View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Washington University St. Louis: Open Scholarship

Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-85-09

1985-11-01

Statistics on Logic Simulation

K. F. Wong, Mark A. Franklin, Roger D. Chamberlain, and B. L. Shing

The high costs associated with logic simulation of large VLSI based systems have led to the
need for new computer architectures tailored to the simulation task. Such architecture have the
potential for significant speedups over standard software based logic simulators. Several
commercial simulation engines have been produced to satisfy need in this area. To properly
explore the space of alternative simulation architectures, data is required on the simulation
process itself. This paper presents a framework for such data gathering activity by first
examining possible sources of speedup in the logic simulation task, examining the sort of data
needed in... Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

b‘ Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

Wong, K. F; Franklin, Mark A.; Chamberlain, Roger D.; and Shing, B. L., "Statistics on Logic Simulation"
Report Number: WUCS-85-09 (1985). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/853

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.


https://core.ac.uk/display/233234014?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F853&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F853&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F853&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F853&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F853&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F853&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F853&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/853?utm_source=openscholarship.wustl.edu%2Fcse_research%2F853&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/853

Statistics on Logic Simulation

K. F. Wong, Mark A. Franklin, Roger D. Chamberlain, and B. L. Shing

Complete Abstract:

The high costs associated with logic simulation of large VLSI based systems have led to the need for new
computer architectures tailored to the simulation task. Such architecture have the potential for significant
speedups over standard software based logic simulators. Several commercial simulation engines have
been produced to satisfy need in this area. To properly explore the space of alternative simulation
architectures, data is required on the simulation process itself. This paper presents a framework for such
data gathering activity by first examining possible sources of speedup in the logic simulation task,
examining the sort of data needed in the design of simulation engines, and then presenting such data.
The data contained in the paper includes information on the subtask times found in standard discrete
event simulation algorithms, event intensities, queue length distributions and simultaneous event
distributions.


https://openscholarship.wustl.edu/cse_research/853?utm_source=openscholarship.wustl.edu%2Fcse_research%2F853&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/853?utm_source=openscholarship.wustl.edu%2Fcse_research%2F853&utm_medium=PDF&utm_campaign=PDFCoverPages

Statistics on Logic Simulation

K. F. Wong, M. . Franklin, R. D. Chamberlain
and B. L. Shing

WUCS-85-09

November 1985

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

Saint Louis, MO 63130-4899

This research has been sponsored in part by funding from NSF Grant DCR-
8417709 and ONR Contract N00014-8D-C-0761.



STATISTICS ON LOGIC SIMULATION
K.F. Wong, M.A. Franklin, R.D. Chamberlain and B.L. Shing

Washington University
St. Louis, Missouri

TOPIC AREAS:

1. Simulation
2. Special Purpose Hardware For DA

ABSTRACT:

The high costs associated with logic simulation of large VLSI based systems have led to the
need for new computer architectures tailored to the simulation task. Such architectures have
the potential for significant speedups over standard software based logic simulators. Several
commercial simulation engines have been produced to satisfy needs in this area. To properly
explore the space of alternative simulation architectures, data is required on the simulation
process itsell. This paper presents a framework for such data gathering activity by first
examining possible sources of speedup in the logic simulation task, examining the sort of data
needed in the design of simulation engines, and then presenting such data. The data
contained in the paper includes information on subtask times found in standard discrete event
simulation algorithms, event intensities, queue length distributions and simultaneous event
distributions.



*
Statistics on Logic Simulation
K.F. Wong, M.A. Franklin, R.D. Chamberlain and R.L. Shing
Center For Computer Systems Design
Washington University

St. Louis, Missouri

1. Introduction

The high costs associated with the detection and correction of design errors once a VLSI
chip has been fabricated have led to an increased reliance on simulation techniques in the logic
design process. Logic simulation is used extensively to initially verify logic correctness and
subsequently to develop vectors for testing fabricated chips. As circuit complexity has grown,
the time delays and costs of performing logic simulation on standard serial computers have

grown until they can consume months of machine time [PF1IS82].

These high costs have led to the development of a number of special purpose processors
dedicated to logic simulation [DENN82, HOWASS, ZYCAS83, VALIB4, DAISS5, HEFFSS, SILI8S).
Such processors typically perform simulations at 10 to 1000 times the speed of standard general
purpose computers. The techniques employed in achieving these speedups vary from microcode
implementation of simulation algorithms to the development of special purpose logic and
multiprocessors tailored to a simulation algorithm. In addition to the approaches found in
commercial simulation engines, other possible simulation architectures have also been proposed

[BLANS4, FRANS4, ASHOS5, HAHNSS).

In general, it has been difficult to effectively compare these alternative approaches. There
are several reasons for this. First, commercial products in this area often have proprietary
designs whose details are not publicly available. Second, developing reasonable performance
models over a range of complex architectural alternatives is still more an art than a science.
Third, basic data on the simulation process (e.g. event distributions) is difficult and time

consuming to obtain, and has not been generally available in the open literature.

* This research has been sponsored in part by funding from NSF Grant DCR-8417700 and ONR Contract
N00014-8D-C-0761,



This paper is concerned principally with the third item above, that is obtaining and
presenting data on the logic simulation process. Such data, relating mainly to event activity,
event list statistics and time distributions is important in determining the eflectiveness and
sizing of various pipeline and multiprocessor design options, in addition to designing event list

scheduling algorithms and hardware.

The section to follow reviews several simulation speedup techniques. In the course of this
presentation, the sort of data necessary in evaluating such techniques and architecture
alternatives is discussed. Section 3 describes Lsim, a UNIX/C* based discrete event logic
simulation program which has extensive facilities for data collection, and which was used in the
data collection process.

Section 4 presents the test case workload of five VLSI designs and the data collection
methodology employed. Section 5 discusses the results of the data collection. The final section

summarizes the paper.

2. Logic Simulation Speed-Up Techniques and Data Requirements

Numerous options are available to the system designer for accelerating logic simulations
through the development of novel architectures and computing structures. These options break

down into two broad approaches (see Table 1).

Functional Specialization | - Special event-list hardware
- Special function evaluation hardware
- Special hardware for net-list operations

Concurrency Exploitation | - Parallelism
- Pipelining

Table 1: Logic Simulation Architectural Speed-up Techniques.

The first, functional specialization, refers to those techniques which take a component

of a standard software based simulation algorithm, and decrease its execution time by placing it

* UNIX is 2 trademark of AT&T Bell Laboratories.

simulation statistics -2- November 15, 1985



in hardware. In this approach the basic sequential nature of the original simulation algorithm
may be maintained. For example, given the central role played by event list manipulation
routines, it is possible to design special purpose hardware which will time order a list of events,
and permit insertion and removal of events in essentially a single instruction time. Given data
on the time associated with this task when executed as a software routine, the cost eflectiveness
of developing such special purpose hardware can be evaluated. Given data on event time

distributions, the sizing of such special purpose hardware can be optimized.

The second approach, concurrency exploitation, refers to designing hardware
structures where either the physical parallelism which exists in the circuit being simulated, or
the algorithmic parallelism inherent in the simulation algorithm can be utilized to achieve
increased execution speed. Physical parallelism can be exploited by partitioning the circuit being
simulated and placing partitions on separate processors in a multiprocessor architecture.
Effective partitioning, however, requires that a balance be achieved between computational (e.g.
functional evaluation}) and communication loads (e.g. passing state information between

processors) across the available processors.

Algorithmic parallelism, in this context, refers to the ability to create a pipeline of
operations related to the basic simulation algorithm. Some of the tasks associated with the pipe
would be: removal of an event from the event list, obtaining state information from netlist,
performing function evaluation, etc. Such pipelining typically applies at each simulation time
instant when an event(s) is available, but would only be eflective in providing speedup if
multiple events were available at that time. Notice that the more processors available to
exploit physical parallelism, the fewer events are available per processor, and thus the less
eflective the speed up associated with pipelining. Data related to event distributions is thus

important in evaluating the tradeolf between these two approaches to parallelism.

The architecture alternatives associated with concurrency exploitation can be further

clarified by classilying the space of design alternatives associated with implementation of the

simulation statisties -3- November 15, 1985



ok
standard event based logic simulation algorithm . Three classification components common to
a wide range of logic simulation architectures can be identified and used to develop a taxonomy

(Table 2) of logic simulation architectures [FRAN84].

TIME CONTROL MECHANISMS

TIME ADVANCE Unit Increment  Event based Increment
TIME SYNCHRONIZATION Global Clock Local Clock
EVENT LIST ATTRIBUTES Single List Multiple List

EVENT/FUNCTION EVALUATION | Single Machine  Multiple Machines

Table 2: A Taxonomy of Logic Simulation Architectures

The first component in the taxonomy relates to the time control methodology employed
and is divided into two parts. The time advance mechanism, is concerned with how the
simulation clock is advanced during execution of the simulation algorithm. The time
synchronization mechanism relates to how clocks on separate processors in a multiprocessor
are synchronized. In the unit time increment approach the clock is advanced by a single
uniform time step at each simulation cycle. This is done whether or not any events are present,
which must be evaluated on that cycle. While this eases the clock distribution problem it alse
introduces an overhead associated with processing clock times having no event activity. In the
event increment approach the clock is advanced in a nonuniform manner depending on the
future time when the next event is to take place. This eliminates the overhead associated with
processing no activity clock times; however, it introduces extra processing associated with
scheduling events and distributing time information. Data on the percentage of no-event times

is needed to help evaluate this design decision.

The time synchronization component is of importance principally when using multiple
processors architectures. A global clock scheme simplifies time synchronization since all
processors execute in a lock step fashion executing events scheduled for the same time. However,

as pointed out earlier, if only a few events are available at each time point, it is possible that a

** We do not consider here architectures derived from purely switch level based algorithms [DALLSS|.

simulation statistics -4 November 15, 1985



only a small number of the available processors in the multiprocessor will be active at each time
point. The use of a local clock scheme in which processors move ahead to future events at their

own pace (subject to various precedence constraints) might allow significantly more events to be

processed in parallel {CITANS1, JEFF83].

The second taxonomy component concerns event list attributes. The number of event
lists can range from one to the number of circuit components. While a single event list is
typically associated with single processor approaches, it may also be effective in multiple
processor designs. This is especially true if event list maintainance and scheduling is moved into
special purpose hardware. Having multiple lists, such as one associated with each processor in a
multiprocessor, will reduce overhead associated with communication of events and also reduce

event list lengths.

The third taxonomy component, event/function evaluation, deals with the number of
processors (event/function evaluators) present. The design tradeoffs here relate to balancing
speedups associated with increased computational parallelism with increases in communications
overhead and system complexity. Related to this design decision are the problems of circuit
partitioning, design of the interprocessor communications network, and design of the algorithmic
pipelining structure. These decisions require data associated with event activity, various event
distributions, and communications impact of various partitioning strategies. Table 3 indicates
some simulation machine design decisions and certain data needed to aid in those decisions. The

next section discusses a software based simulator used in the data collection process.

simulation statisties =5- November 15, 1885



DESIGN DECISION NEEDED DATA

Event list scheduling device design | Percentage of time on standard
serial algorithm taken with
event list maintainance and
scheduling

Event list scheduling device design | Distribution of event list length

Number of multiple processors Distribution of number of
events during clock cycles when
at least one event is present

Pipeline depth and design Distribution of number of
events during clock cycles when
at least one event is present,
normalized by the number of
processors present

Unit versus event time increment Percentage of clock times where
there are events to be processed
Circuit partitioning strategies Communications bandwidth
required using various

partitioning hueristics

Table 3: Required Data for Certain Design Decisions

3. Lsim: A Unix/C Based Logic Simulator

3.1. Basic Lsim Features

Data on the simulation process was gathered using the lsim gate-switch level logic
simulator. Lsim is a UNIX/C simulator based and was designed to ease the task of collecting
data on the simulation process [CHAMS5, CHAMSG). It can simulate systems containing both
the traditional TTL unidirectional type of logic gates, and bidirectional switches of the sort

found in MOS circuits,

Lsim models circuits with signal values being represented by one of seven logical states:

STABLE STATES TRANSIENT STATES

1  high r rising

0 low f falling

z  high impedance | t transition to/[rom high impedance
X __ undefined

To properly model circuits which include bidirectional gates, pass transistors, wired logic

connections and tri-state outputs, a2 “strength” is associated with each signal in addition to its

simulation statistics -6- November 15, 1685



logical signal. Lsim uses two strengths, strong and weak, corresponding to a high and low
current drive capability. A strong signal is one that is connected directly to the power supply,
ground, or through an active transistor to supply or ground. A weak signal is one that is

connected to a voltage source though a resistance, such as a depletion mode pullup transistor.

Timing analysis is supported at three diflerent levels, a unit delay model in which every
gate is assumed to have a delay of one simulated time unit, a fixed delay model where gate
delays are modeled by fixed low-to-high and high-to-Jow propagation times, and a variable delay
model in which gates have variable delays specified by a maximum and a minimum value. In
addition, enable and disable times (i.e. switching times for the setup and removal of a high
impedance state on a component output) may also be specified. The data presented in this

paper were obtained with the fixed delay model.

The seven logical states associated with signal lines are divided into two major types,
stable states (1,0,2,x) and transient states (r,f,t). Stable states apply to all timing models. The
“1” and “0” states are used to model high and low voltages respectively. The “2” state is used
to model the high impedance output of components that have tri-state outputs. The “x” state is
used when little is known about the voltage level of the signal. Transient states only apply to
the variable delay model and are used to represent intermediate states during a transition
between stable states. The “r” and “” states are used during a transition from low to high, and

from high to low respectively. The “t" state is used during a transition to or from a high
P

impedance state.

There are several components supported by Isim that differ from the normal unidirectional
gate model that is common in gate level simulators. These components, the pass transistor and
resistor are capable of propagating signals in two directions. Internally to Isim, these
components are handled by creating, in effect, two parallel unidirectional components that are
connected back to back. This construction is hidden from the user, who simply refers to one

terminal of the component as the input and the other terminal as the output. The algorithms

simulation statistics =T November 15, 1985



for processing bidirectional components and handling multiple strength signals follow those
proposed by IIAYES2. More details on /sim and examples of its use can be found in CHAMSS

and CITAMSS.

3.2, Data Collection Facilities

Lsim has features to collect information related to three basic jtems: events, timing of
subtasks in the lsim program, and communications across user defined circuit partitions. An
event refers to a discrete action performed by the simulator, such as the modification of the
logical state of a component output, or the periodic display of signal states to the user. Each
event has a time associated with it which indicates when during the simulation that event is to
occur. Events are stored in an event queue which is used in event scheduling and (lowest time

value) event retrieval. Lsim collects the following statistical data on events:

the number of events associated with each component in the circuit
the number of events in the event queue
the times between events in the event queue

In addition to the data mentioned above, there is a provision for Isim to send out a record
to a file each time event queue activity occurs. Each record contains fields indicating event
type, current simulated time, scheduled time of the event, and whether an event insertion,
removal or deletion occurred. The resulting data file can be analyzed using the § statistical
analysis package.

The UNIX profiling utilities may be used to obtain data on the execution times associated
with various tasks involved in simulation. The utilities provide information that tells the
number of times that subroutines have been called as well as cpu times for the subroutines
themselves. The subroutine calls can then be classified into a set of general tasks that comprise

the simulation. The task classifications used are found in Table 4.

Lsim also provides facilities for collecting communications information across ecircuit

partitions. That is, given a user defined partitioning of the circuit to be simulated, lsim will

sirnulation statistics -8 November 15, 1985



collect data on the number of times state information is passed across partitions. This data,
although not available at this time, will be of use in evaluating the speedup potential associated
with exploiting  physical parallelism, and the bandwidth requirements required of

interconnection networks used in multiprocessor configurations.

event queue manipulation insertion, retrieval, or deletion
ol events from the event quene

functional evaluation determination of component
output values given component
input values

netlist operations propagation of component
output changes to the inputs of
other components, in effect,
searching the connectivity of
the circuit

data collection output time spent collecting and
displaying data being collected

startup operations time spent loading and
initializing the simulation

other overhead time that could not be easily
classified as one of the other
tasks

Table 4: Simulation Subtask Classification

4. The Benchmark and Data Collection Methodology

Data on the simulation process was obtained by applying test sets containing random test
vectors to five circuits. The five circuits were: 1) a stop watch, 2) a priority queue, 3) an
associative memory, 4) a Radiation Treatment Planning (RTP) chip, and §) a crossbar switch.
This section briefly describes these circuits and the methodology employed in collecting data on

the simulation process.

The stop watch circuit determines the elapsed time between a start and a stop signal.
The priority queue can be used as an event list manipulation device. It stores 48-bit records,
each divided into four fields, and retrieves the record whose first field contains the smallest
value. The associative memory functions like 2 normal random access memory as well as a

memory in which records can be retrieved by content (i.e. those matching a specified pattern).

simulation statistics -9- November 15, 1985



The RTP chip implements an algorithm used in cancer treatment planning, which ealculates the
radiation dosage at a specified point. The crossbar switch provides an interconnection network

between four input and four output ports.

These circuits reflect a mix of characteristics (Table 5) and are the product of five
graduate student design teams. The two most prevalent VLSI technologies (nmos and ¢mos)
and clocking schemes {synchronous and asynchronous) are represented. The circuit sizes range
from approximately 650 transistors to 6500 transistors. The priority queue, associative memory,
and crossbar switch were designed so that they could be scaled to larger versions as required
(assuming no pin or power limitations). The test circuits were kept small enough to insure that
simulation run lengths were reasonable and disk storage availability was adequate. The
Switches and Gates columns in Table 5 indicate the number of Isim bidirectional switch and
unidirectional gate blocks used in defining the circuit (the Total entry is the sum of these

columns). The right column reflects the total number of transistors in each circuit.

The test set size was picked to insure that the statistics gathered refiect the sort of test
sets one might use during design verification. In each case, the size of the test set was chosen so
that the aggregate statistics remained stable over at least five run intervals and most
components experienced at least one output change. For example, if the test set contained 25
test vectors, statistics were displayed after every 5 test vectors. If the average queue lengths
fluctuated more than one percent, the number of test vectors was increased to approximately

50 and the simulation was repeated. The run lengths were increased until the fluctuations

Circuit Tech.* | Type* | Switches | Gates | Total | Approx. Trans.*
Stop watch nmos sync 216 131 347 650
Assoc. memory nmos asyne 296 454 750 1700
Priority queue ¢Inos sync 2960 720 3680 5100
RTP chip nmos sync 1422 1746 3169 6100
Switch nmos asyne 0 2096 2096 6300
Average 979 1029 2008 3970

* Technology, synchronous, asynchronous, Approzimate number of {ransistors
Table 5: Circuit Characteristics.

simulation statisties -10- November 15, 1985



stabilized to within a range of about one percent. Once this first criverion was met, the number
of test vectors was increased further if less than 95 percent of the components experienced at

least one output change.

The test vectors were applied to the test circuits using lsim’s program interface. In this
technique, special test vector generation subroutines were written in the C language and
dynamically linked to the normal Isim routines. These routines supplied the inputs necessary to

simulate a stream of random test vectors.

5. The Data

5.1. Subtask Time Distributions

The first data to be considered relates to the relative subtask times associated with the
standard discrete event oriented logic simulation (Table 6). Time spent in the data output
operation has not been included since this will vary greatly depending on the amount of data
being collected. For example, if data is collected about every event that occurs during the
simulation, this task alone could consume as much 40 percent of the execution time. Startup
operation time is also omitted from this percentage data in normalizing for variations in test set

and circuit size.

Percentage Time
queue functional netlist other
Circuit manipulation evaluation | operations | overhead
Stop Watch 19 36 31 14
Assoc. Memory 12 38 39 11
Priority Queue 22 33 35 10
RTP Chip 39 25 20 16
CB Swiich 25 35 20 20
Average 23 33 29 14

Table 6: Subtask Execution Percentages

From this data, the speedup that can result from various types of hardware specialization can

be evaluated. The data indicates, however, that there is no single subtask which is a critical

simulation statistics -11- November 15, 1985



bottleneck. That is, unless all aspects of the algorithm are improved, large speedups will not be
achieved. For example, if an infinitely fast device were designed to process events, the most
that could be gained is a speedup of about 23 percent. Note that a fairly efficient timing wheel

based event list algorithm is used in {s¢m [ULRI78].

5.2. Event Intensity Data

To get a broad measure of simulation activity over time, it is worthwhile noting the
fraction of time points during which no activity takes place. That is, given a resolution of say 1
nanosecond, this is the percentage of nanosecond time points when no events are scheduled. As
shown in the first column of Table 7, at most of the time points there is no activity. Related to
the idle time percentage is the idea of circuit intensity. Intensity corresponds to the percentage
of gates which change state on average over the simulation. The second column of Table 7
shows the percentage of gates which change state averaged over all non-idle time points (i.e.
points where at least one event occurs). The third column shows the percentage of gates which

change state averaged over all time points (idle and non-idle) in the simulation.

Idle | Intensity: | Intensity:

Time | Non-idle Total
Circuit Time Time
Stop Watch 99 3.1 027
Assoc. memory 89 RY 102
Priority Queue 84 14 224
RTP Chip 84 .55 .087
CB Switch 71 .04 .01
Average 85 1.2 .09

Table 7: Event Activities and Intensities (Percentages)

The general picture that emerges is that logic simulation is an activity where, during most
of the simulation time points nothing is happening and, when there is activity, it involves a
small fraction of the circuit being simulated. The conclusion is that for special purpose
simulation architectures to be eflective, they must take advantage of the localities of activity

which occur in both time and space. Luckily, since we are interested in large circuits, small

simulation statistics -12- November 15, 1985



percentages may still yield enough activity so that the speedup techniques of specialization and
parallelism can be effective if they are applied at non-idle time points. Given this result, the
queue length and event simultaneity statistics discussed in the next section, unless otherwise
specified, are based on measurements taken at non-idle time points. Note that the CB Switch
has the highest non-idle time yet has the lowest intensites. This is due in part to the testing
protocol where the switch was loaded to only 50% capacity, and to the switch design (i.e. 2
circuit switched pipelined design). This results in many non-idle time points where there is very

little activity at each point.

5.3. Event Queue Length Distribution

The length of the event queue will vary during the simulation. The distribution associated
with queue length yields information on how long one can expect event lists to grow and this
information is useful in designing efficient software and hardware based algorithms for event
manipulation. For example, what should be the size of a hardware unit specialized to event
queue function? If made too small, then overflow conditions will often arise with a likely
associated time penalty. If made too large, such a device could be costly but yield little in added

performance.

Table 8 summarizes benchmark queue length data. Figures 1 and 2 present density
curves for two of the circuits. These show the fraction of time during the simulation

corresponding to different queue lengths.

Prob. Queue Length Average Over Max.

< Table Entry non-idle | total | queue
Circuit .9 95 .99 time time size
Stop Watch 48 79 122 18.9 36 143
Assoc. memory 32 34 63 9.2 3.3 375
Priority Queue | 209 | 217 242 68.1 28.86 810
RTP Chip 67 123 164 29.9 114 225
CB Switch 5 6 7 2.9 2.3 13
Average 72 g2 120 25.8 9.8 313

Table 8: Queue Length Statistics

simulation statistics -13- November 19, 1985



Note that queue sizes are modest, with average sizes (over non-idle time points) being less
than 30 entries, and the probability of queue length less than 90 being greater than .9 . This is
shown in Figures 2 and 3 which give the distributions for the Priority Queue and Associative
Memory Circuits. Both distributions show a sharp drop off after relatively small queue sizes. If
one assumes that, over a variety of chip designs, simulation queue length varies directly as the
number of transistors in the design, then the average numbers in Tables 5 and 8 can be used to
obtain queue lengths to be expected for larger circuits. For instance, in logic simulations of
100,000 transistor circuits (25 times the average circuit of Table 5), 90% of the time the event
queue would have a length less than about 1800. This will vary, of course, depending on the

characteristics of the individual circuit being simulated.

5.4. Event Simultaneity

The data on intensities is further refined in Table 9 and Figures 3 and 4. Table 9 is
concerned only with those time points during which one or more events are processed. In the
first column, for example, there is 2 90% probability that the number of events at a given non-
idle time point will be less than the table entry. Figures 3 and 4 show the general fast dropoff in
number of simultaneous events after the first few entries. They do, however, also demonstrate

that there are apparently a few instances of intensive activity where many simultaneous events

occur.
Prob. # of Simultaneous Events Average Over Max,
< Table Entry non-idie | total | # sim.
{ Cirenit .8 95 .99 time time | events
Stop Watch 26 44 72 11 1 82
Assoc. memory 23 32 35 7 8 346
Priority Queue | 194 200 217 55 8.6 802
RTP Chip 38 121 142 18 2.7 160
CB Switch 3 4 6 1.7 5 9
Average 57 80 94 18.5 2.5 280

Table 9: Simultaneous Event Statistics

simulation statistics -14- November 19, 1985



Although the statistics indicate that on average relatively few events occur in paralle],
this number scales as the size of the circuit being simulated grows. If we assume, for instance,
that the average number of simultaneous events scales linearly with circuit size, then a 100,000
transistor circuit will, on average, have about 463 (25*18.5) simultaneous events to process at
each non-idle time point. Though not pursued here, it is clear that this affords many
opportunites for exploiting parallelism and pipelining in the design of special purpose simulation

architectures.

6. Summary and Conclusions

This paper discussed some factors which are of importance in the design of a hardware
based logic simulator. A summary of architecture approaches for achieving high performance
logic simulation engines was presented along with a description of a software simulator, lsim,
which has been used as a tool for gathering data on the simulation process. Data was presented
on the relative execution times for important simulation subtasks when implemented in
software. In general, the data indicates that no single aspect of the simulation algorithm
represents a central bottleneck in the simulation process. To achieve high speed, therefore, all
subtasks must be made more efficient. Statistics on the length of event queues were also
presented. These indicate that most of the event queue lengths are of reasonable size. Statistics
on idle time, event intensities and the number of simultaneous events which occur during a
simulation were also given. These indicate that logic simulation is characterized by a very small
percentage of the circuit components being simultaneously active over a small number of time
points. For large circuits, however, these small percentages yield sufficient simultaneous activity

so that parallelism and pipelining techniques can be successfully exploited.

Work in the area of modeling the performance of various architectural alternatives is
under way at Washington University. Related research on the circuit partitioning problem and
on associated problems in the design of more general purpose simulation machines for VLSI

design automation is also being pursued.

simulation statistics -15- November 15, 1985



[ASHOS5}

[BLANS4]
[CHAMSS]
[ClLAMSS)]

[CHANS1]

[DAISSS)

[DALLSS5)

[DENNS82]

[FRAN84]

[HAHNS3)

[HAYES?2)
[HEFFs8s]

[HOWAS3]

[JEFF83]
[PFiS82]
[SILIgS)

[ULRI78]

[VALI84]
[Z2YCAS3]

simulation statistics -16-

References

Ashok, V., Costello R., and Sadayappan P., “Distributed Discrete Event
Simulation Using Dataflow,” Proc. 1985 Int. Conf. on Parallel Processing, IEEE
Computer Society Press, 1085, pp. 503-510.

Blank, T., “A Survey of Hardware Accelerators Used in Computer-Aided
Design,” IEEE Design and Test of Computers, 1:3 (Aug. 1984), pp. 21-39.

Chamberlain, R.D., “Lsim: A Gate-Switch Level Logic Simulator,” M.S. Thesis,
Dept. of Computer Science, Washington University, St. Louis, MO., May 1985.
Chamberlain, R.D., and Franklin, M.A. “Collecting Data About Logic
Simulation,” IEEE Trans. on Computer-Aided Design, (in press).

Chandy, K.M. and Misra J.,, “Asynchronous Distributed Simulation via a
Sequence of Parallel Computations,” Comm. of the ACM, 24:11 (Apr. 1981),
pp. 198-206.

Daisy Systems Corp., “The MegaLOGICIAN,” Product Description, Mountain
View, CA, 1985.

Dally, W. and Bryant, R., “A Hardware Architecture for Switch-Level
Simulation,” IEEE Trans. on Computer-Aided Design, CAD-4:3 (July 1985),
pp. 239-250.

Denneau, MM., “The Yorktown Simulation Engine: Architecture and Hardware
Description,” Proc. 19th Design Automation Conf.,

Franklin, M.A., Wann, DF., and Wong, K.F. “Parallel Machines and
Algorithms for Discrete-Event Simulation,” Proc. 1984 Int. Conf. on Parallel
Processing,Aug.

Hahn, W. and Fischer, K., “MuSiC: An Event-Flow Computer for Fast
Simulation of Digital Systems,” Proc. 22nd Design Automation Conf., July 1985,
pp. 338-344.

Hayes, J. P., “A Unified Switching Theory with Applications to VLSI Design,”
Proc. of the IEEE, 70:10 (Oct. 1982), pp. 1140-1151.

Hefferan, PM., et. al., “The STE-264 Accelerated Electronic CAD System,”
Proc. 22nd Design Automation Conf., 1985, pp. 352-358.

Howard, JK., Malm, RL., amd Warren LM., “Introduction to the IBM Los
Gatos Logic Simulation Machine,” Proc. IEEE Inter. Conf on Comp. Design
(ICCD88), Oct. 1983, pp. 580-583.

Jeflerson, David, “Virtual Time,” Proc. Inter. Conf. on Parallel Processing, 1983,
pPp- 384-394.

Plister, G. F., “The Yorktown Simulation Engine: Introduction,” Proc. 19th
Design Automation Conf., June 1982, pp. 51-54.

Silicon Solutions Corp., “The Mach 1000 Simulation Engine,” Product
Description, Menlo Park, CA, 1985.

Ulrich, E., “Event Manipulation for Discrete Simulations Requiring Large
Numbers of Events,” Comm. of the ACM, 21:9 (Sep. 1978), pp. 777-785.

Valid Corp., “Realfast Simulation Accelerator,” Product Description, 1984.

Zycad Corp., “The Zycad Logic Evaluator,” Produet Description, N. Roseville,
MN., 1983.

November 15, 1985



0.04

0.03

(- BTN I R A |

.02

-0

0.01

-

0.0 .
0 $0 100 150 200 250 300

Queue Length

Figure 1: Priority Queue - Queue Length Distribution {(non-idle time)

015 (-

B O wenp- '

010 -

-0

005

-

0.0 K "Il |||.| .|| Ipbarvo . g R e
10 20 30 40 50
Queue Length

Figure 2: Associative Memory - Queue Length Distribution (non-idle time)



B O e ap 1T

-0

o B -3

B o rmeoop-

- O

o B~n

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.0

0.20

0.15

0.10

0.06

0.0

1 L

o 50 100 150 200 250

Number of Simultaneous Events

300

Figure 3: Priority Queue - Simultaneous Events Distribution

h.

G 50 100 150

Number of Simultaneous Events

Figure 4: RTP Chip - Simultaneous Events Distribution



	Statistics on Logic Simulation
	Recommended Citation
	Statistics on Logic Simulation

	tmp.1465252329.pdf.V9nQ9

