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the concepts used is knowledge maintenence where the knowledge base is changed in response to
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technique can be used in the class of decision-support systems which objectively evaluate competing
plans and select the best plan. The technique will be implemented in the domain of evaluating three-
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clinically-relevant objective plan-evaluation model for 3-D radiation treatment plans, and to build a clinical
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Abstract

The quality of performance of a decision-support system (or an expert system) is determined
to a large extent by its underlying preference model (or knowledge base). The difficulties
in preference and knowledge acquisition make them a major focus of current research in
decision-support and expert systems. Researchers have used various concepts to develop
promising acquisition techniques. One of the concepts used is knowledge maintenance where
the knowledge base is changed in response to incorrect or inadequate performance by the
expert system. This dissertation investigates a preference acquisition technique based on
the reconciliation of inconsistencies between the preference model and the decision maker by
allowing the decision maker to modify the preference model interactively. The technique can
be used in the class of decision-support systems which objectively evaluate competing plans
and select the best plan. The technique will be implemented in the domain of evaluating
three-dimensional (3-D) radiation treatment plans. Another major aim of the dissertation is
to develop a clinically-relevant objective plan-evaluation model for 3-D radiation treatment
plans, and to build a clinical decision-support system to assist in that task using the new
preference acquisition method.
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1 Introduction

Intelligent computer-based systems used by people to perform various tasks fall into two broad categories
— expert systerns and decision-support systems. Expert systems, as the name suggests, attempt to capture
the expertise of & person and make it available to non-experts. The expertise is represented in the form of
a knowledge base, and various reasoning techniques have been developed to use this knowledge. Decision-
support systems, on the other hand, assist people in making decisions. They contain the preferences of the
decision-maker about the decisions to be made, and use the coneepts of decision theory in order to make
optimal decisions. It is obvious that the performance of these systems depends critically on the accuracy
and completeness of the knowledge base or how accurately the preference model represents the preferences
of the decision maker.

Over the past three decades, many expert systems and decision-support systems have been developed in
research as well as in commercial settings. One of the main problems facing the developers of these systems
is the acquisition of information to be contained in the systems — knowledge acquisition in the case of expert
systems, and preference acquisition in the case of decision-support systems. Knowledge acquisition occurs
through the interaction between the knowledge engineer developing the system and the domain expert whose
expertise will be represented in the system; preference acquisition occurs through the interaction between
the decision analyst developing the decision-support system and the decision maker whose preferences will be
represented in the system. Knowledge acquisition is a major focus of current research on expert systems 6,471,
and preference acquisition is a major focus of current research on decision-support systems [12,44,79]. To
highlight the importance of the problem, Feigenbaum coined the phrase knowledge acquisition bottleneck, an
expression that has now become cliché [19].

Traditionally, knowledge acquisition is performed by direet questioning of the expert, by interpretation of
verbal protocols created by asking an expert to think aloud while working on real or simulated problems, by
ethnographic methods which involves observing the expert directly in the workplace, and other methods [22].
In a recent review article, Musen has identified some of the causes of the knowledge acquisition bottleneck [47].
The first reason is that the knowledge that experts use has become tacit. Due to repeated practice, they
can perform actions without being aware of the knowledge they are using. This poses a problem for the
knowledge acquisition task because the experts can no longer provide the kind of knowledge needed for the
knowledge base. The second reason is the problem of miscommunication as the knowledge engineer and the
domain expert rarely share the same vocabulary. The third reason is the insufficiency of the expressive power
of most knowledge representation schemes. The fourth reason is that the process of knowledge acquisition is
actually the process of creating a model of the domain, and it includes simplifying assumptions because most
models are approximations of the reality they are trying to represent. This leads to the brittleness in the
knowledge base which is normally blamed on the inability of the expert to provide the required knowledge,
but is actually caused by the nature of the simplifying assumptions made during the construction of the
knowledge base.

In the last decade, researchers have developed innovative knowledge acquisition techniques for different



classes of expert systems [4,7,15,33,37,42,48,78). These techniques usually exploit features of the application
domain, or attempt to solve one of the problems mentioned above. One common feature among most of
these techniques is an attempt to eliminate the knowledge engineer from the knowledge acquisition process.
The knowledge engineer instead becomes responsible for developing the knowledge acquisition technique and
implementing the tool based on it. The expert then directly interacts with the knowledge acquisition tool
to create the knowledge base. Research is also underway to develop metalevel knowledge acquisition tools,
tools that will generate knowledge acquisition tools for a particular application domain [46, 56).

An interesting recent knowledge acquisition technique exploits the use of knowledge maintenance [7]. De-
fined broadly, knowledge maintenance is the addition, deletion, or modification of knowledge in the knowledge
base. Reports of two of the best maintained expert systems suggest that knowledge maintenance is needed
to update the knowledge base, improve the performance of the expert system, or add new functionality to
the expert system [2, 8].

Traditionally, preference acquisition is performed by identifying the objectives of the decision, structuring
the decision problem, and eliciting the desirability of the various outcomes [16]. The main problem with
preference acquisition is that it asks the decision maker to consider hypothetical situations which may never
oceur in practice, making it very hard for the decision maker to express a true preference. Thus the preference
model elicited from the decision maker is only approximately correct, and the decisions made using it need
not necessarily represent the decisions that the decision maker would like to make. Numerous studies have
been performed validating the fact that the acquired preference model does not necessarily represent the
true preferences of the decision maker [23, 24, 32,40, 55, 71, 72]. Recently, researchers have developed novel
preference acquisition techniques for some classes of decision-support systems which elicit more accurate
preference models [18).

Compared to knowledge acquisition, fewer researchers are working on preference acquisition. Thus there
are many classes of decision-support systemns for which efficient and accurate preference acquisition techniques
have not been developed. One of the aims of this dissertation is to propose and implement a new preference
acquisition technique for a particular class of decision-support systems — systems which objectively evaluate
competing plans and select the best plan. The technique uses ideas from knowledge maintenance by changing
the preference model whenever the recommendation of the system is not consistent with that of the decision
maker [27]. The technique will be implemented in the domain of evaluating three-dimensional (3-D) radiation
treatment plans. Thus, another aim of this dissertation is to construct a decision-support system for the
objective evaluation of 3-D radiation treatment plans.

Section 2 provides basic background material on decision theory, some recent knowledge and preference
acquisition methods, and radiation treatment planning. Section 3 briefly reviews a simple decision theoretic
objective evaluation model for 3D radiation treatment plans and highlights its shortcomings which motivated
this dissertation. Section 4 proposes & new decision theoretic model that eliminates some of the shortcomings
of the previous model. Section 5 describes a new preference acquisition technique. Section 6 outlines the
evaluation methodology for the preference acquisition technique and the decision-support system. Section 7
contains some concluding remarks.

2 Background

2.1 Decision Theory

Decision theory is a discipline of study combining ideas from operations research, statistics, and computer
science [25,59,63]. It provides an explicit methodology for selecting an optimal action (or set of actions) from
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many competing actions which have different outcomes. There are four types of decision problems depending
on the presence or absence of uncertainty, and on whether the decision problem has a single objective or
multiple objectives.

In the simplest case, the decision problem has a single objective and there is no uncertainty. The
desirability (utility in decision theoretic jargon) of each possible outcome is assessed, and the action with the
highest utility is considered to be the optimal action. Slightly more complicated are the decision problems
where there is uncertainty about the effects of some of the actions. All the possible events due to each such
action are elicited along with the probability of the occurrence of these events. Again, the utility of each
possible outcome is assessed, and the expected utility of each action is computed. Normative decision theory
states that the action which maximizes the expected utility is the optimal action. These decision problems
are called single-attribute decision problems and the utilities represent the preferences of the decision maker.

Most real-life decisions involve choosing among available alternative plans in order to fulfill conflicting
multiple objectives. For such non-trivial decision problems, it is difficult to assign a single utility to each
outcome; so an outcome is divided into a number of meaningful component attributes which contribute to
the overall utility of the outcome. The resulting model is called a multiattribute decision model [36, 74].
The utility of each component attribute is assessed as in the single-attribute case. The decision maker’s
preferences are obtained in terms of attributes weights which signify the trade-offs that he is willing to
make among these attributes. The overall utility for each outcome is obtained by combining the utilities
and weights of all the attributes using additive, multiplicative, or other suitable combining functions. If
there is uncertainty about the effects of some actions, probabilities of all possible events due to the action
are elicited, and the expected overall utility for each action is computed. Normative decision theory states
that the sequence of actions which maximizes the overall utility is the one that should be chosen. These
techniques have been used in many real-life planning situations including managing quality of computing
services [80], siting waste facilities {69}, energy system development {73], and many others [1,10].

Decision theory provides many techniques for the elicitation of single-attribute utilities and attribute
weights for multiattribute decision models. Psychophysical and psychological scaling techniques such as
direct rating, category estimation, ratio estimation, and curve drawing which require numerical estimation of
the strength of preference are used to elicit the utility of outcomes in decision problems with no uncertainty
[3,9,70]. Difference measurement techniques such as difference standard sequences and bisection which
require indifference between pairs of outcomes are also used to elicit the utility of outcomes in these problems
[38,52,70]. Standard gamble based techniques, such as variable probability method and variable certainty
equivalent which require indifference between a gamble and a sure outcome, are used to elicit the utility of
outecomes in decision problems involving uncertainty [36, 59]. Multiattribute weight elicitation techniques
include ranking, direct rating, ratio estimation, and swing weights which require numerical estimation f14],
cross-attribute indifference and cross-attribute strength of preference which require indifference or strength
of preference judgments comparing at least two attributes [13, 38], and analytic hierarchy process which
requires pairwise strength of preference judgments [62].

Clinical decision analysis has been well-studied and has been shown to handle effectively the problems
faced in routine medical decision making [35,50,68,75]. A clinical decision-support system is any computer
program designed to help health professionals in making clinical decisions [67]. One class of medical decision
making problems addressed by clinical decision analysis is the selection of the optimal therapy plan from
competing therapy plans. Recently, clinical decision analysis has been used to choose among competing
therapy plans in infectious diseases [41], oncology 128,30,77], and in the intensive care unit [17].

The main aim of this dissertation is to investigate a new preference acquisition technique. The medium
for the investigation will be clinical decision-support systems which use decision theoretic techniques to



evaluate competing treatment plans and to select the best plan based on the treatment preferences of the
physician. The major bottleneck in such systems is the acquisition of the physician preferences (utilities and
weights). The decision theoretic preference acquisition techniques mentioned above, although grounded in
a well-developed theory, are difficult to apply in practice as they ask the physician to consider hypothetical
situations which may not occur in practice. Because of the artificial conditions used in standard prefer-
ence acquisition techniques, the acquired preferences will only be approximately correct. This dissertation
proposes a new preference acquisition technique based on the clinical use of the decision-support system,
and the reconciliation of the inconsistencies between the recommendations of the system and the physician’s

judgment.

2.2 Knowledge and Preference Acquisition

Section 1 mentions some of the problems in knowledge and preference acquisition. Researchers have been
working on innovative methods to solve these problems. In this section, I will deseribe two recent methods,
one in knowledge acquisition and one in preference acquisition, and mention the key idea provided by the
technique toward my proposed preference acquisition technique.

2.2.1 Ripple Down Rules

Ripple down rules is 2 knowledge acquisition technique based on knowledge maintenance which adds or
modifies a rule in the knowledge base whenever the expert system makes an inadequate or incorrect rec-
ommendation [7]. A key philosophical idea underlying the system is that experts never provide knowledge
about how they reach a particular judgment, instead they provide a2 justification of why the judgment is
correct, and this justification usually depends on the context of the case. Thus, the rules in a knowledge
base must also contain a description of the context in which they can be applied.

One way of doing this is to organize the knowledge base as a binary tree with a rule at each node,
and the branches indicate whether the rule was satisfied or not. Thus subsequent rules along the satisfied
branch indicate that the expert system made an incorrect recommendation due to a wrong condition or
wrong context information. Subsequent rule along the unsatisfied branch indicate that the expert system
was unable to provide any recommendation.

The key idea provided by this methodology is that the preference model should be updated whenever
the recommendation of the decision-support system does not agree with the recommendation of the decision
maker,

2.2.2 Simulated Decision Scenarios

Simulated decision scenarios is a preference acquisition technique which infers the preference model of the
decision maker based on the decisions made by him/her on simulated decisions [18]. This technique applies
to the class of decision-support systems which have a preference model and an environmental or process
model which predicts the outcome of a decision alternative.

"The method comprises of three phases. In the first phase, the decision analyst must identify the objectives
of the decision problems, the attributes of the outcomes and their respective ranges. Based on these, a
parameterized preference model is constructed which includes all the basic elements of the finished model,
captures the qualitative characteristics of the decision problem, and has parameters which will determine
the exact preference model for the decision maker. The functional form of the individual single attribute
utility function and the overall combining function are determined using traditional preference acquisition
methods.
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In the second phase, the analyst creates a set of simulated decision problems in the application domain,
and determines the responses of the decision maker for each of them. The cases must reflect the range of
possibilities that the system is intended to handle, should cover the range of outcomes as well as the range of
available options. A computer-based acquisition tool is created to present these cases to the decision maker.
The process model is embedded in the tool and provides the outcomes of the decision alternatives. The
decision maker is allowed to explore the decision alternatives and their corresponding outcomes, and selects
the optimal decision.

In the final phase, the analyst refines the preference model by adjusting the parameters so as to minimize
the difference between the recommendations made by the mode and the decision maker. Mathematical opti-
mization techniques are used for this step. The result is a preference model which represents the preferences
of the decision maker.

The key idea provided by this methodology is that one can perform preference acquisition during the
actual use of the decision-support system.

2.3 Radiation Treatment Planning

The clinical domain in which the preference acquisition technique will be implemented is the evaluation of
three-dimensional (3-D) radiation treatment plans. Cancer patients are treated using surgery, chemotherapy,
and radiotherapy, either alone or in combination. The application domain for this dissertation will focus on
those patients for whom radiotherapy is one of the selected treatment modalities. The intent of the treatment
can be curative or palliative. The task of radiation treatment planning (RTP) is assisted by computer-based
treatment planning systems. These systems are able to calculate and display the dose distributions through
the radiation treatment field.

Once radiotherapy is selected, the patient undergoes radiologic scanning using computed tomography
(CT) or magnetic resonance imaging (MRI) to determine the internal anatomical structure. The radiation
oncologist then has to contour the tumor and the possible areas of microextension on the images. Each of
these areas is called a target volume. All organs present near the target volumes are also contoured, and
are called normal tissues. The radiation oncologist prescribes the radiation type (photon, electron, x-ray,
efc.), and doses for each target volume based on the cell type and severity of the tumor and the radiation
tolerance of the normal tissues, The goal of radiation treatment is to irradiate uniformly all target volumes
to their prescribed doses, and at the same time, to minimize radiation induced damage to the nearby healthy
normal tissues [51]. Treatment planning then involves designing a set of beams which satisfy the treatment
goal as closely as possible. The ideal treatment plan would deliver all of the prescribed dose to the target
volumes while simultaneously delivering little or no radiation to the adjacent normal tissues. Since the ideal
treatment plan generally is not attainable, several potential plans are generated. Each potential plan must
make trade-offs in the doses delivered to the target volumes and the normal tissues.

Evaluation of radiation treatment plans forms an integral part of the clinical responsibilities of a radiation
oncologist. Current evaluation techniques are largely subjective in nature, based primarily on the dose
distribution in some of the critical tissues that may be exposed to radiation. Current standard-of-practice
radiation treatment planning (RTP) systems generate two-dimensional (2-D) dose distributions, and plan
evaluation is relatively easy because it involves examining one dose distribution in a single, or at most, only
a few transverse planes. The rapid improvement in computer technology, both in terms of computation
speed and high-resolution graphics, has allowed for better dose-computation algorithms and dose-display
techniques. State-of-the-art treatment planning systems are capable of caleulating 3-D dose distributions.
3-D radiation treatment planning provides a better and more realistic view of the anatormical relationships
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and dose distributions [53, 54].

A major difficulty in 3-D RTP is that the radiation oncologist must decipher a huge amount of planning
data. Making an unambiguous conclusion about the merits of one plan over another is a difficult task, and
thus far objective plan-evaluation methodologies that reflect actual clinical practice have been non-existent.,
Three-dimensional (3-D} displays of dose distributions are difficult to interpret and 3-D dose distributions
have led to data overload [45]. To help combat this data overload, radiation physicists have developed ways
of summarizing the dose display in the form of dose-volume histograms (DVH) [11}, and radiation biologists
have developed quantitative models which use the DVH to compute the Tumor Control Probability (TCP)
for target volumes [21] and the Normal Tissue Complication Probability (NTCP) for normal tissues [39]. The
National Cancer Institute is currently sponsoring a multi-institutional research effort! to implement these
models as software tools to be used in radiation treatment plan evaluation [57,58]. I believe that objective
plan-evaluation models which use the results of these quantitative models can lead to one of their possible
appropriate uses in plan evaluation.

In addition, 3-D planning has spurred the use of unconventional beam arrangements with plans sometimes
using non-coplanar beams. In 2-D planning, in which the beam axes are either in or parallel to the plane
of the paper, the treatment planner or radiation oncologists could make rational assumptions regarding the
dose distribution in other regions. However, when beam directions are oblique to the viewed plane and non-
coplanar beams are used, the treatment planner’s intuition is much less teliable and the dose distribution
must be checked throughout the irradiated volume. Finally, because 3-D planning is not constrained to
using radiotherapy beam arrangements that adhere to a co-planar geometry about the transverse patient
axis, there is 2 much larger number of possible solutions to the planning problem. Consequently, the issue of
plan optimization has gained renewed interest [20,43,49]. Ideally the 3-D planning system should be able to
optimize the treatment plan automatically, or at least semi-automatically, with user guidance. To do this,
the computer must calculate a large number of different plans, compare them, and determine which is the
best. Thus, 3-D planning systems must provide a methodology of ranking plans, so that one can be said to
be better than another.

Looking into the future of designing radiation treatment plans, the number of options to be considered
will be greatly increased with the unrestricted use of non-coplanar beams and the likely need to significantly
increase the number of treatment fields to obtain 3-D conformal plans that offer a significantly improved
probability of local-regional control and non-significant increase in complications. The determination of
an optimal combination of a large number of beams via interactive modification is virtually impossible
without computer-aided plan-evaluation tools such as my proposed objective plan-evaluation tool. Therefore
I maintain that the full clinical potential of 3-D RTP cannot be realized without the implementation of
software tools needed for plan evaluation.

3 Simple Decision Theoretic Model

I have used decision theoretic techniques to develop an objective plan-evaluation model for ranking competing
radiation treatment plans [26,28-31]. This model was based on work done by Schultheiss [64-66].

tRadiotherapy Treatment Planning Tools Contract. The collaborating institutions are University of North Carolina at
Chapel Hill, University of Washington at Seattle, and Washington University at St. Louis.



3.1 The Model

The plan-ranking problem was formulated as a multiattribute decision problem. Each attribute represented
a specific clinical issue that may appear in a treatment plan. Typical attributes (clinical issues) were non-
eradication of tumor and radiation induced damage to healthy normal tissues appearing in the treatment
field. For each issue, its utility was computed as a number from 0 to 1. A utility of O for an issue meant the
plan addressed that issue in an undesirable manner, and 1 meant the plan addressed that issue in a desirable
manmer.

In order to compare and rank different plans, the utilities of all issues in a specific plan needed to be
combined to obtain an overall utility for that plan. If any one issue is addressed by the plan in an undesirable
manner, the overall utility of the plan had to be reduced significantly. Since the utilities of the issues ranged
from 0 to 1, a multiplicative multiattribute model was appropriate to achieve this. Thus, the overall utility
of a plan, also known as its figure of merit (FOM), was obtained by taking the product of the utilities of all

issues:
issucs

FOM = [ wtility, (1)

Not all issues had the same clinical relevance in the evaluation of the treatment plans. For example,
in radiation treatment of lung cancer, the clinical relevance of radiation-induced myelitis markedly exceeds
the clinical relevance of skin telangiectasia. Thus, to obtain the utility of an issue, the probability of
the occurrence of that issue was combined with the clinical relevance of the issue in the plan. When the
probability of the issue was high and the issue was important, the utility had to be low (undesirable). When
the probability of the issue was low or the issue was irrelevant, the utility had to be high (desirable). One
function which demonstrated this behavior was:

ubility; = 1 — probability; « weight; (2)

In Equation 2, the probability was the likelihood of occurrence of the issue. A probability of 0 indicated the
issue will not occur, and 1 indicated the issue will occur. The issue associated with each target volume was
treatment failure. In order to obtain its probability, I used the TCP model by Goitein [21], which computes
the probability that the tumor is eradicated. The issue associated with each of the normal tissues appearing
in the treatment field was the occurrence of a radiation-induced clinical complication. In order to obtain
its probability, I used the NTCP model by Kutcher [39], which computes the probability that some clinical
complication oceurs due to radiation. The weight indicated the clinical relevance of an issue. A weight of 0
meant the issue was irrelevant, and 1 meant it was important.
Thus, FOM was computed as:

issues

FOM = ][] (1 - probability; + weight;) (3)

1

The plans were ranked based on their FOM values. Additionally, the utilities of the issues were used to
determine which issue should be improved to increase the FOM of the plan.

3.2 Preference Acquisition

My initial model development focused on the following three tumor sites — prostate (stage C), lung and
head-and-neck. Using local radiation oncologists as my domain experts, I obtained & set of clinically relevant



issues for each of the three tumor sites. For the target volumes, the issue was treatment failure. For the
normal tissues, the issue was a set of clinical endpoints observed if the treatment dose exceeded the threshold
dose for that tissue.

The preference (weight) acquisition methodology was a variant of the direct rating method. Three
worksheets were designed, one for each tumor site, and they contained the clinically relevant issues for that
site (Figure 1). Each issue on the worksheet represented a treatment plan having the following characteristics:
for all the other issues on the worksheet, the probability of their occurrence was the normal probability seen in
routine clinical setting, and for the specific issue that this plan represented, the probability of its occurrence
was double the normal probability. Normal probabilities were elicited by consensus from local radiation
oncologists. Thus, for each issue on the worksheet, there was a hypothetical treatment plan which performed
worse on that issue and performed normally on all other issues, making the evaluation of the plan sensitive

to only that issue,

Tumor Site: PROSTATE (stage C) LEVEL OF
ENTHUSIASM

Treatment Volumes with issue being a doubling of risk of treatment failure

—

Target volume 1 - microscopic diseases
Target volume 2 - gross enlarged nodes with appropriate margin
3 | Target volume 3 - gross tumor with appropriate margin

(3]

Critical Structures with issue being a doubling of risk of the listed clinical endpoints

Bladder - clinically significant cystitis with volume loss
Connective tissue - severe fibrosis

Fernoral head - necrosis

Intestine - obstruction, perforation, fistula

Rectum - fistula, severe proctitis

Testicles - infertility

O 00| =] Sy G|

Guidelines
Level of Enthusiasm is a number from 0 to 100

While filling the Level of Enthusiasm for an issue, assume that you are considering a plan
that has twice the normal chance of complication for that issue, and the normal chance of
complication for all the other issues and this is the only plan available to you

0 means you will not use that plan

100 means you will use that plan without any hesitation

Figure 1: An adapted version of the worksheet used for Prostate (stage C) tumors

Having defined such a set of hypothetical treatment plans, the radiation oncologists were asked to express
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their enthusiasm for such a plan by assigning it a Level of Enthusiasm. Level of Enthusiasm was a number
from 0 to 100. A Level of Enthusiasm of 0 meant that the plan was unacceptable (the clinician will not
administer it to the patient). A Level of Enthusiasm of 100 meant that the plan was acceptable (the clinician
will administer it with the same enthusiasm as a plan that had the normal probability of occurrence of the
issue). Intermediate values were used to indicate levels of enthusiasm lying between the two extremes. While
assigning level of enthusiasm to a plan, the clinicians were told to assume that this was the only plan available
to them to treat the patient. This was to eliminate the bias that would occur if they assumed the presence
of the other plans, some of which were better than the plan they were considering.
A value for the Level of Enthusiasm was converted to a weight using the formula:

100 — Level of Enthusiasm
100 “)

weight =

From Equation 4, a Level of Enthusiasm of 100 (no hesitation) for an issue resulted in a weight of 0 (irrele-
vant); whereas a Level of Enthusiasm of 0 (would not administer plan) resulted in a weight of 1 (important).

3.3 Shortcomings

Schultheiss proposed a model similar to the one above. However, all published accounts of Schultheiss’ work
have weight; = 1, the highest possible morbidity for all possible clinical complications. Thus, the FOM he

computed was:
i8sues

FOM = [] (1 - probability;) (5)

which is simply the probability that no complication occurs. By fixing the weights of all the attributes to
1, Schultheiss did not exploit the ability of his decision-analytic formula to model the effects of trade-offs
among complications of differing morbidity. The initial focus of our work was to extend Schultheiss’ model
to overcome some of the limitations we had identified in his work. A significant shortcoming in his model
was that the utility of an attribute depended on its trade-off weight, whereas multiattribute utility theory
recommends that the utility of an attribute should be independent of its weight. Since our initial aim was
to remove the other limitations of his work, we used his model as our starting point, inheriting a utility
function which depended on the attribute weight. Section 4 contains a new mode] where the utility of an
attribute is independent of its weight.

During the preliminary evaluation, I observed that one of the rankings was incorrect due to a high weight
given by the radiation oncologist for one of the issues. My current model does not have the capability of
recovering from the inadequacies of the acquisition methodology, or the inability of the radiation oncologist
to provide me with proper preference information. The incorrect weight may be due to the infamiliarity
of the radiation oncologists with the preference acquisition technique. Section 5 contains a new preference
acquisition which gets away from this shortcoming.

The NTCP values for the issues rarely exceeded 0.03. This meant that the utility of the issues was at
least 0.97 and all the trade-off decisions were being made in the narrow interval from 0.97 to 1.00. This was
also reflected in the preliminary results as some of the plans differed by as little as 0.001 in their figure of
merit values, Similarly, for some of the patients, the best achievable TCP was less than 0.75. This meant
that the utility for that target volume could not exceed 0.75, whereas most of the other issues would have
a higher utility. This affected the model’s ability to select issues for improvement as the target volume had
already been optimized to the best achievable TCP. The new model in Section 4 eliminates this shortcoming.
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4 New Decision Theoretic Model

Any objective plan-evaluation model should incorporate the preferences of the decision maker, and also fine
tune these preferences based on the conditions or abilities of the other people involved in the process. Hence,
I seek to model the treatment preferences of the radiation oncologist. But these preferences can be affeeted
by the clinical condition of the patient. Schultheiss proposed incorporating the treatment preferences of
the radiation oncologist into his model. However, no objective plan-evaluation models in the literature
incorporate the clinical condition of the patient. Thus, the evaluation of radiation treatment plans should
include the preferences of the radiation oncologist who is prescribing the treatment, and clinical condition of
the patient who is going to receive the treatment. I will now describe a new decision theoretic model which
I propose to investigate through this research.

The plan-ranking problem is again formulated as a multiattribute decision problem. Each attribute
represents a specific clinical issue that may appear in a treatment plan. Typical attributes (clinical issues)
are non-eradication of tumnor and radiation-induced damage to nearby healthy normal tissues appearing in
the treatment field. For each issue, its utility is computed as a number from 0 to 1. The wtility will encode
the treatment preference of the radiation oncologist for that issue. A wiility of 0 means for an issue means
that the plan addresses the issue in an undesirable manner, and 1 means the plan addresses that issue in a
desirable manner.

For each issue, its utility will be a function of the dose distribution in the tissue represented by that issue.
The objective of the issue depends on the type of tissue represented by it. In the case of a target volume, the
objective is to irradiate it uniformly to the prescribed dose. For a normal tissue appearing in the treatment
field, the objective is to minimize the dose delivered to it. However, it is impractical if not impossible to
enumerate all the possible dose distributions for a tissue. This makes it impossible to elicit utility functions
for the issue based on the dose distribution in the associated tissue. I will use prozy attributes in order to
elicit the utility functions. A proxy attribute is one that reflects the degree to which an associated objective
is met but does not directly measure the objective [36]. The proxy attribute will be the probability of a bad
outcome for the issue. This probability will come from TCP and NTCP models which compute the tumor
control probability or the normal tissue complication probability based on the dose distribution in and other
radiobiological characteristics of the tissue. The objective of each issue will be to minimize the chance of a
bad outcome for that issue, and utility will be a function of the probability of a bad outcome for that issue.
I acknowledge that it is unusual to have a utility function based on the probability of the attribute. However
it is appropriate in this case as it matches the objective for the issue which is to minimize the chance of a
bad outcome. Also instances of such attributes have been used by Keeney and Raiffa [36] where they use
the probability of death as a possible attribute in a hypothetical medical decision problem (pp. 40, 53-55).
The utility function will be described in more detail in the Section 4.1.

Different issues have different levels of morbidity. The morbidity of the issue will be represented by its
weight which will be from 0 to 1. The weight will be used to make trade-offs among the different issues
having different levels of morbidities. Furthermore, since the clinical condition of the patient aflects the
trade-offs made among the various issues, the weight will encode the clinical condition of the patients. A
weight of 0 means that the issue is irrelevant, and 1 means that the issue is important. My proposed
methodology for eliciting the weights will be described in more detail in Section 4.2 and Section 5.

In order to compare and rank competing treatment plans, the utility and weight of the issues need to
be combined to obtain an overall aggregate utility for the plan, Let the contribution of each issue to the
aggregate utility be called its score. The score is a number from 0 to 1. When the utility of an issue is low
and the issue is important, score should be low. Whereas, if the utility of the issue is high or the issue is
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irrelevant, score should be high. One function which has this behavior is:
score; = 1 — (1 — utility;) * weight; {6)

Whenever the score for any one issue is low, aggregate utility for the plan should be low. Since the
scores are between 0 and 1 for all the issues, a suitable aggregation model which has this behavior is the
multiplicative multiattribute model. Thus, the aggregate utility of the plan, known as its figure of merit
(FOM), is obtained by taking the product of the scores of all the issues:

issues
FOM = H score; (7)

Thus, the new objective plan-evaluation model is:

issues

FOM = H (1 — (1 — utility;) « weight;) ®)

(]

Notice how Equation 8 is similar to my previous model (Equation 3), but the utility (goodness) and weight
(importance) are more clearly separated in my new model.

I have presented an intuitive development of the multiplicative multiattribute model. I will now relate this
model to the theoretical multiplicative multiattribute model as described in the standard textbooks [36, 74].
The standard multiplicative model is expressed as:

k3
1+ wlF = H(l + wwyu;) {9)
i=1
where the model has n attributes, F is the aggregate utility, ; is the utility of attribute 4, w; is its weight
(0 < w; < 1) and w is the interaction parameter. There are three cases for w:

1 If 30 wi <1, then 0 < w < oo,
2. If 30, w; = 1, then w = 0 and we obtain the additive multiattribute model.

3. Iy w>1, then -1 <w <0
Furthermore, the value of w can be determined from the values of the w;’s by solving the following equation:

l+uw= ﬁ(l + ww;) (10)

f==1

This equation is obtained by considering the perfect plan where the utilities of all the attributes are 1 and
the aggregate utility is also 1.

In Section 4.2, it will be seen that in my new objective plan-evaluation model S gwi > 1, and that
the weight elicitation methodology assigns a weight of 1 to the most important attribute. Thus, one of the
terms in the product term in Equation 10 becomes (1 + w) making w = —1 the solution to the equation
for my model. Substituting this value in Equation 9, we obtain the following form for the multiplicative

multiattribute model: n

F=1- H(l - 'w,-u,-) (11)

i=1

This form of the model is a variant of the form I am using. The difference can be accounted for by the
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different behavior I want from the interaction of the utility and weight for an attribute. Also, in this case,
I assume the plan to begin with a figure of merit of 1 and then penalize it for bad performance on the
attributes. The standard multiplicative model instead starts with a value of 0 for the aggregate utility and
adds to it for good performance on the attributes,

4.1 Physician Factors

In my new model, the treatment preferences of the radiation oncologist are encoded in the utilities of the
issues. The utility of an issue measures how closely the objective for that issue is being met. In the case
of radiation treatment planning, the objective for each issue is to minimize the probability of any untoward
clinical event associated with that issue. Thus, the probability of occurrence of the issue is an important
factor in determining its utility. In our earlier model, we used this probability directly and we observed that
due to the low NTCP values (0-3%), we were never using the entire range of our utility function (0-1). My
new utility function seeks to map the narrow range of observed probabilities onto the entire range of the
utility. This method of scaling the acceptable levels of an issue onto the entire utility range is one of the
cormmon ways of constructing utility functions [74].

For any issue ¢ in a treatment plan, I believe that the radiation oncologist considers two key probabilities
— the lower threshold probability p!, and the upper threshold probability p¥. For any issue i, p! represents
the highest probability of occurrence that the radiation oncologist is willing to ignore. For some eritical
clinical issues, p* can be 0. For any issue 1, p} represents the lowest probability of occurrence above which
the radiation oncologist will reject the treatment plan categorically. Thus, for any issue 4, the range [0, p¥
represents the range of complication probabilities that the radiation oncologist is willing to consider while
selecting a treatment plan for a patient. Let U be the utility function. Because the objective for any issue
is to minimize the probability of its occurrence, part of the utility function over the probability p looks as

follows:
Ulp) = 1 0<p<p (ignore the issue)

12
= 0 pr<p<l (reject the plan) 12

The region of interest is p' < p < p* in which U(p) goes from 1 to 0. There are three possible ways this can
happen — at a linear rate, at an exponentially increasing rate, or at an exponentially decreasing rate. The
three scenarios are shown in Figure 2.

Note that the utility function for the same issue may be different for two different tumor sites. This is
due to the fact that the organ being considered may be at a higher risk for damage in one of the tumor sites
due to its proximity to the tumor than in the other tumor site. For a given tumor site, I will obtain the list
of all target volumes and normal tissues that appear in the treatment field for the tumor site. Worksheets
will be designed for each tumor site to contain the list of issues that have been elicited from the radiation
oncologists. For each issue on the worksheet, two probabilities p* and p* will be elicited. I believe that
the radiation oncologists will be able to give me these probabilities quite easily as they must regularly be
considering subjective values for the probability of complication in an organ while selecting treatment plans.
Eliciting these two probabilities will give me the range of probabilities over which the utility goes from 1 to
0. Over this range, I will elicit the utility of the issue in two parts — I will first obtain the shape of the curve,
and then obtain its steepness.

In order to obtain the shape of the curve, I will provide the following verbal description of the three
curves in Figure 2. For the utility decreasing at a linear rate (Figure 2(a)), the preference for the issue goes
steadily from 1 to 0 as the probability goes from p' to p*. For the utility decreasing at an exponentially
increasing rate (Figure 2(b)), the preference for the issue is quite high for probabilities slightly over p!,
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Figure 2: Three possible shapes for utility function U/ in the range [p!, p*]. The utility is decressing at a
(a) linear, (b) exponentially increasing, and (¢) exponentially decreasing rate.

but the preference rapidly approaches 0 for probabilities approaching p*. For the utility decreasing at an
exponentially decreasing rate (Figure 2(c)}, the preference for the issue starts becoming very low even for
probabilities slightly over p!. The radiation oncologist will be asked to pick the curve which best reflects how
his/her preference for that issue changes with increasing probability of complication.

If the radiation oncologist picks either of the last two cases, then the steepness of the curve has to be
obtained. This can be done by determining a point on the curve and calculating the rest of the curve.
However, this will be a difficult task as there is no way of calibrating the intermediate points on the curve
so that all the radiation oncologists use it in a consistent manner. Instead, I will approximate the process
by presenting the radiation oncologist with three curves of varying steepness. The radiation oncologist will
then be asked to select which of these curves best represents his/her preference for the issue. The first of
these curves will be a slight deviation from the linear case. The second curve will be quarter of a circle with
radius equal to the length of the x-axis from p’ to p*. The third curve will be even steeper being almost flat
(vertical or horizontal) at the two extremes. Thus, there are seven possible utility curves which can be seen
in Figure 3.

The methodology described above is a variant of the category estimation technique for eliciting the utility
function for an attribute [14]. I will elicit these utilities for the following three tumor sites — prostate, Iung
and head-and-neck — that have been chosen for evaluating the performance of our objective plan-evaluation

model.

4.2 Patient Factors

The clinical condition of the patient will be encoded through the weights for the issues as it affects the trade-
offs to be made among the various issues. For each tumor site, I will elicit a list of patient factors which can
affect the trade-offs being made among the various treatment issues. These clinical conditions inelude the
stage of the cancer, the age of the patient, the presence of some other concurrent illness such as diabetes, the
functional capacity of an organ such as the kidney, etc. Patients will be classified into categories depending
on the presence or absence of the relevant clinical conditions. I will use a simple rule-based expert system
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Figure 3: Seven possible utility functions in the range [pf, p¥]. The utility is decreasing at a (a) linear,
(b) exponentially increasing, and (c) exponentially decreasing rate.

to determine the patient category depending on his/her clinical conditions. A set of weights will be elicited
for each patient category.

To obtain patient-specific weights, a hypothetical patient is described to the radiation oncologist based
on the patient category for which the weights are being elicited. Then, the radiation oncologist is asked to
select from the worksheet a single issue that he/she would consider to be the most critical issue for such a
patient. This selection has to be made based on the morbidities of the complications related with each of
the issues. Let this critical issue be 4.. It is assigned a weight of 1 (most important). Now, for every other
issue % on the worksheet, two hypothetical plans p; and ps are described. Table 1 contains the probabilities
of complication for the issues in these plans.

Table 1: Probabilities of complication for the issues in the hypothetical plans p; and p; being used to elicit
the weight of issue 1.

Issue 7, | Issue ¢ | Other issues
Plan p, PL oy 0
Plan ps | P o 0

The radiation oncologist is asked which of these two plans does he/she prefer. Three cases are possible:

1. Plans p; and p; are equivalent. Since the issues have complementary utilities in the two plans, they must
have the same weight in order to obtain the same figure of merit. Thus, the weight of issue 4 is 1 in this

case.
2. Plan p; is preferred over plan pp. In this case, the radiation oncologist will be asked to give a probability

p of complication of the issue 7. in plan p; that will make the two plans equivalent. We are trying to
improve plan p; till it becomes as good as plan p;. The weight of issue  can then be caleulated from the
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following formula obtained by equating the figures of merit of the two plans:
weight; =1~ Uy (p) (13)

where U;_ is the utility function for issue 4.

3. Plan p; is preferred over plan p;. This is inconsistent because it implies that issue 4 is more important
than issue i, which is not true since issue i, is the most critical issue.

The methodology described above is a variant of the trade-off technique or the cross-attribute indifference
technique for constructing attribute weights [13,38]. This methodology can be applied to different patient
categories. As in the case of the utility functions, I will use the same three tumor sites, and will elicit the
weights from the radiation oncologists from whom I will elicit utility functions. I will outline a complementary
methodology for refining the weights for different patient categories in the section on updating of model
parameters through interactive feedback in Section 5.

5 Proposed Preference Acquisition Technique

In Section 3.3, I described an incorrect ranking which was produced by the model due to a high weight for
an issue. By suitably modifying the weight, the ranking produced by the model agreed with the ranking
of the radiation oncologist. Such inconsistencies will be present initially in the preference model because
the radiation oncologists are being asked to perform a task which is quite different from anything that they
have done before. The non-clinical environment of the acquisition will provide only an approximation of the
preference model of the radiation oncologists. Extended clinical use will provide the radiation oncologists
with better insight into the model parameters, and enable them to express their preferences more accurately.
In order to allow this, [ am proposing a methodology which allows reconciliation of the inconsistencies
between the recommendations of the preference model and the decision maker through interactive feedback
so that the preference model eventually converges to its correct form. We will also see how this methodology
can be applied to obtain the weights for various patient categories after having obtained the weights for an
average patient.

The objective plan-evaluation model will be implemented as an interactive computer-based tool. The tool
will be linked to Mallinckrodt Institute of Radiology’s existing 3-D RTP system so that it can share patient
data with the tool, and can offer a single platform to all the people involved in the design and evaluation
of radiation treatment plans. This will enable the clinical use of the objective plan-evaluation model for
retrospective evaluation of the actual radiation treatment plans designed during the treatment planning.

The tool will have an interactive graphical user interface which will provide the user (the radiation
oncologist who prescribed the treatment) with the ability to examine all the parameters (probabilities,
utilities, and weights) that were used in the evaluation of the plans, and also allow him/her to modify some
of those parameters. The user will be provided with a description of the patient as well as details about
the plans that are being evaluated simultaneously. The tool will use the user’s utility functions and weights
to rank these plans. If the user feels that the ranking does not match the ranking that he/she would have
assigned to those plans, then the user can examine the probabilities, utilities, and weights that were used in
that ranking. Either the user may be convinced that the ranking produced by the tool is actually correct,
or the user may want to change some of the model parameters in order to get the correct ranking.

Assuming that the utility functions are correct, the incorrect rankings will be due to inappropriate
weighits for the issues. This assumption is made to make the acquisition practical. It is justified because the
utility is based on the probability of complication, and the radiation oncologists already have acceptable and




16

unacceptable ranges of these values that they use in subjective plan evaluation. The tool will assist the user
in determining the issues that are having the most significant impact in causing the incorrect ranking and
the user can change the weights of those issues appropriately until the ranking produced by the tool matches
the ranking that he/she had in mind. The tool will record the changes in the weights, and make appropriate
changes to the database of weights. Each time the radiation oncologist changes the weights, he/she is giving
new insights into the way that he/she makes trade-offs among the various issues. A critical hypothesis is
that, after using the tool to evaluate the plans for a large number of patients, the weights will converge to
reflect the true trade-offs that the radiation oncologist makes while evaluating radiation treatment plans,
and this will represent the true preference model of the radiation oncologist.

Typically, the weight of an issue can be expected to vary in the manner shown in Figure 4. The initial
weight for the issue is w;, and the converged value is ws. Note that the weight has not changed for the last
X patients. For the preference model to converge, none of the issue weights for this patient category should

change for the last X patients.

weight

wr

fo e} i $ # patients
1 2 3 4 & ... NN+ N+X

Figure 4: Typical variation in the weight of an issue before it converges to its true value.

Since there is no prior experience with this acquisition technique, I do not know what value of X will be
appropriate. I hypothesize that lower values of X will lead to preference models which do not perform as
well as preference models obtained through higher values of X. At the same time, the number of patients
needed for convergence grows rapidly as X increases (trivially, the minimum number of patients needed is
X itself), and the acquisition technique may become impractical beyond some value of X because of the
inordinately high number of patients whose data is needed for convergence of the preference model. So, I will
try to empirically determine a value or range of values of X which provide an acceptable performance by the
preference model, and are practical for the acquisition. In order to do this, I will obtain a series of preference
models Px for X > 1. Let Fy be the set of initial weights obtained using the traditional method deseribed in
Section 4.2. Py is the set of issue weights obtained when no weights are changed for X consecutive patients
for the first time. In Section 6, I will show how this can be used to empirically determine acceptable value(s)
of X.

The ability to change the weights can also be used to elicit the weights for the various patient categories.
This can be done by eliciting the weights for the average patient using the methodology described in the
Section 4.2. This set of weights can then be duplicated for all the known patient categories. Through
continued clinical use of the tool, the user will change the weights for the various patient categories until
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they converge to their actual values.

6 Evaluation

The performance of any clinical decision-support system can be evaluated by comparing it with the perfor-
mance of the experts or by measuring the improvement in the health outcomes with use of the system. Since
it currently is impractical to do a performance evaluation based on the health outcomes, the performance of
my objective plan-evaluation model will be evaluated by comparing it with the performance of the experts.
In this case, the experts are the radiation oncologists who currently evaluate radiation treatment plans us-
ing manual and subjective methods. I will evaluate my new objective plan-evaluation model by comparing
rankings produced by radiation oncologists with rankings produced by my tool using the utility functions
and weights of the same radiation oncologist. The evaluation will be done using treatment plans from the
following three tumor sites — prostate, lung and head-and-neck. The treatment plans to be used will be
actual plans designed during the treatment planning process for that patient and the evaluation will be done
retrospectively so as not to interfere with the actual patient care. The radiation oncologists will be blinded
to the identity of the patient.

For each Px, the performance evaluation will be conducted in two phases. The first phase of the evaluation
of the performance of my new objective plan-evaluation model will go hand in hand with the updating of the
weights through interactive feedback. During this phase, in case the rankings do not match, the radiation
oncologist will be asked to change the weights as was described in Section 5. Once the weights have converged
to obtain a Py, the evaluation will enter the second phase where the performance of the objective plan-
evaluation model with Px will be compared to the performance of the corresponding radiation oncologist.
The performance of the objective plan-evaluation model will be quantified using two different criteria.

Because radiation oncologists treat their patients with the best possible plan, it is important that my
model’s first-choice plan agree with the radiation oncologist’s first-choice plan. Thus, the number of times
the model’s first-choice plan agrees with the radiation oncologist is a useful indicator of the potential clinical
usefulness of my tool. I will record the number of times the model is used to evaluate plans, and the
number of times its first-choice ranking agrees with the radiation oncologist. During the second phase of the
evaluation, the fraction of correct rankings will be called C'x for the preference model Px. This will be the
first criterion for the evaluation.

The plan-ranking model can also be a useful pedagogical tool for residents who seek to learn the trade
offs among competing plans that would be made by more experienced radiation oncologists. I believe that
the number of times the model agrees with the radiation oncologist on the ranking of all competing plans
is one indicator of its ability to accurately represent the trade-offs made by that physician. Unlike the
clinical metric where only the first-choice ranking is critical, for instructing less experienced physicians on
how senior radiation oncologists make trade-offs among clinical issues, it is important that the entire ranking
is correct. I will record the number of times the model is used to evaluate plans, and the number of times its
entire ranking agrees with the radiation oncologist. For incorrectly ranked plans, T will calculate a penalty
score, where the penalty will depend on the rank assigned to that plan by the radiation oncologist. A plan
incorrectly ranked lower will receive a higher penalty. The penalty score for an incorrect ranking will indicate
how far it is from the actual ranking. This will be the second criterion for the evaluation.

The usefulness of the preference acquisition technique can be proved by showing that Cx > Cp for some
X > 1. That is, some preference model obtained by changing the weights has better clinical performance
than the initial preference model.

The second phase of the performance evaluation of the different Pxs will be compared to determine which
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value of X produces a better preference model. As stated earlier, I expect Cx to be better for higher values
of X. For all these Pxs, I will also determine the number of patient cases needed for the convergence, Nx.
Obviously Nx will increase for higher values of X. The effectiveness Ex of the preference model Py can be
measuring the increase in the fraction of clinically correct rankings per patient data needed. That is,

_ Cx =G

Ny (14)

Ex
Equation 14 is similar to the cost-effectiveness measures used in health policy research [76]. The value of X
having the highest Ex would represent the best trade-off between the clinical performance of the preference
acquisition method and the number of patient cases needed to achieve it.

7 Conclusion

Through this research, I am proposing to implement and demonstrate a new technique for preference acquisi-
tion. This technique can be used for acquiring individual preference models to be used in a decision-support
system. Also, after the elicitation of the initial approximate preference model, the decision analyst is not
needed for the reconciliation of the preference model. One of the biggest criticism of decision-support systems
has been their lack of transportability as they encode the preferences of a single or a group of individuals
who may not be the intended users. My acquisition method will enable the easy acquisition of individual
preference models, thus making this system available to people outside of the institution where it was devel-
oped. I have already installed my initial objective plan-evaluation tool at the University of North Carolina in
Chapel Hill and the University of Washington in Seattle using the preferences of local radiation oncologists.

T envision many potential uses for an objective plan-evaluation model. When embedded into an interactive
plan-evaluation environment, an objective model can be used by radiation oncologists for evaluating and
selecting treatment plans. It can also be used by medical physicists, dosimetrists and others involved in
the process of manually optimizing radiation treatment plans. As mentioned in Section 6, an objective
plan-evaluation model also has tremendous pedagogical value. Residents can learn from the evaluation skills
of the senior radiation oncologists who would otherwise be hard-pressed for time to instruct the residents
on the difficult art of decision-making. The numerical results of an objective plan-evaluation model can
be used as an objective function by computer programs that try to obtain an optimal treatment plan by
using mathematical optimization techniques. Qualitative and symbolic results based on an objective plan-
evaluation model can be used by computer programs that try to obtain an optimal treatment plan using
artificial intelligence techniques [5,34]. In the future, with the promise of real-time 3D dose calculation [61],
the treatment planners may use an objective plan-evaluation model to obtain an instantaneous evaluation
as they move the beams during the design of a treatment plan.
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