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Abstract

As high integrity real-time systems become increasingly
large and complex, forcing a static model of memory usage be-
comes untenable. The challenge is to provide a dynamic mem-
ory model that guarantees tight and bounded time and space re-
quirements without overburdening the developer with memory
concerns. This paper provides an analysis of memory manage-
ment approaches in order to characterise the tradeoffs across
three semantic domains: space, time and a characterisation of
memory usage information such as the lifetime of objects. A
unified approach to distinguishing the merits of each memory
model highlights the relationship across these three domains,
thereby identifying the class of applications that benefit from
targeting a particular model. Crucially, an initial investigation
of this relationship identifies the direction future research must
take in order to address the requirements of the next genera-
tion of complex embedded systems. Some initial suggestions
are made in this regard and the memory model proposed in the
Real-Time Specification for Java is evaluated in this context.

1 Introduction

Memory management is a major concern when developing
real-time and embedded applications. The unpredictability of
memory allocation and deallocation has resulted in hard real-
time systems being necessarily static. Even when the analytical
worst-case space and time requirements can be derived [27, 25],
the high space and time overheads of traditional dynamic mem-
ory models such as fine grain explicit memory management
and real-time garbage collection (GC) mean that it is hard to
argue a case for these models in resource constrained environ-
ments. Alternative memory models such as that proposed in
the Real-Time Specification for Java (RTSJ) can be shown to
reduce these overheads but at a cost of significant development
complexity. Identifying and characterising the criteria used to
gauge different memory models is non-trivial. Arguing that one
memory model is better than another must be qualified by a
specification of the driving design forces. One important el-
ement of these driving forces is the application development
cost of the chosen model. GC is the best choice in this re-
gard as the additional development cost of using memory dy-
namically is small. However, the real-time community remains
highly polarised as to whether real-time GC can ever reach the

predictability and efficiency required by these systems. Critics
of GC technologies argue that the space/time tradeoffs achiev-
able by real-time garbage collectors are still unsuitable for the
class of systems targeted by the static paradigm. In order to
achieve the required performance in one semantic domain, the
costs in the other are too high. On the other hand, critics of
new memory models such as that proposed in the RTSJ argue
that the burden of memory concerns placed on developers de-
tracts from what is arguably the most attractive feature of de-
veloping large and complex systems in environments such as
Java: freedom from memory concerns. The common ground
between these two camps is that the success or failure of provid-
ing a suitable environment for developing the next generation
of complex real-time and embedded systems hinges on getting
the memory model right.

The motivation for this paper comes from the recent debate
about which memory model the RTSJ should adopt. Indeed,
this continues to be the most contentious issue of the RTSJ and
more literature exists on analysis, extensions and modifications
of the RTSJ memory model than any other part of the specifica-
tion. Java developers could adopt a static approach in the same
way as Ravenscar for Ada does [13] but even the Ravenscar
profile for Java [20] recognises the need for a dynamic model
by introducing a limited region-based model. The need for dy-
namic memory is however not a requirement only of real-time
Java itself but is a requirement of the next generation of embed-
ded real-time systems. The goals of this paper are threefold.
The first goal is to identify the implications of using different
dynamic memory models. The second goal is to motivate a new
approach to developing dynamic memory models that goes be-
yond the “fine-tuning” approach of current research. The third
goal is to show why the RTSJ’s memory model may be a step
in the right direction in this regard. However, it will also be
argued that a number of changes to the model and the way it is
used are necessary.

To this end, this paper provides three contributions. First, an
analysis of fine grain memory management approaches from
previous work is carried out in Section 2 in order to identify
and quantify the space and time overheads of these approaches.
Although the results described here make a strong case for an
alternative memory model, current research either fails to pro-
vide models for which the overheads are sufficiently tight or
proposes models which place a significant burden on the devel-
oper. Section 3 describes the second contribution of this paper.
This is a novel, unified approach to distinguishing the merits
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of each memory model that is based on a hypothesis that high-
lights the relationship across three semantic domains: space,
time and a characterisation of available information about the
way memory is used by the application, such as the average
size of object or a characterisation of their lifetime. This allows
the derivation of a classification of memory models, thereby
identifying the class of applications that benefit from target-
ing each model. The hypothesis developed in this section is
used to make a case for the direction research needs to take
in order to develop memory models suitable for the next gen-
eration of complex embedded systems. In particular, it is ar-
gued that rather than trying to adapt the memory models used in
traditional environments to real-time ones, new memory mod-
els than directly address real-time requirements need to be de-
veloped. The Metronome collector [1, 3, 2], a state-of-the-art
garbage collector, is described in order to highlight why this
approach is unsuitable for the class of applications currently
addressed by the static model. Section 4 describes the third
contribution in this paper: an overview of a detailed investi-
gation into the RTSJ memory model that has been carried out
in order to analyse whether this model captures the shift in re-
search strategy argued to be necessary in Section 3. Although
it is argued that this is achieved to some degree, it can also be
shown that the model’s abstraction fails to allow an expression
of common lifetime patterns or restricts the ability of this infor-
mation to be expressed. These problems are often addressed by
using design patterns that are orthogonal to the model. Identify-
ing where this information is lost motivates a set of extensions
to the RTSJ memory model that directly targets these failures,
thereby eliminating the need for some of these design patterns
and highlighting why others are required. Also, even when life-
time information can be expressed, implementations often fail
to take full advantage of this information. Solutions to address
this are briefly described. Finally, Section 5 identifies future
work and concludes.

2 Fine Grain Models in RT Environments

The static approach to memory management is the tradi-
tional way of developing hard real-time systems. This is the ap-
proach taken in high integrity and safety critical subsets of Ada
such as Ravenscar [13] and SPARK [4]. Assuming an object-
oriented language, the application would allocate all necessary
objects in a pre-mission phase and these would live for the du-
ration of the mission phase. If memory constrained devices
are the target of the application, developers are often forced to
consider recycling objects, thereby adding another dimension
of complexity to the development and maintenance processes.
In some cases, this problem is aggravated as the object model
may need to be broken in order to allow what would ordinarily
be type-incompatible objects to replace each other.Dynamic
memory allocation and deallocation can address this problem
if the reduced development complexity does not come at an un-
acceptable space and time overhead.

Dynamic memory management is used in most develop-
ment environments outside the real-time domain in the form of
fine grain, user-controlled allocation and deallocation and au-

tomatic deallocation by a garbage collector. It is unsurprising
therefore that recent research focuses for the most part on port-
ing these models to the real-time domain. However, in propos-
ing the use of these memory models in a real-time domain, the
space and time overheads need to be quantified. This is in-
vestigated in the rest of this section and subsequently used to
motivate research into an alternative memory model. Note that
an exact evaluation of each overhead is often not possible due
to the complex dependencies of the space-time tradeoff. This
problem will be addressed in Section 3.

The sources of overheads in dynamic fine grain models are
broadly as follows:

1. Both explicit and automatic memory models introduce
space and time overheads due to fragmentation.

2. In automatic memory models, there is the additional over-
head of identifying garbage.

3. If memory management is made to be incremental, an ad-
ditional overhead for guaranteeing the mutual integrity of
the program and collector is incurred.

4. In order to counter (1), both explicit and automatic mem-
ory models can use defragmentation. This results in addi-
tional time but reduced space requirements.

2.1 The Cost of Memory Fragmentation

Memory fragmentation introduces high pessimism and
unpredictability in space and time requirements that is un-
favourable in real-time environments [21]. An investigation
into the results from past work is carried out next in order to
quantify these overheads.

Measuring the Cost of Fragmentation: Space
A detailed investigation into the space overhead due to frag-

mentation in a number of Dynamic Memory allocation algo-
rithms (DM algorithms) can be found in previous work by
Neely [23] and Johnstone [18]. These results are intriguing in
that they show that the observed fragmentation is least in the
simpler policies such as first and best fit as opposed to more
complex policies such as buddy algorithms. These simpler al-
gorithms exhibit fragmentation that is also very low, typically
under 3%1 when averaged across all applications but rises to
as high as 53% in more complex algorithms such as binary
buddy. When taking into consideration the implementation
costs of the policy (such as the data structures maintaining free
lists) and machine requirements (namely byte alignment), these
overheads increase to just 34% for best-fit and first-fit policies
and 74% for binary buddy. A conclusion that Johnstone draws
from these results is that the fragmentation problem is solved,
and has been solved for several decades. However, Johnstone’s
work is based on the observed rather than worst case space re-
quirements of applications. In a series of work between 1971

1Johnstone’s metric, compares the memory re-
quirements at the point of MaxLiveBytes (that is
F = MaxHeapSizeAtMaxLiveBytes−MaxLiveBytes

MaxHeapSizeAtMaxLiveBytes
).
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and 1977 [28, 29, 27], Robson derived the worst case mem-
ory requirements of the best-fit and first-fit policies whereas
Knowlton [19] derived the worst case for buddy systems. Given
a block sizen and a maximum live memory requirement ofM ,
the worst case memory requirements for first-fit isM log2 n,
for binary buddy is2M log2 n and for best-fit isMn. Crucially,
Robson showed that there exists an optimal strategy for which
the worst case memory requirements lie between1

2M log2 n
and about0.84M log2 n. The first-fit policy therefore provides
a solution that is very close to optimal.

An interesting exercise is to compare these results to
Johnstone’s for observed fragmentation. The work of both
Johnstone and Robson would lead one to the conclusion
that the first-fit policy is the best solution both in terms of
observed and analytical worst case overheads. In fact, the most
significant observation that can be drawn from a comparison
of Johnstone’s and Robson’s work is that there exists a large
discrepancy between the observed and analytical worst cases
for all policies. For example, a program with a maximum live
memory requirements of 1Mb and which allocates objects that
range over a conservative size (say between 64 and 64k bytes)
would still require 10Mb to guarantee against breakdown due
to fragmentation when using first-fit and 20Mb when using
the binary buddy algorithm. In addition to this, the memory
requirements of the mechanism implementing the policy must
also be considered. These total memory requirements are a
significant order of magnitude higher than the 1.5Mb to 2Mb
requirements one would expect to be required in the observed
worst case.

Measuring the Cost of Fragmentation: Time

The time overhead incurred by a DM algorithm depends on
the inter-arrival rate of allocation and deallocation requests and
the cost of an allocation and deallocation cycle as well as the
mean and variance of the request size. The most important
contribution in the analysis of the time overheads incurred by
DM algorithms was provided recently by Pauat in [25]. Pauat
analysed the average and worst observed times of four applica-
tions using a number of different DM algorithms and compared
them to the analytical worst case allocation and deallocation
times of these algorithms. The average observed time over-
heads are similar across all DM algorithms and moreover, the
worst case overheads are typically less in the simpler policies
such as best-fit than in the more complex ones such as binary
buddy and Fibonacci buddy [17]. The analytical worst case
overheads however tell a different story. Here, the analytical
worst case performance of best-fit and first-fit DM algorithms
using a näıve mechanism is nearly a thousand times worse than
that of the buddy systems which performs best for the analyt-
ical worst case. The significant time used by a DM algorithm
in a typical program are immediately evident: the values for
b-tree best fit and binary buddy would be respectively around
64% and 63% time overhead for a logic optimisation program
called Espr; that is about 63% and 64% of program execution
is used in servicing allocation and deallocation requests. In the
worst case, these values jump to 96% and 71% respectively.

2.2 The Cost of (Non-Incremental) GC

When considering automatic memory management, it is of-
ten implied that the garbage collector also assumes the role of
the DM algorithm and defragmentor, thereby executing four
tasks: servicing allocations, locating garbage through a root
scan and traversal of the object graph (tracing), freeing garbage
(sweeping) and defragmentation. This blurs the distinction be-
tween DM algorithms and garbage collectors and limits a direct
comparison between explicit allocation and deallocation mem-
ory models and automatic memory management models. In an
effort to quantify each overhead, this paper maintains the dis-
tinction between the processes of allocation, tracing, sweeping
and defragmenting memory. There is an additional overhead
in a garbage collected environment over an explicitly managed
one serviced directly by a DM algorithm that is highlighted by
this abstraction: the time overhead involved in tracing that is
not present when memory in managed explicitly and the space
overhead due to the delayed deallocation of memory. Given this
additional overhead, it would be expected that GC would auto-
matically imply higher total overheads than an explicit memory
management, in both the space and time domain. There are sev-
eral cases in the literature in which this is argued not to be the
case in the time domain [8, 16]. This phenomenon occurs be-
cause the delayed deallocation of objects in a garbage collected
environment results in higher space overheads but incurs lower
time overheads due to infrequent vertical switching between
the application and underlying memory subsystem. However,
existing garbage collectors make use of strategies that are ab-
sent in existing DM algorithms but that could be readily im-
plemented. For example, a similar technique to reduce vertical
switching could be used for explicit memory management with
free() calls being delayed and a single call to the DM algorithm
passing the addresses of all memory to be freed. Garbage col-
lectors will therefore always incur additional overheads over
explicit fine grain models due to tracing. This is an impor-
tant observation as the cost of tracing becomes the single ad-
ditional overhead between explicitly managed memory models
and non-incremental automatic memory management models.
The results in [2] for the Metronome collector show that trac-
ing incurs the highest cost of all collector operations, including
fragmentation. Section 3.3 revisits these results in detail.

2.3 The Cost of Incremental Collection

Irrespective of whether a work-based [15] or schedule-
based [1, 26] approach to real-time collection is adopted, the
additional time cost of an incremental approach over a stop-the-
world one comes from one primary source: maintaining consis-
tency between the mutator and collector through the execution
of barriers. Quantifying this overhead is often difficult as the
work done at each increment involves the execution of other
tasks such as tracing and defragmentation. Since these over-
heads are being treated independently, the cost of a barrier here
is considered only to be the cost of maintaining a suitable con-
sistency between the mutator’s view of the object graph and the
actual object graph. In [31], Zorn shows that the cost of read
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barriers alone can incur a 20% penalty on application perfor-
mance when executed in software though Chenget. al. claim
that their Metronome garbage collector can reduce this to 4%
on average and 9% in the worst case. Considering that a read
barrier based on pointer updates can be implemented with a
handful of operations (an average four ALU/branch instructions
in [31] and a compare, branch and load in [1]), these significant
overheads are caused by the large number of times these barri-
ers are executed.

2.4 The Cost of Defragmentation

One solution to reducing fragmentation is to carry out run-
time defragmentation(or compaction), a process in which
memory is rearranged and compacted. This approach merely
shifts fragmentation overhead from the space domain to the
time domain. Defragmentation is reassessed in Section 3.3
when discussing the Metronome collector.

3 Towards a Classification of Memory Models

Although the worst case space and time overheads for fine
grain models described in the previous section are clearly too
high for resource-constrained environments, making the case
for an alternative model is not easy. Crucially, it is unclear
what direction research needs to take in order to develop these
models. Although significant research effort has been invested
in this area, particularly in the field of real-time collectors, the
returns have been minor. This section introduces a novel way
of classifying memory models that allows a direct comparison
between them to be derived and also highlights the application
classes for which suitable memory models still need to be de-
veloped. This comparison is based on an evaluation metric that
consists of three parameters:

• time overheads,

• space overheads and

• an expression of object information.

The relationship between space and time, although not always
trivial, is in general described by a function in which an in-
crease in overheads in one domain tends to result in a decrease
in the other. The choice of whether to use a defragmentation al-
gorithm is an example of this. The third parameter introduced
in this evaluation metric captures the burden placed on the de-
veloper in describing the known information about how objects
are used in the application. For example in an explicit fine
grain model, this information is an expression of the lifetime
of each object as specified by themalloc() and free() opera-
tions. Other models such as the Metronome collector discussed
in Section 3.3 allows the expression of other information such
as the average object size. Typically, a memory model is com-
pared to another only in the space and time domains. The bur-
den of describing the third parameter is rarely qualified in the
traditional fine grain approaches introduced in Section 2, in all
probability because explicit and automatic approaches at this
granularity describe two extremes that are easy to characterise.

Figure 1. Space/Time in the Entropy Hypothesis

In this section, it is argued that this burden as captured by the
expression of this information is not independent of the space
and time dimensions; rather it defines them.

3.1 Memory Management as an Entropy
Problem

A description of the interrelation between the parameters of
the evaluation metric can be argued by theEntropy Hypothesis
which we propose. The entropy hypothesis states the relation-
ships between space, time and object information can be char-
acterised as a form of entropy. We borrow the concept of en-
tropy from Information Systems Theory [30] to which a parallel
can be drawn. In information systems, entropy is a measure that
is used to calculate the amount of information in a source or,
equivalently, theredundancyin that source. The entropy gives
a measure of the actual information in a system and dictates the
maximum degree to which that system can be compressed and
thereby the number of bits required to transmit that source. Ev-
ery information source has amaximum entropythat sets a lower
bound for the compression of that source through lossless al-
gorithms. When a system is said to be at maximum entropy,
it is implied that it exhibits maximum randomness or, equiva-
lently, no information is known about the information source
and lossless compression is impossible. However, if certain in-
formation is known about the source (i.e it is not completely
random), then this can be used by a compression algorithm to
reduce the number of bits required for transmission.

Our analysis of memory management techniques according
to entropy is based on the hypothesis that the amount of avail-
able information about an application defines the space and
time overhead domains of the application. Furthermore, just
as known information of patterns in an information source can
be used to reduce the cost of transmission, so information about
memory usage can be used to reduce the space and time over-
heads of memory management. Also, using the notion of max-
imum entropy, maximum randomness in an information source
that results in high transmission costs can be compared to high
space and time requirements in application execution. For a
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given amount of information about an application, a solution is
defined in a memory/time trade-off space for which an indepen-
dent function that depends on the chosen memory model will
define the tradeoff in the time and space domains. The tradeoff
between these domains is a potentially unique signature for that
model and can identify at a fine granularity a ranking of mod-
els for a particular application class.2 However, the bounds of
this space are defined by the entropy of that information: with
a given amount of information, there is a bound on the solu-
tion trade-off space. The entropy hypothesis is depicted in Fig-
ure 1 for a hypothetical application and memory model.3 The
available information about the application defines the space of
memory/time trade-offs which memory models can achieve. If
less information is available, the space and time requirements
could increase but are always bounded from below by the space
for which maximum information is available.

The entropy hypothesis thus defines a more abstract view of
the memory management problem and the function of a mem-
ory model. This allows a comparison not only between simi-
lar models that simply provide minor shifts between space and
time requirements but also allows a comparison between intrin-
sically different memory models. It therefore provides a plat-
form to compare models as different as real-time collection and
the RTSJ scoped memory model. The entropy hypothesis mo-
tivates a more abstract definition of what a memory model is
and the functions it performs.A memory model is defined as
a mechanism that allows expression of knowledge of memory
usage and takes advantage of this knowledge in order to re-
duce time and space overheads.The goals of a memory model
are therefore twofold: providing a mechanism that allows this
knowledge to be expressed and taking advantage of this knowl-
edge. In promoting any memory model, the importance of mak-
ing this knowledge as easy to obtain and express as possible
cannot be overstated. This is particularly true of real-time en-
vironments as the guarantees the memory model can provide
are directly related to the accuracy and precision of this knowl-
edge. The ability to take advantage of this knowledge is equally
important and can be used to give a comparative assessment of
different implementations of the same model.

Using the Entropy Hypothesis, the investigation into the
overheads of fine grain memory models described in detail in
the previous section and the well-known overheads of the static
approach, a spectrum of memory management technologies
that describe the resultant overhead of some of these models
can be defined. This spectrum is shown in Figure 2 where the
space and time overheads of each solution are described in re-
lation to the amount of information that is expressible and used
by the memory model. This is based on a representative hypo-
thetical application of non-trivial complexity and may vary for
other applications. The shape of the space is likely not as well
defined in practice as the figure would lead one to believe, but
for illustrative purposes the tradeoff in space and time is cap-

2The assumption here is that the tradeoff is defined for the worst-case values
of the respective domains. There is a significant complexity in defining this
function that is not addressed here.

3Note that the oval shape is not necessarily indicative of the true shape of
this space.

Figure 2. Classifying Memory Models

tured here by the triangle shape. In any case, an exact function
describing this tradeoff is rarely available. Another simplify-
ing assumption made here is that the general application under
investigation terminates. If this were not the case then space
requirements could be infinite, thereby removing the top hori-
zontal edge.

A hypothetical zero-cost memory model that incurs zero
space and time overheads is shown in Figure 2. This is tanta-
mount to there being complete knowledge of the application’s
memory usage available, which is leveraged in the implementa-
tion of the adopted memory model. Most models can in practice
achieve very small space or time overheads but rarely can min-
imise both. For example, a fine grain model can minimise space
overheads by defragmenting at every deallocation but then the
time overheads are high. At the other extreme, near-zero time
overheads can also be achieved at high space costs by never
deallocating objects.4 The argument made in Section 2.2 that
explicit memory management can always be made to perform at
least as well as automatic memory management is captured by
the entropy hypothesis; the exact lifetime of objects is unknown
before runtime and therefore the space/time tradeoff must be
worse. The arguments made in [8, 16] where garbage collectors
are argued to perform better than explicit allocation and deallo-
cation are then captured by the tradeoff function. For example,
in Figure 2, the pointsA vs. B1 andB2 represent the space and
time costs for an application using an explicit memory model
vs. an automatic memory model respectively. Clearly, the auto-
matic memory model is more time efficient but less space effi-
cient, atB1. However, to achieve the same space overheads as
A at B2 the additional cost of tracing guarantees that a higher
time overhead is incurred than in the explicit model. A case
for the depicted location of coarse grain models in Figure 2 is
made in Section 4.

4This is never exactly zero due to the time required to update the pointer to
free memory.
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A caveat of the Entropy Hypothesis is that which memory
model is to be used for an application must be decided before
implementation begins. For example, if an explicit coarse grain
model such as a memory pool model is to be used, then the
developer must identify appropriate clusterings to place inside
each pool. In time-critical applications, consideration must also
be given to the timing requirements of tasks. In quantifying the
development costs of a chosen model and the corresponding
expected time and space overheads, an important assumption is
made:the developer must target that memory model.Targeting
a memory model plays an important part in leveraging the ad-
vantages of that model. For example, if a memory-pool model
is provided, then programming with a fine grain approach by
placing one object in each pool will fail to achieve the reduced
time overheads of the coarse grain approach. The importance
of providing the right abstractions to capture this information
is crucial.5 The success of bringing dynamic memory models to
constrained real-time environments must therefore lie in provid-
ing the right abstractions to capture information about memory
usage in the application.

The entropy hypothesis therefore hints at the direction future
research must take in order to fill the gap between the static ap-
proach and fine grain models. In the absence of a proven lower-
bound for the space-time tradeoff of existing memory models,
there are two possible research directions that can be taken to
improve on the static approach: invest further in refining exist-
ing fine grain models models or derive alternative models that
target regions of the trade-off space that fall between the static
and dynamic approaches. In either case, the entropy hypothe-
sis makes a case for memory models to allow more information
to be expressed in order to reduce space and time overheads.
Three questions that future research must therefore address are:

1. What types of information can be captured?

2. Which combination of these types of information best al-
lows the shift towards the hypothetical zero cost model?

3. What is the best way to capture this information so as to
place the least possible burden on the developer?

The first of these questions is addressed next. The overheads
seen for the Metronome collector are describe in Section 3.3
and, together with the analysis carried out in Section 2, is
used to motivate a move towards allowing the expression of
new types of information. In Section 4, coarse grain mem-
ory models and the RTSJ memory model are evaluated in order
to show how this approach can achieve lower overheads. The
third question is then answered in relation to the RTSJ memory
model.

3.2 Information in Object-Based Systems

Information about objects in an application can be expressed
either for a specific application or a more general application

5We note in passing that the abstraction problem is one also faced by real-
time developers in the area of scheduling. The traditional cost/deadline model
fails to capture more complex abstractions of timing requirements with the re-
sult that mapping this requirements to the traditional model is often complex
and inefficient.

class. The difference between general and application-specific
knowledge is mainly one of tuning in the adopted strategy;
general information is used to define a memory model’s ba-
sic strategy whereas application-specific information is used as
a parameter to refine this strategy. For example, generational
garbage collectors [14] define a basic global strategy based on
the lifetime of objects but may also provide variable genera-
tional parameters that can be specialised based on knowledge
of the lifetime patterns of objects for a particular application.
In some cases there is no default for this type of information.
For instance, real-time garbage collectors require user-defined
parameters such as the maximum allocation rate. In this case,
this information is by definition application-specific rather than
general. General and application-specific information can be
further decomposed into local and global information. In this
case, the difference is the granularity for which the information
is specified. At one extreme, fine grain allocation and dealloca-
tion usingmalloc() andfree()operators is local information. At
the other extreme, the information in the parameters described
for real-time collectors are global to the whole program. Coarse
grain models such as memory pools lie between these two ex-
tremes with aggregates being specified to define the lifetime of
objects. The case for application-specific being preferred over
general information is clear when the worst case has to be con-
sidered; an application that does not fit a general model is often
easy to develop and such an application will perform poorly.
The case for local as opposed to global information is more dif-
ficult to argue as this implies a significant development burden.

3.3 The Metronome Collector

The Metronome collector is a time-based collector that uses
a best-fit policy implemented with a segregated free list mecha-
nism in its DM algorithm and an incremental mark-sweep col-
lector that defragments when required. The segregated policy
implies that internal fragmentation is observed rather than ex-
ternal fragmentation. A read barrier is implemented to ensure
moved objects are properly referenced by the application. In
motivating the time-based approach of the Metronome collec-
tor [1, 3, 2], Baconet. al. derive an analysis that allows a guar-
antee of the minimum mutator time. For a given time period in
the application, the mutator and collector have two properties
specified: for the mutator, the allocation rate over a time inter-
val and the maximum live memory usage and; for the collector,
the rate at which memory can be traced. By defining the fre-
quency of invocation of the collector, the memory required for a
given utilisation requirement is derived. Alternatively, the max-
imum available memory is specified and the minimum guaran-
teed utilisation is derived. Briefly, given the mutator quantum
QT and the collector quantumCT the mutator utilisation is triv-
ially QT

QT +CT
. If the allocated memory betweent1 and t2 is

given byα(t1, t2), the rate of collection isR and the amount
of live data at timet is given bymt, then it can be shown that
excessspace ofα(t, t + m(t)

R .QT

CT
) is required.

The results from Metronome are of particular use to this
investigation for two reasons: firstly, the cost of each of the
four processes of GC described in the previous section are bro-
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Bench m s TGC TI TR TM TS TD

javac 86 172 2.21 0.001 0.061 1.973 0.137 0.124
db 82 137 2.63 0.001 0.043 2.408 0.148 0.163
jack 82 146 1.73 0.001 0.042 1.076 0.094 0.047
mtrt 80 122 1.59 0.001 0.046 1.386 0.115 0.078
jess 73 126 0.63 0.001 0.186 0.554 0.046 0.031
fragger 72 151 3.20 0.001 0.147 1.700 0.175 1.295

Table 1. Time and Space Overheads at 50% Util-
isation in Metronome (Taken from [3])

ken down and quantified; secondly, the extra parameters that
must be specified by the developer capture global, application-
specific information that can be used to evaluate the potential
of this type of information. Ignoring allocation costs, collec-
tion overheads are broken down into the costs of initialisa-
tion and termination of the collector (TI ), root scanning (TR),
marking (TM ), sweeping (TS)and defragmentation (TD). For
a 50% utilisation across the selection of applications from the
SPECjvm98 benchmarking suite, the time overheads (in sec-
onds) are reproduced in Table 1 where the amount of live mem-
ory (m) and the maximum heap size (s) are also shown. It is
interesting to note that the majority of the collection cycle is
spent tracing, with the time taken for defragmentation being
significant only in the fragger application.

The results from the research for Metronome initially ap-
pear promising. By requiring the user to specify information
about the pattern of object usage, the space and time overheads
are significantly smaller than those shown to hold in the worst
case for an explicit model using a DM algorithm. The infor-
mation that needs to be specified includes the average object
size and locality in the size. These parameters are used to re-
duce the pessimism in the worst case overheads incurred during
tracing and defragmentation. Tools for automatically calculat-
ing global parameters for fine-tuning garbage collectors are also
common [22]. The magnitude of the overheads of the DM algo-
rithm due to fragmentation described in the last section in com-
parison to the results achieved here require further investigation
in relation to the entropy hypothesis. The space overheads are
as little as two and half times the amount of live memory. By
the entropy hypothesis, this reduction in overheads from what
was shown to hold for a DM algorithm can only be achieved
by an increase in time overheads and/or a source of extra in-
formation about the application’s use and lifetime of objects.
Although this tradeoff is partly captured by the use of the de-
fragmentation algorithm in Metronome the time overheads due
to fragmentation are relatively small. This is achieved by cap-
turing the pessimism of the worst-case fragmentation through a
factorλ that specifies the locality of size of objects and thereby
the amount of possible fragmentation that can occur.

Although the cost of tracing and using an incremental ap-
proach are still significant, Metronome’sλ factor appears to
address the fragmentation problem for its DM algorithm. This
research therefore provides not only a real-time collector with
tighter space and time overheads but, more importantly, a solu-

tion that can be applied to explicit fine grain models for use in
more resource constrained environments. This could therefore
fill the gap between the environments real-time collectors ad-
dress and the those addressed by the the static approach. The
λ factor allows the developer to capture Johnstone’s thesis that
fragmentation in real-world systems is negligible. However,
there are two problems with this approach: firstly, identifying
theλ factor for an application is non trivial; secondly, the anal-
ysis does not capture the possible variance of this value during
the application’s lifetime. Therefore, the chosenλ factor will
always always be the smallest value during the entire lifetime
of the application. This leads to a number of assumptions in
the derivation of the worst-case space requirements for a given
minimum mutator utilisation that inhibit a true calculation of
the worst case space requirements. Crucially, the space-time re-
lationship between heap size and utilisation is not well defined
due to the interdependence of parameters leading to undesirable
recursive functions. In particular, the amount of extra space re-
quired depends on the time needed for a collection cycle which
in turn depends on the amount of heap space. The chosen or
derived heap size is based on an “expansion factor” of the max-
imum amount of live memory that is chosen to be around 2.5
based on experimentation. In the absence of the pessimistic
values that would be obtained from a recursive relationship of
space and time overhead, the results given in [1, 3] are essen-
tially observed rather than analytical quantities. If the heap size
is given at a large order of magnitude relative to this, then the
factor of 2.5 would probably suffice. If this is not the case, then
the choice of heap size could be made a function of the max-
imum allocation rate andTGC rather than the maximum live
memory. This could result in the heap size being several orders
of magnitude larger than the maximum live memory.

4 The Case for Coarse Grain Memory Models

Whereas it could be argued that the analysis provided by
both work and schedule based approaches of fine grain mod-
els fulfil real-time predictability requirements, the overheads
of these approaches may make this prohibitive in resource-
constrained environments. From the evaluation of fine grain ap-
proaches in Sections 2 and 3.3, it is immediately apparent that
the most urgent information required is that which addresses
fragmentation and the cost of tracing. Therefore, the solution
to the memory management problem for resource-constrained
real-time systems could lie in an explicit model (thereby elim-
inating the need for tracing)6 and directing research at a more
local characterisation of the application’s information, partic-
ularly fragmentation. The entropy hypothesis argues the case
for more information to be expressible and for this information
to then be used by that model. The key problem is identify-
ing what this information is and how it can be captured. Rather
than arguing for similar global, application specific information
to be used in these models, a case for more localised informa-
tion can be made. For example, global parameters could be
made more localised in Metronome by being sensitive to the

6A model that uses static escape analysis [7] could help the collector by
identifying objects that are believe to have become unreachable.
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program’s flow. Therefore, rather than there being just one in-
tegerλ factor, a number of values could be assigned that depend
on the current execution trace. This could then dynamically al-
ter the collection rate or where defragmentation is triggered.7

The feasibility of such a characterisation is unclear, both in
terms of identifying this function as well as how this fits into
the scheduling model. Until such research is carried out, an al-
ternative is available in the form of coarse grain memory mod-
els.

4.1 Object Lifetime in Coarse Grain Models

Coarse grain models take advantage of the phenomenon that
it is often possible to aggregate objects according to their life-
time. For example, objects that are created close together typ-
ically have similar lifetimes due to spatial locality of refer-
ence [5]. This phenomenon is used implicitly by generational
garbage collectors [14] as a general and global piece of infor-
mation. For a real-time environment, a more application spe-
cific and local approach is required as accuracy and precision
is necessary in order to provide the required guarantees with
low pessimism. Coarse grain models involve specifying the
boundaries of aggregates appropriately and then specifying the
lifetime of each aggregate. The advantage of a coarse grain
approach is that the extra information that comes from therel-
ative ordering of objects means that a significant reduction in
fragmentation can be achieved. The extra space cost of retain-
ing objects for a slightly longer period than required is still sig-
nificantly less than the fragmentation overheads in fine grain
models. This is because the variance between the size of allo-
cated blocks can be made smaller, thereby minimising the worst
case space cost by Robson’s equations. Therefore, an explicit
coarse grain model targets the two largest sources of overhead
identified above: tracing and fragmentation.

The importance of the relative order of object lifetimes is
rarely taken advantage of in most memory models. Theoret-
ically, knowing the exact lifetime of objects can be used to
completely eliminate fragmentation. This can be achieved by
using a bin-packing algorithm that guarantees that at the point
of maximum live data, no fragmentation occurs and any frag-
mentation that occurs at other times results in memory require-
ments that are less than the size of this live data. The indeter-
minability of knowing the exact creation and deallocation of all
objects in a dynamic environment coupled with the probable in-
tractability of such a bin-packing algorithm make this approach
impractical. However, a coarse grain model allows this type
of information to be captured in a less-exact way. By the en-
tropy hypothesis, this automatically implies greater overheads
than a zero-cost model but potentially smaller overheads than
an explicit fine grain approach. The space occupied by coarse
grain models is shown in Figure 2 to be equivalent to fine grain
models in the worse case. This occurs when no aggregation in-
formation is available and therefore allocation and deallocation
in the coarse grain model is done at an equivalent granularity as

7These values therefore become points on the flow graph of the application
and new analysis would be required to identify how the transition between these
points changes the behaviour of the collector.

in the fine grain one. However, there exists a space within the
coarse grain model that can outperform the fine grain model in
both time and space. As an example, consider the case where
a fine grain first-fit model is used in an application that creates
objects of sizes 64, 128 and 64k bytes. By Robson’s analysis,
this would require about ten times the amount of live memory.
However, if it were known that all 64 byte objects are deallo-
cated at the same time in pairs, then they could be allocated
next to each other every time. In this way, Robson’s analysis
shows that only 5 times the amount of live memory is required.

4.2 The RTSJ Memory Model: Criticism

The RTSJ adopts a novel approach to memory manage-
ment with the introduction of scoped regions. This model is
essentially a coarse grain model that aggregates object lifetime
based on program flow. The main criticisms of this model are
broadly as follows:

The model is complex to use:
The complexity of the RTSJ model could be partially

argued to be a failure of developers to target the model. As
argued in Section 3.1, developers must target a memory model
rather than apply an orthogonal abstraction to the chosen
model. Since the RTSJ defines object aggregates based on
locality in the program flow, developers must express lifetime
information around this abstraction. However, it is sometimes
the case that the real-world pattern of memory usage does not
follow this approach. For example, it is a well known problem
that applications that employ a producer/consumer pattern of
memory usage are hard to describe in the RTSJ as the implicit
information in this application is not well captured by the
scoped memory abstraction.

Reference rules inhibit the expression of object lifetime:
A second source of the complexity in using the RTSJ’s

memory model comes from the model’s reference rules. De-
spite an object’s lifetime clearly belonging to some aggregate,
these rules require a change in the lifetime of objects based
on the reference graph. Restricting the flexibility of how
aggregates are defined is an example of a memory model
unnecessarily restricting the expression of known lifetime
information.8

The possibility of reusing code is limited:
The reuse problem of RTSJ code is caused by the em-

bedding of memory concerns within application code. The
absence of an interface that captures how the memory model
is used in existing classes means that there is no way to export
the lifetime of objects created in this code.

Lifetime information is poorly utilised in implementations:
Although the RTSJ specifies when the backing store of re-

gions are allocated and freed in the runtime, no constraints on

8Reference objects are inspired by the reference objects used in GC envi-
ronments. In particular, the semantics described here are similar to those for
weak references.
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the underlying DM algorithm is specified. In particular most
implementations do not take advantage of the scoping structure
to reduce fragmentation. Also developers are often unaware of
the implications of where aggregate boundaries are applied.

4.3 The RTSJ Memory Model: Solutions

The model is complex to use:
In order to address this problem, researchers have provided

solutions that are orthogonal to the RTSJ scoped memory
model only because the model fails to allow these patterns
to be expressed. For example, Pizlo [24] proposes “wedge
threads” that are used to keep a scoped region alive when
its reference count would have otherwise dropped to zero.
Although the introduction of these patterns highlights the
complexity of using the scoped memory model, forcing a
solution on top of the existing RTSJ model has earned them the
term “anti-patterns”. There are two possible conclusions that
can be drawn from this: either the RTSJ needs to be extended
to allow these patterns to be expressed as an integral part of
the model or the way the model should be targeted is still
not understood. The second possibility is improbable as the
model’s rationale is intuitive. Earlier work we have carried
out [12, 11, 9] shows that in translating the same information
present in an explicit coarse grain model to a scoped model
results in a tradeoff space that can reduce space and time
overheads is some cases but can lead to potentially unbounded
space requirements in others.9 This conclusion is important
as it makes a strong case for the RTSJ to provide alternative
memory models in addition to scoped memory that allow these
patterns of object lifetime to be expressed.10 The RTSJ scoped
memory model can express some patterns of object lifetime
better than other models and is therefore useful when these
patterns are manifested in the real-world. When this is not
the case, the RTSJ must provide other approaches that allow
the expression of object lifetimes that the patterns such as
those described in [6, 24] address. Describing these patterns
as an abstraction on top of the RTSJ scoped model is a poor
approach. In conclusion therefore, the entropy hypothesis can
be used to argue that the RTSJ model is complex only when
it is used to express information that is poorly captured by its
abstraction. The solution is therefore not an alternative model
but an extended model that allow a wider range of patterns of
memory usage to be expressed.

Reference rules inhibit the expression of object lifetime:
The problem of expressing some aggregate lifetime patterns

in the RTSJ as described above is compounded by the RTSJ

9Using the entropy hypothesis it can be argued that this occurs due to a loss
of information in the translation process. Understanding what constitutes this
lost information is an important goal that is still being investigated. It appears
at this point that this lost information is due to the scoped model being only
able to capture the relative ordering of a subset of regions at any time, rather
than the complete ordering available in an unscoped model.

10Interestingly, Benowitz [6] proposes solutions that map alternative mem-
ory models on top of the RTSJ. Mapping alternative memory models to the
RTSJ is of little advantage in terms of space and time performance as the disad-
vantages or these models is only supplemented by the extra cost of maintaining
this abstraction.

making it harder to define these aggregates. We have devel-
oped reference objects [10] in order to address this. Using
a reference object rather than a normal reference achieves a
compromise between maintaining the safety of objects and
allowing this lifetime information to be expressed. Reference
objects carry lifetime information that is looser than that
specified by a regular reference. In the RTSJ, if an object A
holds a reference to an object B then Bmust live as long as
A. However, if A holds a reference object to an object B then
B can live as long as A but the reference object must throw a
caught exception if this is shown not to be the case at runtime.
Reference objects are an example of allowing the developer to
specify lifetime information in order to reduce space overheads.

The possibility of reusing code is limited:
This issue comes back to the question of: “What is the best

way of allowing known information to be expressed without
placing unnecessary burden on the developer?” If a memory
model can allow an equivalent expression of this information
externally to application code then code reuse is again possible.
We have developed a solution to this problem as part of our
work [12, 11, 9] that is based on extracting the cross-cutting
memory management concern as a separate aspect. This is
achieved by defining the boundaries and lifetime of aggregates
on the program’s control flow graph. An automatic algorithm
then fines the optimal scoping structure and annotates the
application to enter and exit regions when specified.

Lifetime information is poorly utilised in implementations:
The second role of the memory model, taking advantage of

expressed memory usage, is also under-specified in the RTSJ.
The underlying DM algorithm allocates and frees regions in a
similar way to explicit allocation and deallocation, thereby re-
sulting in similar fragmentation problems. In particular, the ad-
vantage of reduced fragmentation due to scoping is lost in mul-
tithreaded environments as the lifetimes of aggregates across
different threads of control are unspecified. A solution to this
problem is to have separate partitions for each branch of the
scope stack when this can be statically determined to be pos-
sible. When this is not possible, the model experiences similar
fragmentation to fine grain models if the variance in the sizes of
regions is large. This therefore partly eliminates the rationale
for a scoped approach. Again, the inability to define separate
partitions for scope stacks is an example of how, unavailable
information leads to higher overheads. In this case, a simple
analysis of the variance of region sizes can be used to merge re-
gions of similar lifetime so that fragmentation can be reduced.

5 Conclusion

The search for suitable memory models that address the re-
quirements of complex embedded real-time systems continues
to gain momentum. The choice of a suitable memory model for
the RTSJ is viewed as a contentious issue by many, particularly
where a choice between real-time GC and scoped memory must
be made. The entropy hypothesis shows that an argument for
a some memory model is not absolute to a particular domain,
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whether that domain is defined in terms of allowable space and
time overheads or development costs. Rather, a memory model
is suitable for a given application only in the degree to which
it can capture information of memory usage in the application.
The goal of future research must therefore lie in identifying this
information and providing ways of allowing this information to
be expressed in order for the underlying memory subsystem
to make use of it. This is a significant shift from current re-
search directions that deliver only marginal improvements due
to the implicit assumption that expressing lifetime information
implies unnecessary burdens on application developers.
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