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Abstract

Popular security techniques such as public-private key encryption, firewalls, and role-based access control offer significant protec-

tion of system data, but offer only limited protection of the computations using that data from significant interference due to accident or

adversarial attack. However, in an increasing number of modern systems, ensuring the reliable execution of system activities is every

bit as important as ensuring data security. This paper makes three contributions to the state of the art in protection of the execution

of system activities from accidental or adversarial interference. First, we consider the motivating problem of CPU-focused denial

of service attacks, and explain how limitations of current approaches to these kinds of attacks make it difficult to offer sufficiently

rigorous and fine-grained assurances of protection for the execution of system computations. Second, we describe a novel solution

approach in which we have integrated fine-grained scheduling decision functions with system call hooks from the Security Enhanced

Linux (SELinux) framework within the Linux 2.6 kernel. Third, we present empirical evaluations of the efficacy of our approach in

controlling the CPU utilization of competing greedy computations that are either completely CPU bound, or that interleave I/O and

CPU access, across a range of relative allocations of the CPU.

Keywords. Execution Security, Denial of Service, Group Scheduling, SELinux.

1 Introduction

For a large number of modern networked systems, ranging from personal computing applications to large scale supervisory control

and data access (SCADA) systems for power grid control, ensuring the reliable execution of system activities is every bit as important

an aspect of system security as ensuring data integrity. The reason for this is that the primary function of these systems is to use data

to accomplish a purpose and even perfectly secure data integrity is irrelevant unless the data can be used successfully to achieve the

intended purpose. Systems with these kinds of execution requirements are increasingly widespread and subject to attack and abuse.

For example, as more and more time-sensitive transactions are being conducted over PDA-like cell phones, and as non-critical business

information systems are increasingly linked with critical infrastructure control functions and databases in SCADA systems, the risks of

adversarial or accidental interference with the execution of essential system functions has steadily increased. These time-and-security-
∗This work was conducted during a visit to the Center for Distributed Object Computing in the Department of Computer Science and Engineering at Washington

University in St.Louis, USA, from March through October 2005, supported by a research scholarship from the Universitá degli Studi di Napoli Federico II, Italy.
†This work was supported in part by NSF EHS contract CCR-0311599.
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critical systems are therefore vulnerable not only to traditional data integrity security threats but also to threats which interfere with

the system’s ability to use resources to support computation execution according to specified constraints.

Limitations of current approaches. Despite the importance of trustworthiness for both system data access and execution behav-

ior, traditional security approaches have largely treated execution control as a separate issue from data security, and have relegated

enforcement of execution requirements either to the application developers and system administrators, or to supporting infrastructure

such as real-time operating systems, with little attention to the potential benefits of integrating application security requirements, and

the security policies and mechanisms that enforce those requirements, more closely. This separation has resulted in the following

limitations of the current state of the art in system security: (1) rigid architectural boundaries across which it is difficult to integrate

policies and mechanisms for execution control, and (2) the presence of unanticipated “loopholes” that can weaken or even bypass

enforcement of desired policies. For example, popular security techniques such as encryption and role-based access control (RBAC)

offer protection for system data, but offer only limited protection for the execution of computations using that data from significant

delays due to accidental or adversarial denial of service.

Research goals and problem statement. The goals of the research presented in this paper are to increase understanding of the role

that control over computations’ execution plays in system security overall, and in doing so to address the limitations of the current

state of the art in system security described above. We have pursued these goals by creating a novel integrated security model for

assured execution of critical system computations, and by implementing and evaluating that model in the context of the widely used

Linux operating system. The research problems we have addressed in defining this model and developing a prototype implementation

of it in the Linux 2.6 kernel include:

1. How to support explicit specification of execution requirements in a way that is both sufficiently flexible to express the unique

sets of constraints imposed by a variety of applications, and also sufficiently rigorous to enforce the particular constraints of

each application with high fidelity?

2. How to configure efficient policies and mechanisms to enforce execution requirements, so that intereference from mis-behaving

computations is identified rapidly, the effects of interference on well-behaved computations are minimized, and mis-behaving

computations are subjected to application-configurable consequences such as restriction of their available resources?

3. How to integrate fine-grained execution behavior enforcement with existing operating system interfaces and mechanisms in a

standard way, so that the impact of feature changes in subsequent releases of the operating system kernel will be manageable in

maintaining our security model implementation over the long term?

Solution approach. In this paper we demonstrate that flexible group scheduling (GS) techniques [1, 2] which we originally devel-

oped for managing real-time tasks with time-varying resource requirements [3], offer a general capability for fine-grain computation

control that we can exploit to help ensure the execution of critical system activities. By integrating these execution control capabilities

within the SELinux [4] framework, we can achieve a novel synthesis of access control (via the SELinux system call hooks), admis-

sion control (via on-line assignment of feasible execution budgets), and execution control (via on-line enforcement of those execution
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budgets). As our empirical results in Section 5 demonstrate, this integrated model allows us to protect the execution of specific com-

putations from the computational demands of other computations. We call this kind of protection execution security, in that once a

computation is admitted to the system, the execution assurances that were given when it was admitted are rigorously enforced even in

the face of other computations aggressively attempting to exceed their advertised resource demands.

Prototype implementation and evaluation. To evaluate the effectiveness and efficiency with which our integrated approach can

be realized, and its impact on the execution security of different kinds of computations, we have implemented a prototype of this

unified model within the SELinux framework of the Linux 2.6 kernel, augmented with the KURT-Linux [5, 1, 2] real-time operating

system modifications. We have used the Data Stream Kernel Interface (DSKI) and Data Stream User Interface (DSUI) packages [6, 7]

to provide low-overhead instrumentation hooks at key points throughout this framework, allowing us to collect fine-grain traces

of system execution behavior. Using our prototype implementation, we have conducted several experiments using different CPU

scheduling policies, to control the behavior of competing greedy1 computations under varying relative CPU allocations and under

differing assumptions about whether a computation interleaves I/O and other blocking system calls among otherwise of compute

bound phases of execution. Our experimental results in Section 5 show that with the scheduling policies we have investigated so far,

the level of protection that we can give to a computation is sensitive both to the relative allocation of the CPU to the computations in

the system, and to each computation’s own behavior in exploiting the opportunities it is given to execute. Overall, however, our results

show that our approach can be used effectively and efficiently to ensure computations receive their specified execution opportunities,

regardless of the CPU demands of other computations.

Research impact. The research presented in this paper offers fundamental advances in the state of the art for design and implemen-

tation of trustworthy systems, in which policies and mechanisms for execution security can be coordinated using an integrated security

model and implementation. The ability to control not only the conditions under which access is granted, but also the conditions under

which resources are used, the relative allocations of resources, and the subsequent enforcement of those resource allocations during the

execution of computations, offers significant potential improvements in the execution security of time-and-security-critical systems.

The rest of this paper is structured as follows. Section 2 considers the problem of CPU-focused denial of service attacks, which

motivates our work on an integrated execution security model and implementation. Section 3 presents our solution approach, in

which group scheduling techniqes developed in our previous work are integrated with the SELinux framework to provide execution

security assurances. Section 4 describes the design and prototype implementation of our solution approach within the Linux 2.6

kernel. Section 5 presents an empirical evaluation of the efficiency and effectiveness of our prototype implementation in protecting

computations from the resource demands of other computations. Section 6 describes related work on security and execution control,

and Section 7 offers concluding remarks and summarizes issues that remain open as future work.
1We will use the term “greedy” in this paper to connote a computation that does not yield resources or otherwise self-schedule except to make blocking system calls

such as I/O operations. A greedy computation that is CPU bound will make use of all opportunities it is given to execute by the OS thread scheduler, while a greedy
computation that makes blocking system calls will only miss opportunities to execute that were given while it was blocked.
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2 Motivation: CPU Focused Denial of Service

Denial of Service (DoS) attacks are particularly difficult to mitigate, in part because of the variety of ways in which they can affect

the targeted system. Despite having the potential to inflict similarly devistating results, DoS attacks may differ in (1) the means the

attacker uses to engage the target machine, (2) the specific resource(s) targeted, (3) the effect on the targeted resource(s), and (4) the

location(s) from which the attack is orchestrated. These differences are captured in Shield’s taxonomy [8] of DoS attacks. Shield

points out that the primary organizing factor in categorizing these attacks is the resources each attack seeks to compromise or consume

in order to interfere with the execution of computations using them. Our research seeks to mitigate a specific sub-category of DoS

attacks represented in this taxonomy consisting of CPU-focused attacks such as ’Stream.c’ [9] and ’Nukenabber’ [10]. In CPU-focused

DoS attacks, the attacker attempts to consume all avaliable processing cycles, lock synchronization resources on the target machine,

or otherwise deny execution of essential system computations. For example, an attacker could crash a httpd child process in Apache

version 2.0.42 [11] by using a specially crafted HTTP packet to cause a null pointer dereference.

CPU-focused DoS attacks require fundamentally different mitigation techniques than than those provided by conventional system

protection approaches. To an adversary, the advantages of CPU targeted DoS attacks are that they (1) may bypass front-end heavy

traffic processing systems used to defend against Distributed DoS (DDoS) attacks, (2) may require application-specific monitoring and

enforcement for detection and mitigation, and (3) may require less bandwidth to achieve a greater overall effect.

Conventional approaches to harden systems against DoS attacks may employ a highly redundant or masked front end that dampens

the effects of heavy incoming traffic [12]. However, this is no guarantee that a given, possibly critical, process operating behind this

front end is not vulnerable to a CPU-focused DoS attack. Such a single point of failure, for example on a server that hosts a SCADA

system status database, could be compromised even if the front end is able to drop or redirect maliciously high traffic loads. Therefore,

conventional network-based mitigation strategies may fail to protect systems from CPU-focused DoS attacks.

The ’Nukenabber’ [10] and Apache [11] attacks, and many other CPU-focused DoS attacks, work at higher layers of the system

architecture than network-focused DDoS attacks. These two attacks, for example, rely on exploiting vulnerabilities present in off-

the-shelf software that runs in user-space. Effectively detecting and filtering traffic targeting these vulnerabilities would require a

combination of firewalls aware of application state and sophisticated application proxies. Furthermore, sustained effort would be

required to keep such firewalls and proxies up to date, as software upgrades are a fact of life for many systems, and the introduction of

new vulnerabilities, e.g., to stack buffer overflows, remains an ongoing concern despite advances in tools and techniques to find and

remove those vulnerabilities [13].

The ability of the attacker use very little network bandwidth in launching a CPU-focused DoS attack is another reason CPU-focused

DoS attacks can be difficult to mitigate using conventional approaches. For example, Crosby shows how necessary (and ordinarily

safe) services can be compromised by specially crafted malacious inputs [14], allowing attacks that can cripple services but that can

be mounted using incredibly small traffic loads. This gives the attacker several advantages over network-focused DoS attacks. First,

it reduces the potential number of zombie boxes needed, thereby reducing the effort required to mount an attack. In addition, these

attacks can be launched across bandwidth-limited networks, such as wireless or cellular systems. In addition, while some DoS attacks

may deny service to all systems operating on a shared network, a CPU-focused attack can disable a single system, while leaving all

other systems intact. This could be used by an attacker as a way to conduct ”man in the middle” or other similar multi-stage attacks
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that rely on selectively impersonating particular disabled systems on a shared network. Finally, restricted use of bandwidth may make

an attack harder to detect, as a small number of packets from disparate sources could be used to mount the CPU-focused DOS attack.

All of these factors suggest that defense against CPU-focused DoS attacks is very difficult using only conventional network based

mitigation strategies and common system configuration options to protect vulnerable systems. For example, use of the ulimit setting

in Linux has been discussed in security-related on-line mailing lists as a way to mitigate “fork bomb” [15] style attacks. With more

selective CPU-focused attacks like the ones noted by Crosby, however, the attack does not rely on actions that are easily detected

and then can be limited or prevented, such as spawning an ever increasing number of threads. Instead, a CPU-focused attack can

insidiously cause a normally well-behaved thread to consume computing resources inappropriately. Addressing problems such as this

will require the ability to detect anomalous computation behaviors just as current approaches detect anomalous network behaviors.

Furthermore, since attacks of the kind identified by Crosby make use of specially crafted malicious inputs, it is unlikely that all

potentially problematic inputs to a program can be modeled. Attempts to automate identification of problematic program inputs in

general are limited by the halting problem, and special cases that are computable may still be intractable for reasonably sized systems:

for example, permutations of fixed sequences of inputs for a computation that is known to finish for all inputs.

In light of these concerns, it is unlikely that reliance on network-level DoS mitigation approaches or existing system configuration

options alone will be able to offer adequate execution security in the face of malacious CPU-focused DoS attacks. These limitations

of the current state of the art motivate our solution approach presented in Section 3, in which we support defense-enabling scheduling

strategies within the operating system kernel, to ensure specified allocations of resources are enforced even during CPU demands by

some computations that would otherwise result in denial of service to other computations.

3 Solution Approach

Consider a server system which spawns a thread to execute primarily CPU bound computations in response to each client request.

Now, assume that at least one of the client request types exhibits a vulnerability which can cause the server thread to consume excessive

CPU cycles when attempting to handle malformed requests. Such a vulnerability makes it possible to create a CPU based DoS attack on

this server using very low request volume and network traffic by providing pathological service requests. In this scenario the attacker

could use a set of zombie machines to generate the pathological messages, but would not necessarily need to generate a high volume

of such requests for the attack to succeed. Our approach helps defend against such attacks by integrating the KURT-Linux group

scheduling framework with SELinux to (1) provide fine-grain control of execution behavior, and (2) add policies and mechanisms for

detection and handling of execution constraint violations, to the existing access violation control policies and mechanisms provided

by SELinux. Under our approach system administrators could thus establish constraints defining acceptable behavior for each service

type. Then, if pathological requests were sent to exploit an existing vulnerability, the violation of execution constraints by server

threads can be detected and their behavior can be controlled.

3.1 Overcoming Limitations of Previous Approaches

Previous approaches to security and execution control exhibit limited integration. On the security side, SELinux limits itself to

essentially a binary test of whether a given action, such as spawning a child thread, is permitted or not. On the scheduling side, no
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consideration of the security context, and in particular no consideration of security related behavioral history is made at all. Our

approach moves beyond the limits of current methods to create a framework involving direct integration of the SELinux access control

and the group scheduling execution control infrastructures.

The KURT-Linux group scheduling framework expands the computation control semantics which can be configured significantly

beyond the classical dynamic (generic) and static (real-time) POSIX priority semantics provided by the vanilla Linux kernel. The

group scheduling framework does this by (1) supporting the collection of threads and other computation elements into groups, and (2)

expressing a variety of desired execution semantics through scheduling decision functions for each group. For this discussion the most

relevant use of a group is to describe the set of components that must be executed to complete one or more application computations.

Each group can have an arbitrary scheduling decision function associated with it to select among group members according to the

semantics of the computation(s) represented by the group. Composition is supported by permitting groups to be group members, and

so sets of groups representing computations are composed into a system-level scheduling decision hierarchy which determines which

of the computations in the system should use the CPU whenever a scheduling decision is required. The group scheduling model [1, 2]

provides application state aware scheduling semantics [3] which users can leverage to implement scheduling decision functions that

are capable of controlling fine-grain execution behavior of all computations in the system, using any and all available information.

Within this framework it is thus straightforward to implement scheduling decision functions which can take information provided

by the SELinux subsystem into account when controlling system computations. The more difficult aspects of this issue are, however,

(1) deciding what information is relevant, (2) implementing mechanisms which collect the desired information, and (3) making that

information available to the security-aware scheduling decision functions. However, while this effort is both non-trivial and context

dependent, our experience shows that these three requirements can be met in a variety of contexts [3], including the execution security

domain we consider in this paper.

3.2 Integration of Usage Policies and Penalties

The operating system plays a fundamental role in our approach to execution security. We have integrated the configurable

group scheduling capabilities of the KU Real-Time (KURT) extensions to Linux [16, 1, 2], with the Security Enhanced Linux

(SELinux) [4, 17] features available in the Linux 2.6 kernel, as a foundation for role based access, admission and execution con-

trol. In our prototype implementation we have focused on several basic strategies for providing fine-grain, selective, and coordinated

configuration of (1) access, admission, and execution control decision semantics and the kernel-level mechanisms used to implement

them, and (2) instrumentation of kernel level operations relevant to evaluating system security and distribution of detailed audit streams

for both on and off line forensic analysis.

SELinux already supports a type enforcement model as its primary method of enforcing security semantics, using role-based

access control (RBAC) as a secondary security model and as a method for describing constraints on system operations [4, 17]. The

existing SELinux mechanisms do not, however, integrate access, admission and execution control. At the kernel level in particular,

the semantics of multiple system components may affect the overall access, admission, and execution control semantics that can be

enforced. Processes and threads are the only computation types currently considered under the SELinux control model, but interrupt

handlers, soft-IRQs and tasklets also perform computational functions affecting the behavior of application programs. Our approach

uses the KURT-Linux Group Scheduling framework [3, 2, 1] to support execution control over all relevant computation types.
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Exposing kernel mechanisms to control. A major theme of our previous work on KURT-Linux in general, and on group schedul-

ing in particular, has been to achieve a systematic increase in the scope and precision of control over computational activity in the

endsystem. We have exposed a growing set of kernel and middleware mechanisms to control, and have designed programming models

to make this control as transparent and as configurable as possible. The research described in this paper has focused on integrating ex-

isting kernel-level security mechanisms in SELinux with our existing group scheduling framework by extending the SELinux security

related decision hooks that exist throughout the Linux kernel to incorporate calls to the group scheduling framework. This means that

(1) fine-grain decisions about computation execution can be considered under the system security model and (2) timely execution of

security-related decision functions can be considered under the system scheduling model.

Group scheduling model. The essential features of the group scheduling model are: (1) the ability to group application components

with supporting elements of the system infrastructure; (2) the ability to associate policies, implemented by scheduling decision func-

tions, with these groups for specification of how resources should be used in support of the group members; (3) the ability to compose

groups to form a unified system-wide policy for resource management, potentially customizing control of everything from lowest level

interrupt service routines to highest level coalitions of inter-operating applications; (4) the ability to enforce the specified resource use

semantics as defined in the composed group policy structure; and (5) the ability to monitor system behavior at the same level of detail

at which the application specifies its requirements, and to use the measured information as feedback to the enforcement functions.

A given application component can be associated with multiple groups because the policies controlling the system may have

more than one possible reason to choose it for execution. Similarly, system infrastructure elements may belong to multiple groups

because the services they provide are used in different resource management contexts. For example, a thread pool might be used to

service events from a given device, and the device service routine might thus be a member of each threads’ group. Alternatively,

the device service routine might be a member of a group structure controlling how the device is shared (arbitration) among several

computations. Hierarchical organization of groups, possibly crossing resource administration boundaries, allows schedulers to weave

the policies controlling multiple applications into a composite system-level policy. The granularity at which this weaving is done can

be configured flexibly, and at its finest resolution can approach the inherent limits of the system in both semantics and time granularity.

Our existing kernel-level and middleware-level implementations of the group scheduling model for KURT-Linux [3] offers a

suitable foundation for the scheduling enforcement needed for execution security assurance. However, we used our kernel level

group scheduling implementation for the prototype implementation of our execution security model, because (1) it offers significant

performance advantages due to reduced overhead of switching between kernel and user space [2], and (2) it allows direct integration

with the SELinux system call hooks, making it more difficult for an attacker to interfere with the system’s control over access to system

calls, allocation of resources, and execution of computations.

Two results of our previous evaluations of the group scheduling framework [3] are important to the work described in this paper: (1)

the ability of group scheduling to accurately isolate resource (CPU) use by a critical stream processing computation from interference

from the use of that resource by competing (non-critical) streams; (2) the ability of group scheduling to rigorously and dynamically

enforce developer-defined constraints (stream frame progress) on behavior of non-critical streams, in contrast to the default Linux

scheduler priority based semantics or to static CPU allocation techniques.
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Figure 1. Integration of SELinux and Group Scheduling

Integration of security and scheduling. The integration of security and scheduling mechanisms at the kernel level means that

resource access, admission and execution control, while logically distinct decisions, can be made to interact or can even be merged with

very high efficiency. For example, if one thread within a computation attempts a forbidden resource access, one possible adaptation

that the system designer may configure is to impose scheduling consequences for the offending thread (and possibly other threads

associated with it) under the group scheduling framework.

4 Prototype Design and Implementation

The modular architecture of our solution approach is illustrated in Figure 1. KURT-Linux in enforcement mode (i.e., the SELinux

security server enforces security decisions) is the foundation of our solution architecture. We apply the KURT patches to the Linux

operating system in order to:

• Provide basic mechanisms to control resource allocation: our first objective is to provide a mechanism to control CPU allocation.

To this end, the Group Scheduling Framework module implements different scheduling decision functions (SDFs) to (1) allow

the user to choose from a variety of scheduling semantics, (2) ensure accuracy in CPU allocation, and (3) ensure predictability

in computation execution. The set of SDFs we have implemented for the research described in this paper provides both open

loop and closed loop control of CPU usage. Our open-loop SDFs are based on the weighted round-robin algorithm [18, 19], so

that periodically each process is given a certain time quantum. Our closed-loop SDFs provide feedback control over the CPU

percentage used by each computation. The scheduler controls the progress of each computation, preventing it from using more

than its allocated share of the CPU. Section 4.1 gives details about our prototype implementation, and Section 5 presents an

evaluation of the precision and overhead of these strategies.

• Integrate SELinux and Group Scheduling: SElinux and group scheduling are integrated via system call hooks and via the

Security-Aware Decision Module (SA-Decision Module). Hooks are implemented to keep track of security-sensitive information

in more detail. This is required since the SELinux security server allows each program to do whatever the security policy

specifies, like opening files and sockets and spawning child processes. However, SELinux does not supply mechanisms to track

how a program uses the system features is is allowed to access – does it open too many files, send excessive network packets,

or spawn too many child processes? Based on this information and on decisions made by the SELinux security server, resource

allocation policies may adapt to favor good processes over bad processes. Our prototype implementation provides a strategy to

implement such security-aware scheduling of the CPU, as we describe in Section 4.2.
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Figure 2. Round-Robin Quantum Allocation Strategies: a) Coarse-Grain; b) Fine-Grain; c) Medium-Grain

• Allow legacy applications to take advantage of the platform: the idea behind our approach is to allow legacy applications as well

as platform-aware applications to take advantage of its facilities. Each program is associated with a description of resources

needed to accomplish its computations. Each computation may describe such requests in terms of the resources needed by

the program (such as the CPU percentage, the network bandwidth, or the memory size) and specify a strategy to subdivide a

particular resource among its child processes. A workload descriptor contains the resource specifications for programs that

need to run on the platform. The Group Scheduling Loader (GS-Loader) configures the underlying platform (i.e., building up

the group SDF hierarchy), and then executes programs listed in the workload descriptor. In our prototype implementation, a

resource set may describe the amount of CPU time needed by the program’s computations and the strategy for subdivision of

that time among its spawned children, as we describe in more detail in Section 4.3.

4.1 Group Scheduling Decision Functions

A major design goal of the group scheduling framework is to provide maximum flexibility to the system designer in configuring

execution control semantics. We have implemented a set of scheduling strategies according to the following approaches:

Open loop scheduling. In this approach, scheduling decisions are made at initialization time, so that the order in which computations

are scheduled is prearranged, as is the CPU time allocated to each computation in turn. Our open loop scheduling strategies are based

on the weighted round robin algorithm [18, 19]. Each group member can run up to but cannot exceed its quantum within a round of the

scheduling algorithm, and IO and synchronization operations, or any other potentially blocking operations, can cause a computation

to waste part of the time quantum available to it within a single round. The open loop approach provides a guarantee of execution

opportunity but not of utilization of that opportunity.

Among the possible open-loop quantum allocation strategies, we have focused on those illustrated in Figure 2. In the first strategy,

called “coarse-grain round robin,” each group member’s computation may progress up to the expiration of its total allocation, so that

the group member is not preempted by the scheduler within that period of time. Afterward, the scheduler picks the next eligible group

member from the queue and lets it run for its entire allocation. In the second strategy, called “fine-grain round robin,” the scheduler

lets each group members’ computation progress for a prearranged time slice, and then preempts that group member in order to allow

another group member’s computation to progress. Once the member’s total allocation has expired, it is no longer allowed to run within

the current scheduling round. The third strategy is similar to the second one, except that the time slice is set to the greatest common

factor (GCF) of all the group members’ quanta. As Figure 2.c shows, such a choice can minimize the number of switches between
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computations and, at the same time, it can allow the computations to progress fairly. Although the strategy 2.c strikes a compromise

between the strategies shown in Figures 2.a and 2.b, in this paper focus only on the first two, since results obtained for them serve

to bound the extremes of all possible results. The coarse-grain round robin strategy is suitable for CPU-bound computations since

they easily consume the whole quantum assigned to them. IO-bound computations might miss the opportunity to consume their

entire allocation due to blocking operations, so they make be better served by the fine-grain round robin strategy thanks to greater

distribution of the execution opportunities across the scheduling round. While it is expected that the coarse-grain round robin strategy

is more efficient due to fewer forced context switches between group members, the fine-grain round robin strategy is expected to be

more forgiving when a group member fails to use part of its allocation.

The relationship between the CPU percentage offered to a group member and the time quantum, is described by Formula 1:

%i =
Qi

∑

j Qj

(1)

where Qi is the time quantum assigned to the ith group member, and %i is the maximum CPU percentage that it can use. Our

experiments described in Section 5 show that Formula 1 is also a reasonably good approximation of the CPU utilization by (especialy)

CPU bound and (to some extent) mixed IO/CPU bound computations. With any of these round robin scheduling strategies, it is possible

to protect well behaved computations from misbehaving computations by modifying the time quantum assigned to the misbehaving

ones at run-time, to minimize the CPU percentage that they take away from properly behaved computations (those satisfying their

execution behavior constriants if any are specified). Our empirical results presented in Section 5 show how the performance and

overhead of these strategies varies according to the computations use of the CPU and I/O.

Closed loop scheduling. in this approach, scheduling decisions are made dynamically, and the CPU percentage that each compu-

tation is given is adjusted according to specified constraints. This approach can be modeled by the abstract feedback control scheme

shown in Figure 3. As the Figure shows, the CPU is the system to be controlled. Inputs are modeled as a vector U i = (u1, u2, . . . , un)

where uj = 1 if j = i, and uj = 0 if j 6= i. By means of the vector U i, the controller states that the i-th computation has to get

the CPU within the next sampling period. Outputs are modeled as the vector P = (p1, p2, . . . , pn), where pi is the CPU percentage

consumed by the i-th computation, while the reference is modeled as the vector R = (r1, r2, . . . , rn), where ri is the CPU percentage

that a computation must get. The control law can then be expressed as follows:

U i :























∣

∣R − P
∣

∣ ≥ 0

∣

∣Ri − P i

∣

∣ = maxj

{∣

∣R1 − P 1

∣

∣ , . . . ,
∣

∣Rn − P n

∣

∣

}

(2)
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where Ri = R · I i and P i = P · I i. Formula 2 states that the scheduler chooses as the next computation, the one whose margin

between the actual CPU percentage and the reference percentage is the greatest; the choice must be made under the constraint that no

computation gets more than its specified reference percentage. This strategy has two fundamental design parameters: the sampling

period, ts, i.e., how often the control law is computed; and the reference period, T , over which the CPU percentage is computed. The

accuracy of the scheduling strategy is affected by the ratio, T/ts. Figure 4 shows an example where the ratio T/ts = 10; in such

a case, each time that the scheduler picks a group member and runs it, the computation may get up to the 10 % of CPU time. The

accuracy of the control strategy in this case is thus on the order of 10%. The smaller the ratio T/ts, greater the overhead, but the

greater the precision with which the scheduler can control the computations.

60% t

t0

T

80%70% 100%90%10% 30%20% 50%40%

ts

Figure 4. Sampling Period vs. Horizon for CPU Percentage Evaluation

4.2 Security-Aware Decision Module

SELinux provides the LSM framework [17, 20], which is a security infrastructure that can be used in conjunction with loadable

kernel modules to implement desired models of security. The LSM framework adds security fields to kernel data structures and inserts

calls to hook functions at critical points in the kernel code to manage the security fields and to perform access control. Each LSM

hook is a function pointer in a global security ops table. The security ops table is initialized with a set of hook functions provided by

a default security module that provides traditional superuser semantics. A register security function is provided to allow a security

module to set security ops to refer to its own hook functions. This mechanism is also used to set the primary security module, which

is responsible for making the final decision for each hook.

The security server provided with SELinux implements a combination of role-based access control (RBAC), a generalization of

type enforcement (TE), and optionally multi-level security (MLS). The access vector cache (AVC) provides interfaces to the hook

functions for efficient checking of access permissions, and provides interfaces to the security server for managing the a cache of

security permissions (in the form of access vectors). The hook functions manage the security information associated with kernel

objects and perform access control checks for each kernel operation. The hook functions call the security server and access vector

cache to obtain security policy decisions and apply those decisions to label and control kernel objects.

Using System Call Hooks as Interceptors. Figure 5 shows the path of function invocations from the invocation of a system call to

the security checking and enforcement functions performed by SELinux. Each system call has a hook which can grant or deny the

operation. Instead of providing a new security module from scratch, the Security-Aware Decision Module, along with extra function

hooks, integrates the SELinux security module in order to monitor processes’ operations and to collect security-sensitive information

which may deflect potential situations where a process is misbehaving or malfunctioning. By example, fork bomb attacks [15] could

be detected by the excessive number of fork() calls, whereas ICMP flood attacks could be detected by the excessive number of opened

sockets and/or high rate of packets sent/received. Once these situations are detected, the idea behind the proposed approach is to

mitigate their effects by making the scheduling strategy aware of them. The scheduler may then penalize a misbehaving process by
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do_fork {
…

copy_process(…) {
…

security_task_create(…) {
…

return security_ops->task_create(…)
}

}
}

selinux_task_create(…) {
…

task_has_perm(…) {
…

avc_has_perm(…) {
avc_has_perm_noaudit(…) {
…

if (!requested || denied) {
if (selinux_enforcing)

rc = -EACCES;
}

}
}

}
}

system call invocation

security_{system_call}

security_ops->{system_call}

selinux_{system_call}

{system_call}_has_perm

avc_has_perm

avc_has_perm_noaudit

kernel/fork.c

include/linux/security.h

security/selinux/hooks.c

security/selinux/avc.c

call

call

call

call

call

call

Figure 5. SELinux Call Stack and Function Hooks for fork() Example

GOOD2BAD GOOD BAD BAD2GOOD

P(X) = GRANTED

P(X) = DENIED
Action: cut CPU allocation off 

P(X) = GRANTED
Action: restore CPU allocation

P(X) = GRANTED

P(X) = GRANTED

P(X) = DENIED

P(X) = DENIED

P(X) = DENIED
Action: cut CPU allocation off 

P(X) = GRANTED
Action: restore CPU allocation

Figure 6. Security Aware Scheduling Strategy

cutting its CPU percentage/time quantum. Depending on the kind of system and its policies, the penalty may be more or less drastic

and a process may even be given the possibility to redeem itself. Figure 6 shows how a reversible status reduction strategy may be

applied in response to misbehavior. X is a set of behavioral attributes tracked via hooks, while P(X) is a boolean “permission” predicate

evaluated by the SA-Decision Module. The predicate is evaluated every time a security decision is made by SELinux: such a security

check can either be granted or denied if bad behavior is detected. A process can be in the following statuses: (1) GOOD - no action

was denied and a security attribute check was positive; (2) GOOD2BAD - either an action was denied or a security attribute check

was negative; (3) BAD - either a security attribute check was still negative or an actions was still denied; (4) BAD2GOOD - no action

was denied and a security attribute check was positive. The resource use reduction strategy is handled by binary division of the CPU

allocation during BAD status, and recovered through binary multiplication during BAD2GOOD .

4.3 Group Scheduling Loader

Any of the scheduling strategies described in Sections 4.1 and 4.2 can be used with the group scheduling framework provided by

KURT-Linux. It is desirable that our solution approach can be used to control unmodified legacy programs. In fact, many threats

might be hidden in legacy applications, or generally speaking, in applications whose code is unknown and potentially vulnerable to

malicious exploit. Running legacy programs under group scheduling control is made possible via the GS-Loader. In our prototype

implementation, a legacy program is put under group scheduling control and is then scheduled with respect to its resource set descriptor,

which specifies the scheduling strategy (i.e., either closed loop or open loop), the CPU allocation (i.e., either a CPU percentage or a time

quantum) and the strategy for subdividing the CPU allocation among the spawned children. We have implemented two subdivision
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strategies so far: (1) FIFO_SPLIT - this strategy halves the CPU allocation between the parent and child processes, so that any further

children spawned from the parent will get their allocation from the parent’s already halved allocation; and (2) SHARE_SPLIT - this

strategy shares the CPU allocation between the parent process and spawned children equally. When a process is terminated, its share

is returned to the parent if the parent is still active, or otherwise to the parent’s other children, if any.

5 Empirical Evaluation

In this section we present a set of experiments we have conducted to evaluate the precision and overhead of the open loop and

closed loop scheduling strategies discussed in Section 4.1. We have also evaluated how the precision and overhead change between

CPU-bound processes and processes with a mix of CPU and I/O bound phases, as well as how scheduling precision and overhead

change across different relative CPU allocations. To this end, the design of our experiments is as follows:

• Open-Loop Management: for each experiment we varying the following parameters:

– Quantum management strategy: we have tested strategies shown in Figures 2.a and 2.b in Section 4.

– Type of process: we have measured the execution time of both CPU bound and mixed CPU-IO bound processes. The

process’ period is set according to the time quantum given to the process. For example if the time quantum is X seconds,

the process’ period will be less than X seconds to ensure contention.

– CPU allocation: in each experiment we schedule two competing processes of the same type, but with different relative

CPU allocations. We varied the relative CPU allocation between a 5%-95% split and a 50%-50% split.

• Closed-Loop Management: for each experiment we vary the following parameters:

– Type of process: we have measured the execution time between context switch events of both periodic CPU and mixed

CPU-IO bound processes. The process’ period is set according to the CPU percentage given to the process. For example,

assuming that the scheduling algorithm computes the CPU percentage on a reference period of T seconds, the period of

the process which gets the P% will be less than P · T seconds.

– CPU allocation: in each experiment the scheduler deals with two processes of the same type, but with different relative

CPU allocations, which we have varied the CPU allocation from 5%-95% to 50%-50%.

As one indicator of the precision in scheduling control, we have chosen the probability distribution function (pdf) of the process’

execution time between context switch events. The accuracy of the scheduling strategy is reflected by the distribution’s shape. Tight

distributions reflect accurate strategies and vice versa. The percentage of CPU time that each process consumes is another indicator

which may reflect the precision of the scheduling strategy at a coarser temporal scale. The margin between the ideal percentage values

and the actual utilization gives us a gauge of the precision of the scheduling strategy in allocating CPU use to specific processes.

As overhead indicators we have measured the context switch time, i.e., the time spent by the scheduler to select a new process to

run and to schedule it, and the number of context switches that occur per second. In this context, the context switch time is largely

determined by the time required to evaluate the group scheduling hierarchy. Both metrics are useful to estimate the basic overhead
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added by group scheduling, and how the overhead varies across different allocations of the CPU. The platform used in the experiments

was a P4 2.5GHz CPU machine with KURT-Linux modifications applied to Linux kernel release 2.6.11-5.

5.1 Empirical Results

The results presented in this section provide several views of how processes behave under coarse grain open loop, fine grain open

loop, and closed loop scheduling strategies. We measured the behavior of two types of processes according to three different metrics

to evaluate the effectiveness of our approach: execution times for each dispatch of a scheduled processes, context switch times, and

context switch rates.

Figure 7 shows graphs of the distribution of execution times for CPU bound (Figures 7a, 7c, and 7e) and Mixed CPU-I/O processes

(Figures 7b, 7d, and 7f). In these graphs, the X axis is a normalized execution time, and thus centered around zero. The Y axis

is the set of CPU percentage allocations assigned to the process, which range from 5 to 95 percent. The Z axis in these graphs is

the probability density, which is thus in a range from 0.0 to 1.0. The CPU bound graphs give us a view of how precisely the group

scheduling framework can control process execution, while the mixed CPU-I/O graphs show how blocking from I/O can introduce

variations in process behavior.

Figure 8 shows the distribution of the time required to evaluate the group scheduling decision hierarchy, to choose the next process

and schedule it, for CPU bound (Figures 8a, 8c, and 8e) and Mixed CPU-I/O (Figures 8b, 8d, and 8f) processes. The X axis is the

evaluation and scheduling time in CPU cycle units on the experimental platform, while the Y axis is the set of relative CPU allocations

between two competing processes ranging from (5, 95) to (50, 50) in increments of 5 percent. The Z axis is the probability density.

These graphs indicate the overhead we pay for the precise control provided by the group scheduling framework.

Figure 9 shows the distribution of the context switch rates for CPU bound (Figures 9a, 9c, and 9e) and Mixed CPU-I/O (Figures 9b,

9d, and 9f) processes. The X axis in these graphs is the number of context switches per second, while the Y axis is the relative percent

CPU allocation split between two competing processes, which ranges from (5, 95) to (50, 50). The Z axis is the probability density.

These graphs give another view of the overhead we pay to obtain precise process control.

The next four figures compare results for the open loop (“a”) and closed loop (“b”) scheduling strategies. Figure 10 shows actual

CPU use on the Y axis with the reserved CPU percentage on the X axis for both CPU bound and mixed CPU-IO processes. The graph

also shows the ideal (diagonal) trend line. The actual utilization by a process is a measure of the scheduling precision. For example

in the open-loop scenario, the CPU utilization should observe Formula 1 in Section 4, whereas in the closed-loop scenario, the CPU

utilization should follow the reference percentage.

Figure 11 shows the context switch rate on the Y axis and the allocated CPU percentage for the process on the X axis, for the same

sets of scheduling methods and processes. A comparison among the context switch rates observed under different scheduling strategies

gives us an indication of the trade-off between scheduling overhead and precision of control. Figure12 plots the difference in actual

CPU percentage use on the Y axis and the difference between the intended CPU use for same two competing processes under the open

and closed loop scheduling methods. Figure13 plots the total execution time in microseconds on the Y axis and the percentage of the

CPU allocated to the process on the Y axis for the same set of processes and scheduling methods.
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Figure 7a. Coarse Grain Open Loop (CPU Bound)
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Figure 7b. Coarse Grain Open Loop (Mixed CPU/IO)
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Figure 7c. Fine Grain Open Loop (CPU Bound)
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Figure 7d. Fine Grain Open Loop (Mixed CPU/IO)
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Figure 7e. Closed Loop (CPU Bound)
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Figure 7f. Closed Loop (Mixed CPU/IO)

Figure 7. Execution Times
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Figure 8a. Coarse Grain Open Loop (CPU Bound)
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Figure 8b. Coarse Grain Open Loop (Mixed CPU/IO)
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Figure 8c. Fine Grain Open Loop (CPU Bound)
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Figure 8d. Fine Grain Open Loop (Mixed CPU/IO)

5
0

0
8

5
0

1
2

0
0

1
5

5
0

1
9

0
0

2
2

5
0

2
6

0
0

2
9

5
0

3
3

0
0

3
6

5
0

4
0

0
0

5%-95%

20%-80%

35%-65%

50%-50%

0

0.2

0.4

0.6

0.8

1

Figure 8e. Closed Loop (CPU Bound)
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Figure 8f. Closed Loop (Mixed CPU/IO)

Figure 8. Context Switch Times
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Figure 9a. Coarse Grain Open Loop (CPU Bound)
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Figure 9b. Coarse Grain Open Loop (Mixed CPU/IO)
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Figure 9c. Fine Grain Open Loop (CPU Bound)
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Figure 9d. Fine Grain Open Loop (Mixed CPU/IO)
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Figure 9e. Closed Loop (CPU Bound)
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Figure 9f. Closed Loop (Mixed CPU/IO)

Figure 9. Context Switch Rates
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Figure 10a. Open Loop Scheduling Strategies
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Figure 10. CPU Utilization vs. CPU Allocation
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Figure 11. Context Switch Rate vs. CPU Allocation
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Figure 12. Time Margins vs. CPU Allocation
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Figure 13. Execution Times vs. CPU Allocation

5.2 Analysis of Results

Precision in managing process execution. The figures shown in Section 5.1 confirm expected results: the precision of the schedul-

ing control is mostly accurate in the case of CPU-bound processes and it increases when the CPU allocation increases. In other words,

the process’ execution time is more predictable when a process gets more CPU cycles. This is valid also in the case of mixed CPU-IO

bound processes, although samples are more scattered, and distributions are not tight as the CPU bound case.

• Open-loop management: As far as open-loop management is concerned, the second (fine-grain) scheduling strategy is more

precise than the first (coarse-grain) one. This is confirmed by comparing distributions shown in Figures 7a, 7b, 7c, 7d and the

actual percentage’s curves shown in Figure 10a (OL1 stands for Open-Loop, first (coarse-grain) strategy, while OL2 stands for

Open-Loop, second (fine-grain) strategy).

This is due to the different decisions used to let a process progress. The first (coarse-grain) Round-Robin algorithm allows a

process to progress only after the process ahead of it (in the scheduling queue) consumes its time quantum. The second (fine-

grain) Round-Robin algorithm allows processes to progress together, whenever possible. Therefore, the effect of missing an

opportunity to accomplish the process’ tasks within the scheduling round are more harmful in the coarse-grain strategy, since

the process has to wait the whole time quantum of the next process to get a chance to run again. This can result in multi-modal

distributions of its execution time, as is illustrated in Figures 7a and 7b. When the process behavior changes from the CPU

bound to the mixed CPU-IO bound, the scheduling precision decreases. In fact, it is possible that processes might miss the

chance to run within the round or to consume the whole quantum’s time. Since no feedback is provided, the scheduling strategy

becomes less predictable, though still providing reasonably good performance, as is confirmed by the curves in Figure 10a.

• Closed-loop management: the closed-loop management approach shows a behavior that is even more precise than the open-loop

management approaches, in both CPU bound and mixed CPU-IO bound scenarios (Figures 7e, 7f). However, it produces multi-

modal time distributions at low CPU allocation levels, so it is more applicable to cases where allocations are more even between

processes. This is due in part to the particular behavior adopted by the processes chosen in the experiments. The execution

time is computed as the margin between two timestamps at the beginning and at the end of the periodic task. It might happen
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that these timestamps are taken in different time slots, resulting in different execution time samples. As the CPU percentage

increases, the number of available scheduling slots increases, making such a phenomenon less evident. Thus, the closed loop

approach is sensitive to how the feedback data on which it operates is collected. The precision of the closed-loop management

is also shown by the diagram in Figure 10b, with a small deviation between the actual percentage curve and the ideal one.

Group Scheduling overhead. Every time a call to the group scheduler was triggered, the time spent by the scheduler to pick and

schedule a new process was measured to be in the range of thousands of CPU cycles, which results in a range of microseconds on a

2.5GHz machine. Moreover, these times were shown to be predictable across different CPU allocations.

• Open-loop management: as illustrated in Figures 8a, 8b, 9a, 9b, and 11a the first (coarse-grain) scheduling strategy’s overhead is

generally lower and more predictable than the second (fine-grain) strategy’s overhead across different CPU allocations, in both

CPU and mixed CPU-IO bound cases. Specifically, in the CPU bound case the number of context switches remains constant

in the first (coarse-grain) strategy, since all of the quanta allocated to a process are scheduled contiguously, and the number of

context switches is thus directly proportional to the number of processes. With the second (fine-grain) strategy, however, quanta

are interleaved so that a more even division of the CPU among the processes results in fewer contiguous quanta being used by a

particular process, and greater overhead due to more context switches between processes.

In our experiments, the scheduler dealt with two processes, with the scheduling round set to 1 second (i.e. the sum of the quanta).

The number of context switches per second for the coarse-grain strategy is hence constantly equal to 2 when processes are CPU-

bound, and close to 2 when processes are mixed CPU-IO bound. The second (fine-grain) scheduling strategy’s overhead is rather

predictable as well, although it increases as the margin between the CPU allocations decreases.

In the case where CPU usage and I/O were interleaved, the context switch overhead was higher for the first (coarse-grain)

scheduling strategy and lower for the second (fine-grain) scheduling strategy, but with each strategy the results were similar to

those for the CPU-bound case. We attribute the differences in context switch overhead between the CPU-bound and interleaved

CPU-IO cases to the phasing of when processes blocked and unblocked from I/O calls relative to the phasing of when one process

was scheduled relative to the other by the scheduling strategy. The highest overhead for the second (fine-grain) scheduling

strategy was measured when the processes have the same allocation. In fact, they progress fairly since the scheduler switches

between them each slot.

• Closed-loop management: the overhead of the closed-loop strategy has a predictable behavior across different CPU allocations,

and it increases as the margin between the CPU allocations decreases (Figures 8e, 9e, 8f, 9f). Specifically, it is inversely

proportional to the sampling period ts: a smaller sampling period may require more scheduling decisions, and thus likely

more context switches. As with the second (fine-grain) closed loop scheduling strategy, the highest context switch overhead is

measured when the processes fairly share the CPU, since the scheduler picks group members alternatively and allows them to

progress simultaneously. It should be noted that the closed-loop strategy presents less overhead than the fine-grained open-loop

strategy, as illustrated in Figures 8e, 8f, 9e, 9f, and 11b.
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Tuning the scheduling control to protect/penalize processes. Figures 12a, 12b, 13a, and 13b show the relationships between

execution time and CPU allocation for the scheduling strategies we have examined.

• Open-Loop management: Figure 13a illustrates the ratio between the time spent to execute a process and the CPU allocation

reserved for it. As Figure 13a shows, the scheduling strategies have more similar behaviors as the CPU allocation increases. As

the CPU allocation decreases, behaviors become different and the first (coarse-grain) scheduling strategy (i.e. OL1) penalizes

processes more than the second (fine-grain) one (OL2). The execution time is halved approximately each step. Figure 12a

illustrates the margin between the execution times spent by a group of two processes which are executed concurrently, but with

different CPU allocations. The X axis shows the margin between their CPU allocations. As Figure 12a shows, the margin

increases as the CPU allocation increases. Margins seen with the fine-grain OL2 strategy are greater than margins experienced

with the coarse-grain OL1 strategy, which reflects a more effective enforcement by the fine-grain strategy.

• Closed-Loop management: As results in Figures 12b and 13b show, the closed-loop strategy has a behavior which is similar to

the open-loop strategies. It should be noted that curves in Figures 12a,13a,12b,and 13b cannot be compared since task periods

chosen to test open-loop management were different from the ones used to test closed-loop management.

6 Related Work

In this section we describe related work in the following main areas: operating system security frameworks, operating system

scheduling, hierarchical organization of scheduling decision functions, and role-based access control and utilization control.

OS security frameworks. SELinux is based on the Flask security architecture [21], which provides policy enforcement and policy

decision-making code. The policy decision-making code is encapsulated in a separate component of the operating system called the

security server. The Flask security architecture includes an access vector cache (AVC) component that provides caching of access

permissions. The policy enforcement code obtains security policy decisions from the security server and AVC, and applies those

decisions to assign security labels to processes and objects, and to control process operations based on those security labels. In the

LSM-based SELinux security module, the policy enforcement code is implemented in the hook functions, and the policy-independent

data types are stored using the security fields in the kernel data structures.

OS scheduling. The Scout operating system [22] introduced the path abstraction, which made explicit the notion of the computa-

tion’s execution environment cross-cutting system layers. In Scout, paths compose segments of the computation with mechanisms

that manage their progress. Flexible scheduling decision functions have been realized in Scout, such as the Best-Effort Real-Time

(BERT) [23] algorithm. Our group scheduling approach generalizes the notion of path scheduling to a wider range of platforms, and

also shifts the path abstraction from the execution environment model to the scheduling model.

Hierarchical scheduling. Goyal, Guo, and Vin [24] and Regehr and Stankovic [25] have extended the notion of a scheduling decision

function to include composition of scheduling decision functions within a hierarchical scheduling framework. Regehr, et al., have

applied hierarchical scheduling to cross-cut alternative execution environments so that analysis of both concurrency and schedulability

can be done together [26]. Both hierarchical scheduling and the BERT approach in the Scout operating system compose scheduling
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decision functions across system layers. The BERT algorithm for slack stealing in fair-queuing scheduling decision functions can be

realized in the more general hierarchical scheduling model. Since group scheduling extends the hierarchical scheduling model, it also

extends the BERT approach.

Feedback control scheduling. Feedback control has been used in a variety of scheduling techniques. Applications of these tech-

niques have included web servers [27], ORBs [28], real-time image transmission [29]. When combined with hybrid control tech-

niques [30], feedback scheduling approaches offer significant potential for extension of the closed loop scheduling strategy described

in this paper, to incorporate a wide range of security aspects.

Role based access and usage control. Role-based access control (RBAC) [31, 32, 33] allows security policies to be applied flexibly

and efficiently to roles (which tend to be relatively stable allocations of authority for a system), instead of to individuals (who may

change roles or enter or depart from an organization more frequently). Role based access control thus can ease the complexity of

administering security access policies by eliminating gratuitous variabililty in the assignment of access permissions. Sandhu, et al.,

have developed extensions to RBAC to support usage control (UCON) [34] which provides role-based administration of computations

behavior. Our approach extends the ideas in UCON by integrating explicit scheduling of when computations are executed.

7 Conclusions and Future Work

In this paper we have considered the specific problem of CPU focused denial of service attacks, and in doing so have motivated

the more general problem of execution security as a crucial issue for time-sensitive applications, particularly as modern computing

systems are increasingly ubiquitous, inter-connected, and open.

Summary of contributions. This paper has presented three contributions to the state of the art in protection of the execution of sys-

tem activities from accidental or adversarial interference. First, in Section 1 we have explained how limitations of current approaches

make it difficult to offer sufficiently rigorous and fine-grained assurances of protection for system computations, in the face of CPU-

focused denial of service attacks. Second, in Section 3 we have presented a novel solution approach in which fine-grained scheduling

decision functions [3, 2, 1] such as those described in Section 4 are integrated with system call hooks from the Security Enhanced

Linux (SELinux) framework [4, 17] within the Linux 2.6 kernel. Third, our empirical evaluations in Section 5 have demonstrated the

efficacy of our approach in controlling the CPU utilization of competing greedy computations that are either completely CPU bound,

or that interleave I/O and CPU access, across a range of relative allocations of the CPU.

Future work. Our near-term research agenda will focus on several additional open problems related to the work presented in this

paper: (1) development of a complementary audit and forensics framework in which execution control decisions are recorded and

correlated with a rigorous fine-grained accounting of system behavior; (2) efficient end-to-end configuration and on-line enforcement

protocols in middleware, and formalization of composition methods that maintain execution control assurances when application

components and subsystems are integrated; and (3) integration of our execution control approach with other security techniques such

as role-based access control.
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We will develop an expanded set of techniques for configuring and checking security constraints when different application com-

ponents, infrastructure layers, and separate endsystems are composed within a local endsystem. We will also extend this local compo-

sition model to include composition of control for application assemblies that are distributed across multiple endsystems.

Finally, we will study how to integrate our execution security approach with existing role-based access and usage control ap-

proaches, to provide an integrated role-based approach to both data and execution security. To do this we will examine how hierar-

chically organized groups used in both the role based access control and group scheduling models can be integrated into a combined

model for managing access permissions, and resource admission and execution control policies. We will also examine the implica-

tions of enforcement of constraints that cross-cut the access, admission, and execution control dimensions, on the safety and liveness

properties of the overall system. Our goal will be to develop a practical and general model for role-based decision functions that can

express and compose (1) simple and efficient Boolean decision functions such as access control decisions based on role attributes,

(2) more complex predicates such as admission decisions based on resource availability, and (3) longer-running control functions to

monitor and steer progress of executing computations that are granted both access and admission.
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