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Abstract predictability and efficiency required by these systems. Critics

of GC technologies argue that the space/time tradeoffs achiev-
As high integrity real-time systems become increasinglyable by real-time garbage collectors are still unsuitable for the
large and complex, forcing a static model of memory usage beslass of systems targeted by the static paradigm. In order to
comes untenable. The challenge is to provide a dynamic merachieve the required performance in one semantic domain, the
ory model that guarantees tight and bounded time and space r€osts in the other are too high. On the other hand, critics of
quirements without overburdening the developer with memorgew memory models such as that proposed in the RTSJ argue
concerns. This paper provides an analysis of memory managé#at the burden of memory concerns placed on developers de-
ment approaches in order to characterise the tradeoffs acrosgacts from what is arguably the most attractive feature of de-
three semantic domains: space, time and a characterisation ofeloping large and complex systems in environments such as
memory usage information such as the lifetime of objects. dava: freedom from memory concerns. The common ground
unified approach to distinguishing the merits of each memoryetween these two camps is that the success or failure of provid-
model highlights the relationship across these three domaingng a suitable environment for developing the next generation
thereby identifying the class of applications that benefit fronpf complex real-time and embedded systems hinges on getting
targeting a particular model. Crucially, an initial investigation the memory model right.

take in order to address the requirements of the next generagpout which memory model the RTSJ should adopt. Indeed,
tion of complex embedded systems. Some initial suggestiofifs continues to be the most contentious issue of the RTSJ and
are made in this regard and the memory model proposed in thg,ore literature exists on analysis, extensions and modifications
Real-Time Specification for Java is evaluated in this context. of the RTSJ memory model than any other part of the specifica-
tion. Java developers could adopt a static approach in the same
way as Ravenscar for Ada does [13] but even the Ravenscar
1 Introduction profile for Java [20] recognises the need for a dynamic model
by introducing a limited region-based model. The need for dy-

Memory management is a major concern when developin amic; memory is hOW(_aver not a requirement only of real-time
real-time and embedded applications. The unpredictability of&Va |tself'but is arequirement of the next generation of embed-
memory allocation and deallocation has resulted in hard reaf€d real-time systems. The goals of this paper are threefold.

time systems being necessarily static. Even when the analytican€ first goal is to identify the implications of using different

worst-case space and time requirements can be derived [27, 28)na@mic memory models. The second goal is to motivate a new
proach to developing dynamic memory models that goes be-

the high space and time overheads of traditional dynamic menit?

ory models such as fine grain explicit memory managemer)fond_the “fine-tuning” approach of current research. The third
and real-time garbage collection (GC) mean that it is hard t§0@l is to show why the RTSJ's memory model may be a step

argue a case for these models in resource constrained envirdl-the right direction in this regard. However, it will also be
ments. Alternative memory models such as that proposed frued thata number of changes to the model and the way it is
the Real-Time Specification for Java (RTSJ) can be shown t§S€d are necessary.

reduce these overheads but at a cost of significant development To this end, this paper provides three contributions. First, an
complexity. Identifying and characterising the criteria used taanalysis of fine grain memory management approaches from
gauge different memory models is non-trivial. Arguing that oneprevious work is carried out in Section 2 in order to identify
memory model is better than another must be qualified by and quantify the space and time overheads of these approaches.
specification of the driving design forces. One important el-Although the results described here make a strong case for an
ement of these driving forces is the application developmeralternative memory model, current research either fails to pro-
cost of the chosen model. GC is the best choice in this revide models for which the overheads are sufficiently tight or
gard as the additional development cost of using memory dyproposes models which place a significant burden on the devel-
namically is small. However, the real-time community remainsoper. Section 3 describes the second contribution of this paper.
highly polarised as to whether real-time GC can ever reach th€his is a novel, unified approach to distinguishing the merits



of each memory model that is based on a hypothesis that higiematic deallocation by a garbage collector. It is unsurprising
lights the relationship across three semantic domains: spadberefore that recent research focuses for the most part on port-
time and a characterisation of available information about théng these models to the real-time domain. However, in propos-
way memory is used by the application, such as the averageg the use of these memory models in a real-time domain, the
size of object or a characterisation of their lifetime. This allowsspace and time overheads need to be quantified. This is in-
the derivation of a classification of memory models, therebyestigated in the rest of this section and subsequently used to
identifying the class of applications that benefit from target-motivate research into an alternative memory model. Note that
ing each model. The hypothesis developed in this section ian exact evaluation of each overhead is often not possible due
used to make a case for the direction research needs to tateethe complex dependencies of the space-time tradeoff. This
in order to develop memory models suitable for the next genproblem will be addressed in Section 3.

eration of complex embedded systems. In particular, it is ar- The sources of overheads in dynamic fine grain models are
gued that rather than trying to adapt the memory models used broadly as follows:

traditional environments to real-time ones, new memory mod- o . )

els than directly address real-time requirements need to be de-l- Both explicit and automatic memory models introduce
veloped. The Metronome collector [1, 3, 2], a state-of-the-art ~ SPace and time overheads due to fragmentation.

garbage collector, is described in order to highlight why this
approach is unsuitable for the class of applications currently
addressed by the static model. Section 4 describes the third

contribution in this paper: an overview of a detailed investi- 3 |f memory management is made to be incremental, an ad-
gation into the RTSJ memory model that has been carried out  gitional overhead for guaranteeing the mutual integrity of
in order to analyse whether this model captures the shiftinre-  {he program and collector is incurred.

search strategy argued to be necessary in Section 3. Although

it is argued that this is achieved to some degree, it can also be4. In order to counter (1), both explicit and automatic mem-
shown that the model’s abstraction fails to allow an expression  ory models can use defragmentation. This results in addi-
of common lifetime patterns or restricts the ability of this infor- tional time but reduced space requirements.

mation to be expressed. These problems are often addressed by

using design patterns that are orthogonal to the model. Identify2.1 The Cost of Memory Fragmentation

ing where this information is lost motivates a set of extensions

to the RTSJ memory model that directly targets these failures, Memory fragmentation introduces high pessimism and
thereby eliminating the need for some of these design patternspredictability in space and time requirements that is un-
and highlighting why others are required. Also, even when lifefavourable in real-time environments [21]. An investigation

time information can be expressed, implementations often faihto the results from past work is carried out next in order to
to take full advantage of this information. Solutions to addressjuantify these overheads.

this are briefly described. Finally, Section 5 identifies future

2. In automatic memory models, there is the additional over-
head of identifying garbage.

work and concludes. Measuring the Cost of Fragmentation: Space
A detailed investigation into the space overhead due to frag-
2 Fine Grain Models in RT Environments mentation in a number of Dynamic Memory allocation algo-

rithms (DM algorithms) can be found in previous work by

The static approach to memory management is the tradNeely [23] and Johnstone [18]. These results are intriguing in
tional way of developing hard real-time systems. This is the ap'rhat they show that the observed fragmentation is least in the
proach taken in high integrity and safety critical subsets of Adgimpler policies such as first and best fit as opposed to more
such as Ravenscar [13] and SPARK [4]. Assuming an objectcomplex policies such as buddy algorithms. These simpler al-
oriented language, the application would allocate all necessa@prithms exhibit fragmentation that is also very low, typically
objects in a pre-mission phase and these would live for the dunder 3% when averaged across all applications but rises to
ration of the mission phase. If memory constrained deviced@s high as 53% in more complex algorithms such as binary
are the target of the application, developers are often forced #@Hddy. When taking into consideration the implementation
consider recycling objects, thereby adding another dimensiogosts of the policy (such as the data structures maintaining free
of complexity to the development and maintenance processeésts) and machine requirements (namely byte alignment), these
In some cases, this problem is aggravated as the object mod®ferheads increase to just 34% for best-fit and first-fit policies
may need to be broken in order to allow what would ordinarilyand 74% for binary buddy. A conclusion that Johnstone draws
be type-incompatible objects to replace each otliynamic from these results is that the fragmentation problem is solved,
memory allocation and deallocation can address this problenfind has been solved for several decades. However, Johnstone’s
if the reduced development complexity does not come at an uiork is based on the observed rather than worst case space re-
acceptable space and time overhead. quirements of applications. In a series of work between 1971

Dynamic memory management is used in most develop- 1 ; -

. . . .. ohnstone’s metric, compares the memory re-
ment environments outside the real-time domain in the form ofuirements at the point of MazLiveBytes (that is

1 i i i MaxH SizeAtMaxLiveBytes— Max Live Byt
fine grain, user-controlled allocation and deallocation and aur = e o R L),




and 1977 [28, 29, 27], Robson derived the worst case men2.2 The Cost of (Non-Incremental) GC

ory requirements of the best-fit and first-fit policies whereas

Knowlton [19] derived the worst case for buddy systems. Given When considering automatic memory management, it is of-
a block sizen and a maximum live memory requirement/df,  ten implied that the garbage collector also assumes the role of
the worst case memory requirements for first-fitViSlog, n, ~ the DM algorithm and defragmentor, thereby executing four
for binary buddy i2 M log, n and for best-fitis\/n. Crucially,  tasks: servicing allocations, locating garbage through a root
Robson showed that there exists an optimal strategy for whiclcan and traversal of the object graptaging), freeing garbage

the worst case memory requirements lie betwédd log,n  (sweepinyand defragmentation. This blurs the distinction be-
and abou®.84M log, n. The first-fit policy therefore provides tween DM algorithms and garbage collectors and limits a direct
a solution that is very close to optimal. comparison between explicit allocation and deallocation mem-

An interesting exercise is to compare these results t§"Y Models and automatic memory management models. In an

Johnstone's for observed fragmentation. The work of botfgffort to quantify each overhead, this paper maintains the dis-
Johnstone and Robson would lead one to the conclusioiction between_ the processes of allqcatlon, tracing, sweeping
that the first-fit policy is the best solution both in terms of @"d defragmenting memory. There is an additional overhead

observed and analytical worst case overheads. In fact, the md&@ garbage collected environment over an explicitly managed
significant observation that can be drawn from a comparisofn€ serviced directly by a DM algorithm that is highlighted by

of Johnstone’s and Robson’s work is that there exists a Iarg@is abstraction: the time overhead involved in tracing that is
discrepancy between the observed and analytical worst casB@t Present when memory in managed explicitly and the space
for all policies. For example, a program with a maximum live overhead due to the delayed deallocation of memory. Given this
memory requirements of 1Mb and which allocates objects thatdditional overhead, it would be expected that GC would auto-
range over a conservative size (say between 64 and 64k bytdBptically imply higher total overheads than an explicit memory
would still require 10Mb to guarantee against breakdown dugi@nagement, in both the space and time domain. There are sev-

to fragmentation when using first-fit and 20Mb when usingeral cases in the literature in which this is argued not to be the
the binary buddy algorithm. In addition to this, the memory©ase in the time domain [8, 16]. This phenomenon occurs be-

requirements of the mechanism implementing the policy mustause the delayed deallocation of objects in a garbage collected
also be considered. These total memory requirements are€Qvironment results in higher space overheads but incurs lower
significant order of magnitude higher than the 1.5Mb to omptime overheads due to infrequent vertical switching between

requirements one would expect to be required in the observe§€ a@pplication and underlying memory subsystem. However,
worst case. existing garbage collectors make use of strategies that are ab-

sent in existing DM algorithms but that could be readily im-
) ) ] plemented. For example, a similar technique to reduce vertical
Measuring the Cost of Fragmentation: Time switching could be used for explicit memory management with

The time overhead incurred by a DM algorithm depends orfree() calls being delayed and a single call to the DM algorithm
the inter-arrival rate of allocation and deallocation requests angassing the addresses of all memory to be freed. Garbage col-
the cost of an allocation and deallocation cycle as well as thiectors will therefore always incur additional overheads over
mean and variance of the request size. The most importagplicit fine grain models due to tracing. This is an impor-
contribution in the analysis of the time overheads incurred byant observation as the cost of tracing becomes the single ad-
DM algorithms was provided recently by Pauat in [25]. Pauagditional overhead between explicitly managed memory models
analysed the average and worst observed times of four applicad non-incremental automatic memory management models.
tions using a number of different DM algorithms and compared he results in [2] for the Metronome collector show that trac-
them to the analytical worst case allocation and deallocatioff’d incurs the highest cost of all collector operations, including
times of these algorithms. The average observed time oveftagmentation. Section 3.3 revisits these results in detail.
heads are similar across all DM algorithms and moreover, the
worst case overheads are typically less in the simpler policie8.3 The Cost of Incremental Collection
such as best-fit than in the more complex ones such as binary
buddy and Fibonacci buddy [17]. The analytical worst case Irrespective of whether a work-based [15] or schedule-
overheads however tell a different story. Here, the analyticadbased [1, 26] approach to real-time collection is adopted, the
worst case performance of best-fit and first-fit DM algorithmsadditional time cost of an incremental approach over a stop-the-
using a n&se mechanism is nearly a thousand times worse thaworld one comes from one primary source: maintaining consis-
that of the buddy systems which performs best for the analytency between the mutator and collector through the execution
ical worst case. The significant time used by a DM algorithmof barriers. Quantifying this overhead is often difficult as the
in a typical program are immediately evident: the values fowork done at each increment involves the execution of other
b-tree best fit and binary buddy would be respectively arountasks such as tracing and defragmentation. Since these over-
64% and 63% time overhead for a logic optimisation progranheads are being treated independently, the cost of a barrier here
called Espr; that is about 63% and 64% of program executiors considered only to be the cost of maintaining a suitable con-
is used in servicing allocation and deallocation requests. In theistency between the mutator’s view of the object graph and the
worst case, these values jump to 96% and 71% respectively. actual object graph. In [31], Zorn shows that the cost of read



barriers alone can incur a 20% penalty on application perfor-

mance when executed in software though Chengaal. claim Lifetime Information \
that their Metronome garbage collector can reduce this to 4% T O T
on average and 9% in the worst case. Considering that a read /
barrier based on pointer updates can be implemented with a ‘;’ o \ ime Tradeoff for
handful of operations (an average four ALU/branch instructions | S NP W Some Arbitrary
. . . g \ P Memory Model
in [31] and a compare, branch and load in [1]), these significant \ ‘ g
overheads are caused by the large number of times these barri- \\_/\_/ 7777777777777777777
ers are executed. | | \
. \| Time
2.4 The Cost of Defragmentation ; ; \
3 Space @ Maximim Lifetime
One solution to reducing fragmentation is to carry out run- | Information Availabh
time defragmentation(or compactiof), a process in which Space Tradeoff for .
. . Some Arbitrary ~ Subset of Lifetime
memory is rearranged and compacted. This approach merely Memory Model * Information Availabl

shifts fragmentation overhead from the space domain to the
time domain. Defragmentation is reassessed in Section 3.3 rigyre 1. Space/Time in the Entropy Hypothesis
when discussing the Metronome collector.

3 Towards a Classification of Memory Models In this section, it is argued that this burden as captured by the

expression of this information is not independent of the space
Although the worst case space and time overheads for fin@d time dimensions; rather it defines them.

grain models described in the previous section are clearly tog

high for resource-constrained environments, making the cas?é'

for an alternative model is not easy. Crucially, it is unclear

what direction research needs to take in order to develop these

models. Although significant research effort has been investe,{(iiI

in this area, particularly in the field of real-time collectors, theWhich we propose. The entropy hypothesis states the relation-

returns have been minor. This section introduces a novel Walhins between space, time and object information can be char-

of classifying memory models that allows a direct Comparisorlo\cterised as a form of entropy. We borrow the concept of en-

between them .to be Qerived and also highligh.ts the applicatioElopy from Information Systems Theory [30] to which a parallel
classes for which suitable memory models still need to be deé%m be drawn. In information systems, entropy is a measure that

veloped. This comparison is based on an evaluation metric th% used to calculate the amount of information in a source or
consists of three parameters: equivalently, theedundancyin that source. The entropy gives

Memory Management as an Entropy
Problem

A description of the interrelation between the parameters of
e evaluation metric can be argued by Bréropy Hypothesis

e time overheads, a measure of the actual information in a system and dictates the
maximum degree to which that system can be compressed and
* space overheads and thereby the number of bits required to transmit that source. Ev-

ery information source hasmaximum entropthat sets a lower
bound for the compression of that source through lossless al-
The relationship between space and time, although not alwayprithms. When a system is said to be at maximum entropy,
trivial, is in general described by a function in which an in-it is implied that it exhibits maximum randomness or, equiva-
crease in overheads in one domain tends to result in a decredsatly, no information is known about the information source
in the other. The choice of whether to use a defragmentation aknd lossless compression is impossible. However, if certain in-
gorithm is an example of this. The third parameter introducedormation is known about the source (i.e it is not completely
in this evaluation metric captures the burden placed on the deandom), then this can be used by a compression algorithm to
veloper in describing the known information about how objectgeduce the number of bits required for transmission.

are used in the application. For example in an explicit fine Our analysis of memory management techniques according
grain model, this information is an expression of the lifetimeto entropy is based on the hypothesis that the amount of avail-
of each object as specified by tialloc() and free() opera-  able information about an application defines the space and
tions. Other models such as the Metronome collector discusséitne overhead domains of the application. Furthermore, just
in Section 3.3 allows the expression of other information suclas known information of patterns in an information source can
as the average object size. Typically, a memory model is conbe used to reduce the cost of transmission, so information about
pared to another only in the space and time domains. The bumemory usage can be used to reduce the space and time over-
den of describing the third parameter is rarely qualified in theheads of memory management. Also, using the notion of max-
traditional fine grain approaches introduced in Section 2, in alimum entropy, maximum randomness in an information source
probability because explicit and automatic approaches at thikat results in high transmission costs can be compared to high
granularity describe two extremes that are easy to characterisgpace and time requirements in application execution. For a

e an expression of object information.



given amount of information about an application, a solution i<
defined in a memory/time trade-off space for which an indepen
dent function that depends on the chosen memory model wi &
define the tradeoff in the time and space domains. The tradec
between these domains is a potentially unique signature for th —
model and can identify at a fine granularity a ranking of mod- Automatic Memory Model
els for a particular application cladsHowever, the bounds of 0 oo .
this space are defined by the entropy of that information: witt ' Automatic Memory Model |

a given amount of information, there is a bound on the solu

tion trade-off space. The entropy hypothesis is depicted in Fig
ure 1 for a hypothetical application and memory moddlhe

[space>

/—time—

Fine Grain, Explicit

Coarse-Grain

available information about the application defines the space « Memory Model

memory/time trade-offs which memory models can achieve. |
less information is available, the space and time requiremen
could increase but are always bounded from below by the spar
for which maximum information is available.

The entropy hypothesis thus defines a more abstract view «
the memory management problem and the function of a men
ory model. This allows a comparison not only between simi-
lar models that simply provide minor shifts between space and Figure 2. Classifying Memory Models
time requirements but also allows a comparison between intrin-
sically different memory models. It therefore provides a plat- , ,
form to compare models as different as real-time collection anfHred here by the triangle shape. In any case, an exact function
the RTSJ scoped memory model. The entropy hypothesis mg_escrlbmg thls tradeoff is rgrely available. Anothgr S|.mpl|fy-
tivates a more abstract definition of what a memory model id"d @ssumption made here is that the general application under
and the functions it performsA memory model is defined as |nves_t|gat|0n termlnates_. _If_thls were not the case then space
a mechanism that allows expression of knowledge of memofﬁquwements could be infinite, thereby removing the top hori-
usage and takes advantage of this knowledge in order to réontal edge. .
duce time and space overhead@ie goals of a memory model A hypothetical zero-cost memory model that incurs zero
are therefore twofold: providing a mechanism that allows thissPace and time overheads is shown in Figure 2. This is tanta-
knowledge to be expressed and taking advantage of this knowbount to there being complete knowledge of the application’s
edge. In promoting any memory model, the importance of makemory usage available, which is leveraged in the |mplemer?ta-
ing this knowledge as easy to obtain and express as possipign of the adopted memory model. Most models can in practice
cannot be overstated. This is particularly true of real-time en@chieve very small space or time overheads but rarely can min-
vironments as the guarantees the memory model can provid@ise both. For example, a fine grain model can minimise space
are directly related to the accuracy and precision of this knowloverheads by defragmenting at every deallocation but then the
edge. The ability to take advantage of this knowledge is equalljme overheads are high. At the other extreme, near-zero time

important and can be used to give a comparative assessment@yerheads can also be achieved at high space costs by never
different implementations of the same model. deallocating objects® The argument made in Section 2.2 that

Using the Entropy Hypothesis, the investigation into theexplicit memory management can always be made to perform at

overheads of fine grain memory models described in detail iff2St @s well as automatic memory management is captured by
the previous section and the well-known overheads of the statf€ €Ntropy hypothesis; the exact lifetime of objects is unknown
approach, a spectrum of memory management technolog §fore runtime and therefore the space/time tradeoff must be
that describe the resultant overhead of some of these modd}9rse- The arguments made in [8, 16] where garbage collectors
can be defined. This spectrum is shown in Figure 2 where thare argued to perform better than explicit allocation and deallo-
space and time overheads of each solution are described in ZAtion are thﬁn ca_ptL;rled by the gadeoff f“nCt'o?{ For examr()jle,
lation to the amount of information that is expressible and uself! 7'9ure 2, the pointsl vs. B, andB; represent the space an

by the memory model. This is based on a representative hypdMe costs for an application using an explicit memory model
thetical application of non-trivial complexity and may vary for VS. an automatic merln.ory modgl resp;fggtwely. Cllearly, the au;fg-
other applications. The shape of the space is likely not as Wei.ﬂatIC memory model is morr:_a tlmehe icient but less Space; -
defined in practice as the figure would lead one to believe, b€t atB1. However, to achieve the same space overheads as

for illustrative purposes the tradeoff in space and time is cap:l @t B2 the additional cost of tracing guarantees that a higher
time overhead is incurred than in the explicit model. A case

2The assumption here is that the tradeoff is defined for the worst-case valuég)r the deplcted location of coarse grain models in Figure 2 is

of the respective domains. There is a significant complexity in defining thignade in Section 4.
function that is not addressed here.

SNote that the oval shape is not necessarily indicative of the true shape of #This is never exactly zero due to the time required to update the pointer to
this space. free memory.

Zero-C
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Memory
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A caveat of the Entropy Hypothesis is that which memoryclass. The difference between general and application-specific
model is to be used for an application must be decided beforenowledge is mainly one of tuning in the adopted strategy;
implementation begins. For example, if an explicit coarse graigeneral information is used to define a memory model's ba-
model such as a memory pool model is to be used, then thac strategy whereas application-specific information is used as
developer must identify appropriate clusterings to place insida parameter to refine this strategy. For example, generational
each pool. In time-critical applications, consideration must alsgarbage collectors [14] define a basic global strategy based on
be given to the timing requirements of tasks. In quantifying thehe lifetime of objects but may also provide variable genera-
development costs of a chosen model and the corresponditignal parameters that can be specialised based on knowledge
expected time and space overheads, an important assumptiorofsthe lifetime patterns of objects for a particular application.
made:the developer must target that memory moliebeting  In some cases there is no default for this type of information.
a memory model plays an important part in leveraging the adFor instance, real-time garbage collectors require user-defined
vantages of that model. For example, if a memory-pool modgbarameters such as the maximum allocation rate. In this case,
is provided, then programming with a fine grain approach byhis information is by definition application-specific rather than
placing one object in each pool will fail to achieve the reducedyeneral. General and application-specific information can be
time overheads of the coarse grain approach. The importanéerther decomposed into local and global information. In this
of providing the right abstractions to capture this informationcase, the difference is the granularity for which the information
is crucial® The success of bringing dynamic memory models tis specified. At one extreme, fine grain allocation and dealloca-
constrained real-time environments must therefore lie in providtion usingmalloc() andfree() operators is local information. At
ing the right abstractions to capture information about memorythe other extreme, the information in the parameters described
usage in the application. for real-time collectors are global to the whole program. Coarse

The entropy hypothesis therefore hints at the direction futurgrain models such as memory pools lie between these two ex-
research must take in order to fill the gap between the static afremes with aggregates being specified to define the lifetime of
proach and fine grain models. In the absence of a proven loweobjects. The case for application-specific being preferred over
bound for the space-time tradeoff of existing memory modelsgeneral information is clear when the worst case has to be con-
there are two possible research directions that can be taken $aered; an application that does not fit a general model is often
improve on the static approach: invest further in refining existeasy to develop and such an application will perform poorly.
ing fine grain models models or derive alternative models thathe case for local as opposed to global information is more dif-
target regions of the trade-off space that fall between the statficult to argue as this implies a significant development burden.
and dynamic approaches. In either case, the entropy hypothe-
sis makes a case for memory models to allow more informatio8.3 The Metronome Collector
to be expressed in order to reduce space and time overheads.

Three questions that future research must therefore address areThe Metronome collector is a time-based collector that uses

a best-fit policy implemented with a segregated free list mecha-
nism in its DM algorithm and an incremental mark-sweep col-

2. Which combination of these types of information best allector that defragments when required. The segregated policy
lows the shift towards the hypothetical zero cost model? implies that internal fragmentation is observed rather than ex-

] o ] ternal fragmentation. A read barrier is implemented to ensure

3. What is the best way to capture this information so as tqnqyed objects are properly referenced by the application. In
place the least possible burden on the developer? motivating the time-based approach of the Metronome collec-

The first of these questions is addressed next. The overhea®s [1, 3, 2], Bacoret. al. derive an analysis that allows a guar-

seen for the Metronome collector are describe in Section 3.8ntee of the minimum mutator time. For a given time period in
and, together with the analysis carried out in Section 2, i$he application, the mutator and collector have two properties
used to motivate a move towards allowing the expression o$pecified: for the mutator, the allocation rate over a time inter-
new types of information. In Section 4, coarse grain memyal and the maximum live memory usage and; for the collector,
ory models and the RTSJ memory model are evaluated in ordéf€ rate at which memory can be traced. By defining the fre-
to show how this approach can achieve lower overheads. TH#lency of invocation of the collector, the memory required for a
third question is then answered in relation to the RTSJ memorgiven utilisation requirement is derived. Alternatively, the max-

1. What types of information can be captured?

model. iImum available memory is specified and the minimum guaran-
teed utilisation is derived. Briefly, given the mutator quantum

3.2 Information in Object-Based Systems Q7 and the collector quantuli; the mutator utilisation is triv-
ially _Qr__ |f the allocated memory between andt, is

. . . L Qr+Cr*
Information about objects in an application can be expressegiven by «(t1, t,), the rate of collection is? and the amount

either for a specific application or a more general applicationyf |ive data at time is given bym,, then it can be shown that

9 t . .
5We note in passing that the abstraction problem is one also faced by res@Xcesspace otx(t, t + ng.)%) is required.

time developers in the area of scheduling. The traditional cost/deadline model The results from Metronome are of particular use to this
fails to capture more complex abstractions of timing requirements with the re- tigati for t . firstly. th t of h of th
sult that mapping this requirements to the traditional model is often comple)&nveS Igation Tor two reasons: Trstly, the cost of each o €

and inefficient. four processes of GC described in the previous section are bro-




[Bench[m [s [Tgc [T [Tr [Tu [Ts [Tp | tion that can be applied to explicit fine grain models for use in
javac | 86 [ 172 2.21] 0.001 0.061 1.973 0.137 0.124 more resource constrained environments. This could therefore
db 82 | 137| 2.63| 0.001 0.043 2.408 0.148 0.163 fill the gap between the environments real-time collectors ad-
jack | 82 | 146 1.73| 0.001 0.042 1.076 0.094 0.047 dress and the those addressed by the the static approach. The
mtrt | 80 | 122 1.59| 0.001 0.046 1.386 0.115 0.078 ) factor allows the developer to capture Johnstone’s thesis that
jess | 73| 126 0.63| 0.001 0.186 0.554 0.046 0.031  fragmentation in real-world systems is negligible. However,
fragger 72 | 151] 3.20| 0.001 0.147 1.700 0.17% 1.293  nere are two problems with this approach: firstly, identifying

the \ factor for an application is non trivial; secondly, the anal-
Table 1. Time and Space Overheads at 50% Util- ysis doe; nqt capFurg the possible variance of this value_during
isation in Metronome (Taken from [3]) the application’s lifetime. Therefore, the chosefactor will
always always be the smallest value during the entire lifetime
of the application. This leads to a number of assumptions in
the derivation of the worst-case space requirements for a given
ken down and quantified; secondly, the extra parameters thatinimum mutator utilisation that inhibit a true calculation of
must be specified by the developer capture global, applicatiorthe worst case space requirements. Crucially, the space-time re-
specific information that can be used to evaluate the potentidtionship between heap size and utilisation is not well defined
of this type of information. Ignoring allocation costs, collec- due to the interdependence of parameters leading to undesirable
tion overheads are broken down into the costs of initialisarecursive functions. In particular, the amount of extra space re-
tion and termination of the collectof’(), root scanningf{z),  quired depends on the time needed for a collection cycle which
marking (), sweeping {s)and defragmentatiorif{;). For in turn depends on the amount of heap space. The chosen or

a 50% utilisation across the selection of applications from thelerived heap size is based on an “expansion factor” of the max-

SPECjvm98 benchmarking suite, the time overheads (in seémum amount of live memory that is chosen to be around 2.5

onds) are reproduced in Table 1 where the amount of live menbased on experimentation. In the absence of the pessimistic

ory (m) and the maximum heap size) (are also shown. Itis values that would be obtained from a recursive relationship of
interesting to note that the majority of the collection cycle isspace and time overhead, the results given in [1, 3] are essen-
spent tracing, with the time taken for defragmentation beindially observed rather than analytical quantities. If the heap size
significant only in the fragger application. is given at a large order of magnitude relative to this, then the

The results from the research for Metronome initially ap-factor of 2.5 would probably suffice. If this is not the case, then
pear promising. By requiring the user to specify informationthe choice of heap size could be made a function of the max-
about the pattern of object usage, the space and time overhedg/m allocation rate andz¢ rather than the maximum live
are significantly smaller than those shown to hold in the worstnemory. This could result in the heap size being several orders
case for an explicit model using a DM algorithm. The infor- of magnitude larger than the maximum live memory.

mation that needs to be specified includes the average object

size and locality in the size. These parameters are used to - The Case for Coarse Grain Memory Models

duce the pessimism in the worst case overheads incurred during

tracing and defragmentation. Tools for automatically calculat- Whereas it could be argued that the analysis provided by

ing global parameters for fine-tuning garbage collectors are aldeoth work and schedule based approaches of fine grain mod-

common [22]. The magnitude of the overheads of the DM algoels fulfil real-time predictability requirements, the overheads
rithm due to fragmentation described in the last section in comef these approaches may make this prohibitive in resource-
parison to the results achieved here require further investigatiggpnstrained environments. From the evaluation of fine grain ap-
in relation to the entropy hypothesis. The space overheads apgoaches in Sections 2 and 3.3, it is immediately apparent that
as little as two and half times the amount of live memory. Bythe most urgent information required is that which addresses
the entropy hypothesis, this reduction in overheads from whdtagmentation and the cost of tracing. Therefore, the solution
was shown to hold for a DM algorithm can only be achievedto the memory management problem for resource-constrained
by an increase in time overheads and/or a source of extra ifieal-time systems could lie in an explicit model (thereby elim-
formation about the application’s use and lifetime of objectsinating the need for tracing)and directing research at a more

Although this tradeoff is partly captured by the use of the delocal characterisation of the application’s information, partic-

fragmentation algorithm in Metronome the time overheads duglarly fragmentation. The entropy hypothesis argues the case

to fragmentation are relatively small. This is achieved by capfor more information to be expressible and for this information
turing the pessimism of the worst-case fragmentation through® then be used by that model. The key problem is identify-
factor \ that specifies the locality of size of objects and therebyng what this information is and how it can be captured. Rather
the amount of possible fragmentation that can occur. than arguing for similar global, application specific information

Although the cost of tracing and using an incremental apt0 be used in these models, a case for more localised informa-
proach are still significant, MetronomeJs factor appears to tion can be made. For example, global parameters could be
address the fragmentation problem for its DM algorithm. Thisnade more localised in Metronome by being sensitive to the
r_esearch therefore_ provides not only a real-time collector with 6A model that uses static escape analysis [7] could help the collector by
tighter space and time overheads but, more importantly, a solitentifying objects that are believe to have become unreachable.




program’s flow. Therefore, rather than there being just one inin the fine grain one. However, there exists a space within the
teger) factor, a number of values could be assigned that deperzbarse grain model that can outperform the fine grain model in
on the current execution trace. This could then dynamically alboth time and space. As an example, consider the case where
ter the collection rate or where defragmentation is triggéred.a fine grain first-fit model is used in an application that creates
The feasibility of such a characterisation is unclear, both irobjects of sizes 64, 128 and 64k bytes. By Robson’s analysis,
terms of identifying this function as well as how this fits into this would require about ten times the amount of live memory.
the scheduling model. Until such research is carried out, an aHowever, if it were known that all 64 byte objects are deallo-
ternative is available in the form of coarse grain memory modeated at the same time in pairs, then they could be allocated
els. next to each other every time. In this way, Robson’s analysis

shows that only 5 times the amount of live memory is required.
4.1 Object Lifetime in Coarse Grain Models

4.2 The RTSJ Memory Model: Criticism

Coarse grain models take advantage of the phenomenon that
it is often possible to aggregate objects according to their life- The RTSJ adopts a novel approach to memory manage-
time. For example, objects that are created close together typient with the introduction of scoped regions. This model is
ically have similar lifetimes due to spatial locality of refer- essentially a coarse grain model that aggregates object lifetime
ence [5]. This phenomenon is used implicitly by generationabased on program flow. The main criticisms of this model are
garbage collectors [14] as a general and global piece of infotroadly as follows:
mation. For a real-time environment, a more application spe-
cific and local approach is required as accuracy and precisiohhe model is complex to use:
is necessary in order to provide the required guarantees with The complexity of the RTSJ model could be partially
low pessimism. Coarse grain models involve specifying theargued to be a failure of developers to target the model. As
boundaries of aggregates appropriately and then specifying tleggued in Section 3.1, developers must target a memory model
lifetime of each aggregate. The advantage of a coarse graiather than apply an orthogonal abstraction to the chosen
approach is that the extra information that comes fronréhe model. Since the RTSJ defines object aggregates based on
ative ordering of objects means that a significant reduction idocality in the program flow, developers must express lifetime
fragmentation can be achieved. The extra space cost of retaiimformation around this abstraction. However, it is sometimes
ing objects for a slightly longer period than required is still sig-the case that the real-world pattern of memory usage does not
nificantly less than the fragmentation overheads in fine graifollow this approach. For example, it is a well known problem
models. This is because the variance between the size of allthat applications that employ a producer/consumer pattern of
cated blocks can be made smaller, thereby minimising the worstemory usage are hard to describe in the RTSJ as the implicit
case space cost by Robson’s equations. Therefore, an expligiformation in this application is not well captured by the
coarse grain model targets the two largest sources of overheadoped memory abstraction.
identified above: tracing and fragmentation.
The importance of the relative order of object lifetimes isReference rules inhibit the expression of object lifetime:

rarely taken advantage of in most memory models. Theoret- A second source of the complexity in using the RTSJ's
ically, knowing the exact lifetime of objects can be used tomemory model comes from the model’s reference rules. De-
completely eliminate fragmentation. This can be achieved bgpite an object’s lifetime clearly belonging to some aggregate,
using a bin-packing algorithm that guarantees that at the poirthese rules require a change in the lifetime of objects based
of maximum live data, no fragmentation occurs and any fragen the reference graph. Restricting the flexibility of how
mentation that occurs at other times results in memory requirexggregates are defined is an example of a memory model
ments that are less than the size of this live data. The indetewnnecessarily restricting the expression of known lifetime
minability of knowing the exact creation and deallocation of allinformation®
objects in a dynamic environment coupled with the probable in-
tractability of such a bin-packing algorithm make this approachrhe possibility of reusing code is limited:
impractical. However, a coarse grain model allows this type The reuse problem of RTSJ code is caused by the em-
of information to be captured in a less-exact way. By the enbedding of memory concerns within application code. The
tropy hypothesis, this automatically implies greater overheadabsence of an interface that captures how the memory model
than a zero-cost model but potentially smaller overheads thas used in existing classes means that there is no way to export
an explicit fine grain approach. The space occupied by coarghe lifetime of objects created in this code.
grain models is shown in Figure 2 to be equivalent to fine grain
models in the worse case. This occurs when no aggregation ibifetime information is poorly utilised in implementations:
formation is available and therefore allocation and deallocation Although the RTSJ specifies when the backing store of re-
in the coarse grain model is done at an equivalent granularity agons are allocated and freed in the runtime, no constraints on

"These values therefore become points on the flow graph of the application 8Reference objects are inspired by the reference objects used in GC envi-
and new analysis would be required to identify how the transition between thesenments. In particular, the semantics described here are similar to those for
points changes the behaviour of the collector. weak references.



the underlying DM algorithm is specified. In particular mostmaking it harder to define these aggregates. We have devel-
implementations do not take advantage of the scoping structumped reference objects [10] in order to address this. Using
to reduce fragmentation. Also developers are often unaware @af reference object rather than a normal reference achieves a
the implications of where aggregate boundaries are applied. compromise between maintaining the safety of objects and
allowing this lifetime information to be expressed. Reference

4.3 The RTSJ Memory Model: Solutions objects carry lifetime information that is looser than that
specified by a regular reference. In the RTSJ, if an object A
The model is complex to use: holds a reference to an object B thennistlive as long as

In order to address this problem, researchers have provideédl However, if A holds a reference object to an object B then
solutions that are orthogonal to the RTSJ scoped memorg canlive as long as A but the reference object must throw a
model only because the model fails to allow these patterneaught exception if this is shown not to be the case at runtime.
to be expressed. For example, Pizlo [24] proposes “wedgBeference objects are an example of allowing the developer to
threads” that are used to keep a scoped region alive whespecify lifetime information in order to reduce space overheads.
its reference count would have otherwise dropped to zero.

Although the introduction of these patterns highlights theThe possibility of reusing code is limited:

complexity of using the scoped memory model, forcing a This issue comes back to the question of: “What is the best
solution on top of the existing RTSJ model has earned them thaay of allowing known information to be expressed without
term “anti-patterns”. There are two possible conclusions thaplacing unnecessary burden on the developer?” If a memory
can be drawn from this: either the RTSJ needs to be extendedodel can allow an equivalent expression of this information
to allow these patterns to be expressed as an integral part externally to application code then code reuse is again possible.
the model or the way the model should be targeted is stilWe have developed a solution to this problem as part of our
not understood. The second possibility is improbable as theork [12, 11, 9] that is based on extracting the cross-cutting
model’s rationale is intuitive. Earlier work we have carried memory management concern as a separate aspect. This is
out [12, 11, 9] shows that in translating the same informatiorachieved by defining the boundaries and lifetime of aggregates
present in an explicit coarse grain model to a scoped modein the program’s control flow graph. An automatic algorithm
results in a tradeoff space that can reduce space and tintleen fines the optimal scoping structure and annotates the
overheads is some cases but can lead to potentially unboundepgplication to enter and exit regions when specified.

space requirements in othérsThis conclusion is important

as it makes a strong case for the RTSJ to provide alternativieifetime information is poorly utilised in implementations:
memory models in addition to scoped memory that allow these The second role of the memory model, taking advantage of
patterns of object lifetime to be express€drhe RTSJ scoped expressed memory usage, is also under-specified in the RTSJ.
memory model can express some patterns of object lifetim&he underlying DM algorithm allocates and frees regions in a
better than other models and is therefore useful when thesgmilar way to explicit allocation and deallocation, thereby re-
patterns are manifested in the real-world. When this is nosulting in similar fragmentation problems. In particular, the ad-
the case, the RTSJ must provide other approaches that allovantage of reduced fragmentation due to scoping is lost in mul-
the expression of object lifetimes that the patterns such aithreaded environments as the lifetimes of aggregates across
those described in [6, 24] address. Describing these patterdifferent threads of control are unspecified. A solution to this
as an abstraction on top of the RTSJ scoped model is a poproblem is to have separate partitions for each branch of the
approach. In conclusion therefore, the entropy hypothesis castope stack when this can be statically determined to be pos-
be used to argue that the RTSJ model is complex only whesible. When this is not possible, the model experiences similar
it is used to express information that is poorly captured by it§ragmentation to fine grain models if the variance in the sizes of
abstraction. The solution is therefore not an alternative modekgions is large. This therefore partly eliminates the rationale
but an extended model that allow a wider range of patterns dbr a scoped approach. Again, the inability to define separate

memory usage to be expressed. partitions for scope stacks is an example of how, unavailable
information leads to higher overheads. In this case, a simple
Reference rules inhibit the expression of object lifetime: analysis of the variance of region sizes can be used to merge re-

The problem of expressing some aggregate lifetime patterrgions of similar lifetime so that fragmentation can be reduced.
in the RTSJ as described above is compounded by the RTSJ
: N , 5 Conclusion
9Using the entropy hypothesis it can be argued that this occurs due to a loss
of information in the translation process. Understanding what constitutes this .
lost information is an important goal that is still being investigated. It appears The search for suitable memory models that address the re-

at this point that this lost information is due to the scoped model being onl)quiremem-s of complex embedded real-time systems continues
able to capture the relative ordering of a subset of regions at any time, rath% . t The choi f itabl del
than the complete ordering available in an unscoped model. 0 gain momentum. Ihe choice or a suitable memory model for

10|nterestingly, Benowitz [6] proposes solutions that map alternative memthe RTSJ is viewed as a contentious issue by many, particularly

ory models on top of the RTSJ. Mapping alternative memory models to thgyhere a choice between real-time GC and scoped memory must
RTSJ is of little advantage in terms of space and time performance as the dis

vantages or these models is only supplemented by the extra cost of maintain?ﬁg? made. The entropy hypothess shows that an argument 'for
this abstraction. a some memory model is not absolute to a particular domain,




whether that domain is defined in terms of allowable space an{ll5] J. Henry G. Baker. List processing in Real Time on a Serial

time overheads or development costs. Rather, a memory model
is suitable for a given application only in the degree to which[16

it can capture information of memory usage in the application.
The goal of future research must therefore lie in identifying this

information and providing ways of allowing this information to [17]

be expressed in order for the underlying memory subsystem

to make use of it. This is a significant shift from current re- (18
search directions that deliver only marginal improvements dutflg]

to the implicit assumption that expressing lifetime information

implies unnecessary burdens on application developers.
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