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Abstract – The Open Network Laboratory (ONL) is a 
remotely accessible network testbed designed to enable 
network researchers to conduct experiments using high 
performance routers and applications. ONL’s Remote 
Laboratory Interface (RLI) allows users to easily configure a 
network topology, initialize and modify the routers’ routing 
tables, packet classification tables and queuing parameters. It 
also enables users to add software plugins to the embedded 
processors available at each of the routers’ ports, enabling 
the introduction of new functionality. The routers provide a 
large number of built-in counters to track various aspects of 
system usage, and the RLI software makes these available 
through easy-to-use real-time charts. This allows researchers 
to expose what is happening “under the surface” enabling 
them to develop the insights needed to understand system 
behavior in complex situations and to deliver compelling 
demonstrations of their ideas in a realistic operating 
environment. This paper provides an overview of ONL, 
emphasizing how it can be used to carry out a wide range of 
networking experiments.  

I. INTRODUCTION 
As the Internet has matured and become more complex, it 
has become increasingly difficult for networking 
researchers to conduct research that requires experimental 
modifications to the data path of high performance routers. 
The closed architectures of commercial routers makes 
them largely inaccessible for this type of research and in 
any case, the time and effort required to make 
experimental modifications to these systems, makes this 
type of work prohibitively difficult for most researchers. 
This is unfortunate, since many of the more exciting 
opportunities for advanced network services require the 
introduction of new functionality in the router data path. 
The Open Network Laboratory (ONL) has been designed 
as a resource for the networking research community, to 
enable researchers to conduct experimental research using 
high performance routers and applications. ONL 
dramatically reduces the “barrier-to-entry” for this kind of 
research by providing access to a remote testbed of open, 
high performance routers and hosts that can be controlled 
through an intuitive Remote Laboratory Interface (RLI). 

ONL builds on an earlier effort at Washington 
University, in which Gigabit Network Kits [5] were 
produced for use by research groups at over thirty other 
universities. Each kit consisted of an open high 
performance switch, network interface cards and 
associated software. While the kits program was 
moderately successful, it became clear that most groups 
found it difficult to maintain the level of expertise needed 
to manage the experimental equipment and use it 
effectively. They found themselves spending far too much 
time on mundane system administration and too little time 
using the equipment for network experiments. The more 
recent, and highly successful development of Emulab [6], 
provided an alternate model for how to enable 
experimental network research. In developing our ideas for 
the Open Network Lab, we have directly borrowed the 
Emulab approach, although we have substituted high 
performance routers with packet forwarding in hardware, 
for Emulab’s PC-based routers. This enables researchers to 
work directly with systems that are architecturally similar 
to commercial routers. The routers’ packet forwarding and 
queueing mechanisms are implemented using configurable 
logic that can be dynamically reconfigured and each port 
has an embedded processor that hosts software plugins that 
can be added to provide new capabilities. 

The RLI allows a remote user to easily configure 
experiments and monitor components (e.g., traffic, 
queues). The extensive support for real-time data 
visualization allows users to develop the insights needed to 
understand the behavior of new capabilities and allows 
researchers to deliver compelling demonstrations of their 
research ideas in a realistic operating environment. 

Section II of the paper describes the architecture of 
ONL showing the technical components of the testbed.  
Section III describes the basic features of the Remote 
Laboratory Interface showing how an experiment can be 
remotely configured and monitored.  Section IV discusses 
more advanced features such as packet filters and queue 
management.  Then, Section V describes a demonstration 
that features the use of router plugins and hardware filters 



in a dynamic manner to mitigate a type of Denial of 
Service (DoS) attack. 

II. ONL ARCHITECTURE 
The current equipment configuration for the Open 

Network Laboratory consists of four experimental  routers 
called Network Service Processors (NSPs) plus 40 rack-
mounted PCs that serve as end systems and control 
processors (Fig. 1).  The hardware components are 
grouped into four clusters with each cluster consisting of a 
single NSP, a control processor (CP) that manages the 
NSP, a gigabit Ethernet subnet with three connected hosts, 
and two directly connected hosts. This leaves four of each 
NSP’s ports uncommitted. These four ports are connected 
to a Configuration Switch that serves as an “electronic 
patch panel” to connect NSPs to each other or to additional 
hosts. Users interact with the testbed using the RLI, which 
is a standalone Java application. The RLI communicates 
with the testbed through the main ONL server which relays 
messages to the various testbed components. The testbed 
can support simultaneous sessions by multiple users, so 
long as there are sufficient resources available. A second 
server (onlBSD) host is provided to facilitate preparation 
of software plugins for the NSPs’ embedded processors.   

The Configuration Switch is used to implement virtual 
network topologies linking the routers to one another and 
to hosts. When multiple experimental networks are present 
in the testbed, they operate completely independently. The 
configuration switch has a number of unused ports that we 
plan to use to deliver additional features in the future, such 
as programmable link delays and high rate traffic 
generators. 

The core component of our testbed is a modular, gigabit 
router (Fig. 2). The system uses a cell-switched core and 
the per port interface hardware includes an embedded 
processor subsystem, called the Smart Port Card (SPC) 
[7], and a programmable logic board, called the Field 
Programmable Port Extender (FPX) [8,9], which includes 
a large field programmable gate array, with four high 
speed memory interfaces providing access to 2 MB of 
SRAM and 128 MB of DRAM. The system supports 
several different types of line cards, including one for 

gigabit Ethernet (GigE).  The core cell switch supports 
1024 virtual circuits per port, per virtual circuit traffic 
monitoring, support for multicast and two hardware 
priority levels. One port of the system is typically used by 
an external control processor for system management 
through in-band control cells. 

Packets entering the system pass first to the FPX, which 
can be configured to do IP routing, flow classification and 
packet scheduling. Packets that require software 
processing can be diverted to the SPC on either the input 
or output side of the system. The system uses a modular 
design that allows easy insertion of add-on cards like the 
FPX and SPC. Such cards are equipped with connectors at 
either end and are stacked on top of one another. This 
makes it easy to upgrade individual pieces and to configure 
systems with a variety of characteristics. 

The SPC includes a dual port network interface chip 
(the ATM Port Interconnect Controller or APIC [10]), 
which allows any portion of the traffic entering or leaving 
the system to be diverted to the Pentium processor module 
on the card. The APIC transfers IP packets directly to and 
from processor memory over a 32 bit PC bus. In situations 
where 10% of the link traffic requires software processing, 
the SPC allows the execution of close to 50 instructions 
per byte, which is sufficient to implement moderately 
complex applications that examine and modify the packet 
data. 

The FPX contains two field programmable gate arrays. 
The Network Interface Device (NID) can be used to 
redirect any portion of the arriving traffic to the 
Reprogrammable Application Device (RAD), which is a 
Xilinx XCV2000E, with 80 KB of on-chip SRAM and 
38,400 basic logic blocks, each containing one flip flop, a 
configurable four variable logic function generator and 
miscellaneous support circuits. The RAD is equipped with 
2 SRAMs and 2 SDRAMs, which can operate at up to 100 
MHz, giving it a raw memory bandwidth of up to 2.5 
GBytes per second. The available resources allow it to 
support all the core packet processing functions required of 
an advanced router supporting gigabit link speeds. The 
FPX supports dynamic reconfiguration of the RAD. A 
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Fig. 2.  NSP Hardware. 
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complete new RAD configuration can be downloaded in 
just a few seconds. 

III. THE REMOTE LAB INTERFACE  
The RLI is a standalone Java application that allows a 

remote user to interactively configure an experiment and 
monitor a variety of measurement points within the testbed 
infrastructure. This section describes the basic features of 
the RLI including resource acquisition, routing table 
configuration and traffic monitoring. Later sections 
describe more advanced features such as bandwidth 
allocation and router plugins. Additional information can 
be found at http://arl.wustl.edu/projects/onl.   

The first step in constructing an experiment is to define 
the network components and topology.  The RLI has two 
viewing modes:  topology configuration and monitoring. 
Fig. 3 shows the main RLI panel during the configuration 
phase with its main drop-down menus at the top.  The user 
has added components using the Topology menu.  The 
links are shown as dashed lines, and the hosts and NSPs 
are shown in light shade indicating that the components 
have not yet been bound to actual testbed resources. A 
cluster consists of an NSP, with its CP, two directly 
connected hosts and a gigabit Ethernet subnet with three 
more hosts. Additional hosts can be added and linked to 
other ports by selecting Topology ⇒ Add Host and 
Topology ⇒ Add Link.  The Generate Default 
Routes item in the Topology menu initializes the NSPs’ 
routing tables so that packets sent to any host will be 
routed to it along some minimum hop path.  

To allocate and initialize physical resources in the 
testbed, the user selects File ⇒  Commit. Assuming the 
requested resources are available, the RLI display will be 
adjusted as shown in Fig. 4. Note that the links are now 
shown as solid lines and the components are displayed in a 
darker color. This signals that the components are now 
bound to actual hardware resources. The names and IP 
addresses of each host can be determined by right-clicking 
on the host as shown in Fig. 4. Each host has two names, 
an internal name (n1p5 in the example shown in Fig. 4) 
and a globally visible DNS name (onl23.arl.wustl.edu) that 

can be used to open SSH connections to the host for the 
purpose of running applications. The IP address shown in 
the RLI display is the address assigned to the host interface 
that is internal to the testbed. These addresses are not 
externally visible, and like the internal names are assigned 
algorithmically, making it possible to repeat an experiment 
in different sessions without having to modify names and 
addresses used in demonstration scripts. 

A user can change the routing table at each router’s 
input through the RLI. Fig. 5 shows a route being added at 
input 2 of NSP 1. Since this prefix has a specified length of 
32, it takes precedence over the less specific matching 
prefix with length 28. Note that each entry includes an IP 
address prefix with mask length, the next hop port, and a 
statistics field.  

The RLI can also be used to create traffic displays by 
switching to “Monitoring” mode by selecting Mode ⇒ 

Monitoring. This provides access to the various 
monitoring points within the NSPs.  Fig. 6 shows a 
situation where the user is monitoring the traffic generated 
by ping traffic from host n1p2 to host n2p3 as it leaves 
port 6 of NSP 1. 

The NSPs provide mechanisms for monitoring a wide 
variety of measurements, including link bandwidth, 
bandwidth usage from inputs to outputs, the number of 
packets matching any given route or packet filter, and the 
number of packets discarded due to link overflows or 

Fig. 3.  Topology Construction. 

 

Fig. 4.  RLI Display Following Resource Commit. 

 
Fig. 5.  Route Table at Port 2, NSP 1. 



header errors. All can be connected to real-time displays, 
that can be customized in a variety of ways to best suit the 
user’s needs. Experimental configurations can be saved to 
a file, making it relatively easy to return to an experiment 
in a later session. 

IV. FILTERS, QUEUES AND BANDWIDTH 
The RLI also provides the user access to more advanced 

features of the hardware such as packet classification, 
queueing and redirection, bandwidth sharing and 
configurable parameters (e.g., link capacity).  This section 
describes a simple experiment in which UDP traffic from 
multiple sources flowing through a bottleneck link are 
given different bandwidth and queue shares. The real-time 
display capability is used to verify that the system behaves 
as expected. 

The experiment uses the two NSP topology described in 
the previous section (Fig. 4), but instead of sending ping 
traffic, we use the iperf  utility [11] to send UDP traffic 
from the three hosts n1p2, n1p3 and n1p4 to hosts n2p2, 
n2p3 and n2p4 through the bottleneck link joining port 6 
of NSP 1 to port 7 of NSP 2. These flows will be mapped 
to separate reserved flow queues at port 6 of NSP 1. 

In order to give special treatment to these three flows, 
we use General Match (GM) filters in the FPX to redirect 
the UDP flows to separate reserved queues. The default 
behavior at an egress port is to place packets in a common 
FIFO datagram queue for the egress link.  However, the 
FPX has three parallel lookup tables at each port (Fig. 7): 
1) a Route Table that uses longest prefix matching, 2) a 
Flow Table that uses Exact Match (EM) filters, and 3) a 
Filter Table that uses General Match (GM) filters.   Both 
EM and GM filters match on a packet’s IP address fields, 
transport layer port fields and protocol field, but EM filters 
differ from GM filters in two respects:  GM filters allow 
wild-carding of any of the fields, and they have assignable 
priorities. When a packet matches multiple filters, the 
highest priority entry is chosen. 

 Fig. 8 shows the GM filters used to direct the three 
UDP flows to queues 300-302 respectively at egress port 
6. Each of the source address/mask fields match the 
interfaces of the three sending hosts, and the destination 
address/mask fields match packets going toward the 
subnets associated with NSP 2.  Since the only UDP flows 
are those from our traffic generators, we have wild-carded 
the application port fields. 

Fig. 9 shows the configuration parameters for the 
queues at port 6 of NSP 1.  Since each port handles traffic 
in both directions, the parameters for ingress and egress 
sides are shown.  In this experiment, the egress link 
capacity has been set to 300 Mbps, and the internal switch 
capacity has been set to 600 Mbps giving a 2:1 switch 
speed advantage. The link bandwidth can be set to any rate 
up to 1 Gb/s. The Egress Queue table shows the three 
reserved flow qids (300-302) and the datagram queue.  The 
relative values of the entries in the “quantum” field 
indicate the bandwidth shares of a Weighted Deficit Round 
Robin (WDRR) packet scheduling algorithm. In this 
example, the desired bandwidth ratios of queues 300-302 
are 4:2:1 (i.e., 8000:4000:2000). The “threshold” column 
indicates the discard threshold; i.e., the queue level above 
which arriving packets for that queue are dicarded. 

Fig. 10 shows two plots. The top plot shows the 
bandwidths in incremental form. Specifically, the first 
solid curve shows the bandwidth entering the bottleneck 
link coming from the first flow, the second solid curve 
shows the bandwidth contributed by the first two flows and 
the third shows the total bandwidth contributed by all three 
flows. The dashed curves show the bandwidth leaving the 
bottleneck link. Note that the three sources are sending at 
an aggregate rate of over 700 Mbps, well over the 300 

 
Fig. 6.  A Traffic Display. 
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Fig. 7.  Parallel Lookup Tables. 

 
Fig. 8.  Filter Table (GM Filters). 



Mbps capacity of the bottleneck.  The dashed curves 
indicate that the three UDP flows are receiving bandwidth 
in the proportion 4:2:1 when all three flows are active 
(middle section) and 2:1 (right end) when only qids 301 
and 302 have packets.  The bottom plot shows the queue 
length of the reserved flow queues and that the length of 
the three reserved flows is in the ratio 2:3:4 as required by 
the threshold settings. 

Filters can also be used to re-direct individual flows or 
flow aggregates to different outgoing links than those 
specified by the routing tables. GM filters can also be 
configured to replicate matching packets and direct the 
copies to a different location. This is useful for passive 
monitoring of a flow. 

V. A DOS ATTACK MITIGATION PLUGIN  
In a SYN flood attack [12], a malicious sender attempts 

to block new TCP connections at a target by sending SYN 

packets to begin the process of creating connections that it 
never intends to complete.  Although host-based 
techniques for dealing with SYN flood attacks have now 
been widely adopted, this nonetheless provides a useful 
illustration of how new capabilities can be added to an 
NSP using software plugins. 

Fig. 11 shows the essential elements of the experiment.  
A browser repeatedly makes legitimate TCP connections 
to a target Web site to send HTTP image requests.  
Concurrently, an attacker sends a flood of spoofed SYN 
packets that each begins but never completes the process 
of creating a TCP connection.  Eventually, the partial 
connections at the target Web site exhaust the site’s partial 
connection table blocking new connections from legitimate 
users.  

The NSP’s plugin facility can be used to mitigate the 
effects of this type of DoS attack.  TCP connection packets 
are diverted to a plugin at the egress port leading to the 
target web site. The plugin monitors partial TCP 
connections, records these connections in its shadow table, 
and clears those that don’t complete in time.  In order to 
monitor the connection and termination phases of TCP 
connections, two GM filters are installed which divert 
these packets through the plugin. If the three-way connect 
handshake succeeds, the plugin installs an EM filter to 
allow the web server’s response packets to pass through 
the port without plugin processing. Since the reply traffic 
accounts for the bulk of the bandwidth usage at the web 
site, this keeps the amount of traffic that must be handled 
by the SPC relatively modest. However, when the plugin 
recognizes that a partial connection (from the attacker) has 
timed out, it sends a ReSeT packet to the server to release 
the resources consumed by the incomplete connection and 
deletes the entry from its shadow table. This ReSeT packet 
carries the source IP address that was used by the SYN 
packet that initiated the connection, making the attack 
mitigation mechanism completely transparent to the target 
web site. 

Fig. 12 shows several displays used to demonstrate this 
new feature.  On the right is a browser window with three 
Java applet panels.  The applet in the top panel plays the 
role of a Web client sending HTTP image requests at a 
specified rate (every 3 seconds in the example) and 
displaying the reply images and response times.  When an 
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Fig. 10.  Traffic Bandwidth and Queue Lengths. 

 
Fig. 9.  Port 6 Queue Parameters. 



attack is successful, the image sequence freezes instead of 
displaying a new image every 3 seconds.  The middle 
panel is used to control the attack daemon, and the bottom 
panel is used to enable/disable the plugin.  The displays on 
the left show monitored data.  In both cases, the plugin has 
been disabled during the middle of the time interval 
shown.  The bottom display shows the image traffic 
volume.  During a successful attack when the plugin is 
disabled, image transfers stop shortly after the plugin has 
been disabled.  The top display shows the number of 
incomplete connections as viewed by the Web server and 
the plugin.  It shows that the Web server’s connection table 
tops out (lower curve) while the plugin continues to see 
additional attacker packets. 

VI. CONCLUSIONS 
We have described the Open Network Laboratory, a 

high performance, remotely accessible network testbed 
provided as a resource for networking research. We have 
shown how ONL’s Remote Laboratory Interface (RLI) 
allows users to easily create a network topology, configure 
the routers in the network and attach the system’s 
extensive traffic monitoring mechanisms to real-time 
displays that yield insight and help researchers produce 
compelling demonstrations. We have shown how the 
functionality of the routers can be extended through the 
addition of software plugins, providing a rich experimental 
environment for developing and evaluating advanced 
services. We believe that ONL can be an important 
addition to the set of resources available to systems 
researchers in networking, complementing existing 
testbeds, such as Emulab and Planetlab. 

We have a number of plans for the continued 
development of ONL. In particular, we plan to add 
mechanisms to regulate the flow of data through the 
routers so as to avoid congestion at output ports that can 
lead to packet loss. The essential mechanisms needed to 
support this already exist. The remaining step is to add a 
software component to the SPCs to periodically exchange 

information about backlogs in VOQs and adjust VOQ 
pacing rates. We also expect to extend the queueing 
subsystem to allow dynamic sharing of memory space 
used by different queues.  

In addition, we plan to make it possible for users to 
modify the configurable logic in the FPX’s FPGAs. While 
the essential technical capabilities needed to support this 
exist (we routinely load new configurable logic files in 
order to add features and correct errors), we need to 
develop mechanisms to ensure this can be done reliably, 
without risking damage to system components. 
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