the queue level above
which arriving packets for that queue are dicarded.

Fig. 10 shows two plots. The top plot shows the
bandwidths in incremental form. Specifically, the first
solid curve shows the bandwidth entering the bottleneck
link coming from the first flow, the second solid curve
shows the bandwidth contributed by the first two flows and
the third shows the total bandwidth contributed by all three
flows. The dashed curves show the bandwidth leaving the
bottleneck link. Note that the three sources are sending at
an aggregate rate of over 700 Mbps, well over the 300

Fig. 6. A Traffic Display.

Route
Table

Filter
Table

Flow
Table

In
pu

t
D

em
ux

Re
su

lt
 P

ro
c.

 &

Pr
io

ri
ty

 R
es

ol
ut

io
n

bypass

headers

Route
Table

Filter
Table

Flow
Table

In
pu

t
D

em
ux

Re
su

lt
 P

ro
c.

 &

Pr
io

ri
ty

 R
es

ol
ut

io
n

bypass

headers

Fig. 7. Parallel Lookup Tables.

Fig. 8. Filter Table (GM Filters).

Mbps capacity of the bottleneck. The dashed curves
indicate that the three UDP flows are receiving bandwidth
in the proportion 4:2:1 when all three flows are active
(middle section) and 2:1 (right end) when only qids 301
and 302 have packets. The bottom plot shows the queue
length of the reserved flow queues and that the length of
the three reserved flows is in the ratio 2:3:4 as required by
the threshold settings.

Filters can also be used to re-direct individual flows or
flow aggregates to different outgoing links than those
specified by the routing tables. GM filters can also be
configured to replicate matching packets and direct the
copies to a different location. This is useful for passive
monitoring of a flow.

V. A DOS ATTACK MITIGATION PLUGIN
In a SYN flood attack [12], a malicious sender attempts

to block new TCP connections at a target by sending SYN

packets to begin the process of creating connections that it
never intends to complete. Although host-based
techniques for dealing with SYN flood attacks have now
been widely adopted, this nonetheless provides a useful
illustration of how new capabilities can be added to an
NSP using software plugins.

Fig. 11 shows the essential elements of the experiment.
A browser repeatedly makes legitimate TCP connections
to a target Web site to send HTTP image requests.
Concurrently, an attacker sends a flood of spoofed SYN
packets that each begins but never completes the process
of creating a TCP connection. Eventually, the partial
connections at the target Web site exhaust the site’s partial
connection table blocking new connections from legitimate
users.

The NSP’s plugin facility can be used to mitigate the
effects of this type of DoS attack. TCP connection packets
are diverted to a plugin at the egress port leading to the
target web site. The plugin monitors partial TCP
connections, records these connections in its shadow table,
and clears those that don’t complete in time. In order to
monitor the connection and termination phases of TCP
connections, two GM filters are installed which divert
these packets through the plugin. If the three-way connect
handshake succeeds, the plugin installs an EM filter to
allow the web server’s response packets to pass through
the port without plugin processing. Since the reply traffic
accounts for the bulk of the bandwidth usage at the web
site, this keeps the amount of traffic that must be handled
by the SPC relatively modest. However, when the plugin
recognizes that a partial connection (from the attacker) has
timed out, it sends a ReSeT packet to the server to release
the resources consumed by the incomplete connection and
deletes the entry from its shadow table. This ReSeT packet
carries the source IP address that was used by the SYN
packet that initiated the connection, making the attack
mitigation mechanism completely transparent to the target
web site.

Fig. 12 shows several displays used to demonstrate this
new feature. On the right is a browser window with three
Java applet panels. The applet in the top panel plays the
role of a Web client sending HTTP image requests at a
specified rate (every 3 seconds in the example) and
displaying the reply images and response times. When an

Attacker

User

NSP

Target
Web Site

Partial
Conn.
Table

Shadow
Table

AttackerAttacker

UserUser

NSP

Target
Web Site

Partial
Conn.
Table

Shadow
Table

Fig. 11. Mitigating a SYN DoS Attack.

Fig. 10. Traffic Bandwidth and Queue Lengths.

Fig. 9. Port 6 Queue Parameters.

attack is successful, the image sequence freezes instead of
displaying a new image every 3 seconds. The middle
panel is used to control the attack daemon, and the bottom
panel is used to enable/disable the plugin. The displays on
the left show monitored data. In both cases, the plugin has
been disabled during the middle of the time interval
shown. The bottom display shows the image traffic
volume. During a successful attack when the plugin is
disabled, image transfers stop shortly after the plugin has
been disabled. The top display shows the number of
incomplete connections as viewed by the Web server and
the plugin. It shows that the Web server’s connection table
tops out (lower curve) while the plugin continues to see
additional attacker packets.

VI. CONCLUSIONS
We have described the Open Network Laboratory, a

high performance, remotely accessible network testbed
provided as a resource for networking research. We have
shown how ONL’s Remote Laboratory Interface (RLI)
allows users to easily create a network topology, configure
the routers in the network and attach the system’s
extensive traffic monitoring mechanisms to real-time
displays that yield insight and help researchers produce
compelling demonstrations. We have shown how the
functionality of the routers can be extended through the
addition of software plugins, providing a rich experimental
environment for developing and evaluating advanced
services. We believe that ONL can be an important
addition to the set of resources available to systems
researchers in networking, complementing existing
testbeds, such as Emulab and Planetlab.

We have a number of plans for the continued
development of ONL. In particular, we plan to add
mechanisms to regulate the flow of data through the
routers so as to avoid congestion at output ports that can
lead to packet loss. The essential mechanisms needed to
support this already exist. The remaining step is to add a
software component to the SPCs to periodically exchange

information about backlogs in VOQs and adjust VOQ
pacing rates. We also expect to extend the queueing
subsystem to allow dynamic sharing of memory space
used by different queues.

In addition, we plan to make it possible for users to
modify the configurable logic in the FPX’s FPGAs. While
the essential technical capabilities needed to support this
exist (we routinely load new configurable logic files in
order to add features and correct errors), we need to
develop mechanisms to ensure this can be done reliably,
without risking damage to system components.

REFERENCES

[1] Corporation for National Research Initiatives, Gigabit
Testbeds Final Report.
http://www1.cnri.reston.va.us/gigafr/, 1996.

[2] Very High Performance Network Service,
http://www.vbns.net.

[3] Internet 2. http://www.internet2.edu, 2000.
[4] Information Sciences Institute, “Collaborative Advanced

Internet Research Network (CAIRN),”
http://www.isi.edu/CAIRN.

[5] Kits Gigabit Kits Technology Distribution Program.,
http://www.arl.wustl.edu/gigabitkits, 1998.

[6] Brian White, Jay Lepreau, Leigh Stoller, et. al., “An
Integrated Experimental Environment for Distributed
Systems and Networks,” Proc. 5th Symp. on Op. Sys.
Design & Implementation, Dec. 2002, pp. 255-270.

[7] John D. DeHart, William D. Richard, Edward W.
Spitznagel, and Dave Taylor, “The Smart Port Card: An
Embedded Unix Processor Architecture for Network
Management and Active Networking,” Washington
University, Department of Computer Science Technical
Memorandum WUCS-TM-01-15, July 2001.

[8] John W. Lockwood, Jon S. Turner and David E. Taylor,
“Field Programmable Port Extender (FPX) for Distributed
Routing and Queueing,” Proc. ACM Intl. Symp. On Field
Programmable Gate Arrays (FPGA’2000), Monterey, CA,
Feb. 2000, pp. 137-144.

[9] John W. Lockwood, Naji Naufel, Jon S. Turner, and David
Taylor, “Reprogrammable Network Packet Processing on
the Field Programmable Port Extender (FPX),” Proc. ACM
Intl. Symp. On Field Programmable Gate Arrays
(FPGA’2001), Monterey, CA, Feb. 2001, pp. 87-93.

[10] Zubin Dittia, Guru Parulkar and Jerry Cox, “The APIC
Approach to High Performance Network Interface Design:
Protected DMA and Other Techniques,” Proc. Infocom,
Kobe, Japan, 1997.

[11] http://dast.nlanr.net/Projects/iperf/.
[12] CERT, “TCP SYN Flooding and IP Spoofing Attacks,”

Advisory CA-1996-21, 1996.

Plugin
Disabled
Plugin

Disabled
Plugin

Disabled

Fig. 12. DoS Attack Mitigation Displays.

	The Open Network Laboratory (a resource for high performance networking research)
	Recommended Citation
	The Open Network Laboratory (a resource for high performance networking research)

	tmp.1469562486.pdf.fJo4Z

	Abstract: Abstract: The Open Network Laboratory (ONL) is a remotely accessible network testbed designed to enable network researchers to conduct experiments using high performance routers and applications. ONL™s Remote Laboratory Interface (RLI) allows users to easily configure a network topology, initialize and modify the routers™ routing tables, packet classification tables and queuing parameters. It also enables users to add software plugins to the embedded processors available at each of the routers™ ports, enabling the introduction of new functionality. The routers provide a large number of built-in counters to track various aspects of system usage, and the RLI software makes these available through easy-to-use real-time charts. This allows researchers to expose what is happening ﬁunder the surfaceﬂ enabling them to develop the insights needed to understand system behavior in complex situations and to deliver compelling demonstrations of their ideas in a realistic operating environment. This paper provides an overview of ONL, emphasizing how it can be used to carry out a wide range of networking experiments.
	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160
	Footer1: Department of Computer Science & Engineering - Washington University in St. Louis
	Notes:
	Email:
	Date: September 8, 2005
	Author: Authors: DeHart, John; Kuhns, Fred; Parwatikar, Jyoti; Turner, Jonathan; Wong, Ken
	Title: The Open Network Laboratory (a resource for high performance networking research)
	ReportNumber: 2005-42
	DepartmentName: Department of Computer Science & Engineering

