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Chapter 1

Introduction

In a very large part of morphology, our essential task lies in the com-

parison of related forms rather in the precise definition of each; and the

deformation of a complicated figure may be a phenomenon easy of com-

prehension, though the figure itself may have to be left unanalyzed and

undefined.

—D’Arcy Thompson, [61]

Generalized video analysis is a difficult problem. For humans, understanding and

describing the contents of a moving scene can be, at best, subject to personal bias,

and, at worst, ambiguous. Consider the images in Figure 1.1. These are sample frames

from a video captured in the Human Performance Laboratory of Dr. Jack Ensberg

at the Washington University Medical School. Taken as a whole, understanding and

describing this scene is an easy task. If asked to describe this video, most people

would answer that this video depicts a woman running on a treadmill. Moreover,

such a description would suffice to allow a listener to visualize a scene similar to

the video being described. However, now let us consider any single frame from this
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Figure 1.1: Sample video frames from a woman running on a treadmill.

video. If asked to describe this single frame, the task becomes more ambiguous. The

image could be described on a semantic level by reporting the relative position of the

body parts. Another description could include directly reporting the pixel values of

the image. Also, if some metadata, such as the frame number or time-stamp, was

available, this could be used to provide some information. The choice of description

is arbitrary and, in general, would not provide enough information for a listener to

understand the contents of the scene.

Now, let us consider the sample frames in Figure 1.2. These frames depict an image

set of a clock at various times. In this case, the first question, describing the contents

of the video, is again quite easy. Most people would describe this video as a working

clock. However, in this case, the second question of describing any single frame is

also quite easy. Most people would simply read the time off the clock to describe the

content of the image. In this example, the most obvious and strongest model of the

video is “working clock” and this model is meaningfully parameterized by the time of

day. This information suffices to give a reasonable representation of the image data.
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Figure 1.2: Sample video frames from a clock over time.

In computer vision, the exercises described above are generally divided into a set of

separate, but related tasks.

• Segmentation: separating an object of interest from the background.

• Recognition: finding an object of interest in a scene.

• Tracking: maintaining location information for an object of interest over time

in a video.

• Registration: finding corresponding points or features in multiple images.

It is the underlying hypothesis of the work in this dissertation that learning good

models with meaningful parameterizations simplifies the computer vision tasks de-

scribed above and extends automated video analysis to scenes of low image quality

and/or complex (and possibly ambiguous) semantic representation. For example, let

us reconsider the previous clock example and a simple, yet possibly ambiguous, com-

puter vision task. Supposed the task was to find the “average” of the two images

depicted in Figure 1.2. Figure 1.3 shows two possible results. Figure 1.3(a) shows
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(a) Image-based average (b) Model-based average

Figure 1.3: Two possible “average” images of the of the frames depicted in Figure 1.2.

the typical computer vision result obtained by taking the average pixel intensity at

each location. Figure 1.3(b) shows the result by employing additional information

about the operation of clocks and averaging the times represented by each image and

displaying an image which most closely represents this “average.” In this case, one

could argue that by using the strong clock model, the second result is more reasonable

and more useful than the first. One could then say that this computer vision task was

improved by using a strong model. This example worked well mainly because our se-

mantic understanding of images depicting clocks is quite strong. In this dissertation,

we will consider automated methods for improving common vision tasks using data

modeling where, unlike this example, human intervention is not required.

General data modeling forms the backbone of many sub-disciplines of engineering,

mathematics, and science. The fact that this premise has found acceptance in many

other areas of work indicates that it is a promising approach to problems in modeling

natural images. The remainder of this introduction reviews data modeling methods

for general data sets and images.
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(a) Normal distribution over 1-D
data

(b) Curve fitting over 2-D data (c) Plane fitting over 3-D data

Figure 1.4: (a) A curve of the normal distribution is fit to histogram data. (b) A para-
metric curve is fit to 2D data points. (c) A plane is fit to 3D data points.

1.1 Data Modeling

Finding compact, meaningful parametric representations for data sets is quite com-

mon. Especially for data sets that are large or whose constituent points are of high

dimensionality, data modeling can provide a way to more easily understand, describe,

and visualize the data. Figure 1.4 shows some example data points and the models

that provide good representations.

Figure 1.4(a) shows an example of fitting a normal distribution to a 1-dimensional

histogram. The curve can be represented by the mean and variance and this provides a

simpler representation of the (possibly large amount of) histogram data. Figure 1.4(b)

shows an example of fitting a curve to a set of points which lie in 2-dimensions. This

parametric curve provides a compact representation of the input data. In addition, by

having such a robust model, it is now possible to interpolate among points from the

input set and accurately estimate the remainder of the data from the universe which

could also be included in the set. Finally, Figure 1.4(c) shows an example of fitting a

plane to a set of 3D points. This is similar to the example in Figure 1.4(b). In these
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two examples the property of dimensionality reduction is highlighted. In Figure 1.4(c),

it suffices to know the parameters of the plane and the 2-dimensional coordinates of

the input points on that plane to accurately describe each original 3-dimensional

point. That is, by fitting this plane to the data, it requires less information to

describe each point. This dimensionality reduction thus provides a more compact

representation of the original data. The goal of this dissertation is to find such

representations for image data and use those representations to improve common

vision tasks. In the next section, we describe, in detail, the most widely used method

for dimensionality reduction of large data sets whose constituent components are of

high dimensionality.

1.1.1 Principal Component Analysis

One of the most widely used geometric data modeling techniques is Principal Com-

ponent Analysis (PCA) [36]. PCA finds the linear subspace that best represents the

input data. Figure 1.5 shows an example of the 1-dimensional linear subspace (in

red) that best represents the 2-dimensional data set.

Given an input data set, X , which is a finite subset of RD, PCA computes a function

f which projects each image onto a set of basis vectors. The input set, X , is used to

derive a set of orthonormal basis images ~b1,~b2, . . .~bd. The function f which maps an

point x in RD to a set of coefficients in Rd is:

f(x) = (x>~b1, x
>~b2, . . . , x

>~bd) = (c1, c2, . . . , cd) (1.1)
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Figure 1.5: The PCA basis vector (in red) that best represents this 2-dimensional data
set

One of the major advantages of PCA is that although the basis images are defined

based upon an Eigen-analysis of the input data set X , the function f is defined for

all possible points of D dimensions:

fPCA : RD −→ Rd (1.2)

The projection function f of PCA remains well defined for points that are not present

in the original set X . Also, the inverse function is defined as well, so that any point in

the coefficient space can be mapped to a specific high-dimensional point by a linear

combination of basis vectors:

f−1
PCA(c1, c2, . . . cd) = c1

~b1 + c2
~b2 . . . + cd

~bd (1.3)
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1.2 Image Data Modeling

Images can be thought of as points in some high-dimensional image space where each

coordinate represents the intensity value of a single pixel. In this framework, an

intensity image from a standard 5 megapixel camera would be a point in a 5,000,000

dimensional space (or 15,000,000 if you consider RGB values). Grouping or analyzing

points in such a high-dimensional space is rather difficult, as explained by the so-

called “curse of dimensionality.” Therefore, finding low-dimensional representations

of this type of data is a natural solution.

Data modeling, using dimensionality reduction, in images has been used for many

tasks. In this section, we will introduce how dimensionality reduction, specifically

PCA, has been used with images and discuss the limitations which will motivate the

work of this thesis.

1.2.1 PCA for Recognition

PCA is the foundation for the well-known Eigenfaces [64] algorithms for face recogni-

tion. Figure 1.6 shows sample images from the Olivetti Research Laboratory (ORL)

face database [52] and Figure 1.7 shows the first 4 eigenfaces, which are also known

as principal vectors or basis images. The general eigenfaces methods works by find-

ing the coefficients for each of the images in the labeled input set. Then, when a

new image is introduced to the algorithm, a function (similar to the one described in

Equation 1.2) is applied to find the “closest” image(s) from the training set. The test

image is then labeled. The details for finding “nearby” images and labeling the test
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Figure 1.6: Sample images from the Olivetti Research Laboratory (ORL) face database.

image vary among the different algorithms. However, one thing to note is that all of

the faces are generally in the same position and the top eigenfaces capture the main

causes of differences among the image set.

PCA has also been extensively used in the subbranch of computer vision and machine

learning known as content-based image retrieval (CBIR) [57]. In CBIR, the idea is to

find images from a database based on user input. The user input is generally in the

form of text, related pictures, sketches, or relevance scoring of returned images. The

basic idea [43, 42] for using PCA in CBIR is that images of similar objects will have

similar PCA coefficients and thus reduces the search space of relevant images in the,

usually large, database. This is followed by various optimization steps to return the

closest, or best match.
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Figure 1.7: The first four eigenfaces of the ORL face database.

1.2.2 Limitations of PCA on Images

The previous examples demonstrate the use of PCA on images for recognition. This

implies that PCA representations of image sets can be useful descriptors for individual

images. However, one can now ask how useful are these representations and what

is their effectiveness on typical image sets. Recall the clock example and strong

representation model which could be used to represent each image. Can we get

similar results with PCA? Figure 1.8 shows a sample data set where a statue was

placed atop a motorized turntable and viewed from a camera on an elevating arm. In

this case, there are two degrees of freedom, namely the rotation of the turntable and

the elevation of the camera arm. Figure 1.9 shows the first 5 PCA basis images and

reconstruction of single image using progressively more PCA basis images.
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Figure 1.8: Sample images from a statue data set with two degrees of freedom, namely
rotation and camera elevation.
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(a) First 5 principal images

(b) Image reconstruction using PCA

Figure 1.9: (a) The first 5 principal images of the data set depicted in Figure 1.8. (b)
The reconstruction of one frame of the original image set as the linear combination of
progressively more principal images.

(a) Input data (b) Input data

Figure 1.10: In each graph, each point represents an original frame the image set depicted
in Figure 1.8. (a) Known rotation and elevation for each image. (b) The plot of the first two
principal coefficients for each image. It is clear that PCA has failed to learn the intrinsic
parameterization of this data set.
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Figure 1.9 shows the PCA decomposition of this statue data set. Despite the fact

that this image set has only two degree of freedom which are both easy to describe, it

takes many principal components to reconstruct any of the original images effectively.

Figure 1.10 shows a plot of the first two PCA coefficients for this data set. In each

graph, each point represents an original frame from the image set. Figure 1.10(a)

plots the known rotation and elevation for each image and Figure 1.10(b) shows the

plot of the first two principal coefficients for each image. The first graph shows the

expected output. In this case, it appears that PCA does not provide a compact,

reasonable representation of this data set.

PCA models every image as the linear combination of a set of basis images. However,

this is not usually the type of image change that underlies natural image variations.

Natural changes to images, for example those due to variation in pose or shape de-

formations, are very poorly approximated by changes in linear basis functions. In

the remainder of this dissertation, we discuss more recent methods for dimensionality

reduction, demonstrate that, in general, they also perform poorly on images, and

provide extensions and new algorithms to improve data modeling for natural image

sets.

1.3 Contributions

The work of this dissertation makes the methods of nonlinear dimensionality reduc-

tion applicable to natural image sets and provides the framework for image manifold

learning. Specifically, the major contributions include:



14

• Applying a statistical framework to quantify the differences between related

images.

• Using the constraints implied by this framework to improve common vision

tasks such as image registration, segmentation, and interpolation.

• Developing a novel algorithm for parameterizing complex topologies found in

natural image sets.
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Chapter 2

Manifold Learning

Manifold learning, or nonlinear dimensionality reduction, is the counterpart to PCA

(described in the previous chapter) which aims to find a low dimensional parameter-

ization for data sets which lie on nonlinear manifolds in a high-dimensional space.

Figure 2.1 shows a classic example of manifold learning on a synthetic data set.

Figure 2.1(a) depicts the so-called “Swiss Roll” data set which consists of 20,000 3-

dimensional points. Intuitively, this data set can be visualized as points drawn off

a rolled-up sheet of paper. While each of these points can be described by three

coordinates (or more), there is an underlying two-dimensional representation. The

goal of manifold learning is to automatically learn this representation. The expected

output of manifold learning algorithms is shown in Figure 2.1(b).

This chapter describes the current state of manifold learning and the set of proposed

algorithms in the field. Next, applications of these existing algorithms to images is

then examined.
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(a) 3D Input Data (b) Low-dimensional Embedding

Figure 2.1: Manifold learning example using the “Swiss Roll” data set which consists of
20,000 3-dimensional points. While each of these points can be described by three coordi-
nates as shown in (a), there is an underlying two-dimensional representation as shown in
(b). The goal of manifold learning is to automatically learn this representation. In this
figure, the intensity of the points represents distance along the curved “axis.”

2.1 Overview of Methods

Manifold learning has been described in various ways throughout the literature. For

the purposes of this dissertation, we choose the following problem statement:

Given an input set X , which is a finite subset of RD, for some dimension

D, learn a parameterization which produces a mapping function f : X −→

Rd which preserves some properties of the structure of X .

This problem statement is intentionally vague. The choice of which properties of the

input set to preserve in order to learn the low-dimensional parameterization is quite

varied. The remainder of this section focuses on current methods for manifold learning

and describes the properties of the input data set which each preserves. There exist

a number of algorithms for manifold learning which we will briefly review in the next

section. However, we will focus on two of the most popular algorithms, Isometric
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Feature Mapping (Isomap) [60] and Locally Linear Embedding (LLE) [50]. These

two algorithms, developed in parallel, but independently, signaled the beginning of a

surge of interest in nonlinear dimensionality reduction.

2.1.1 Isomap

Isomap is a manifold learning algorithm which preserves geometric features of the

input set. Specifically, the goal of Isomap is to return an isometric mapping,

f : X −→ Y (2.1)

for X ⊂ RD, Y ⊂ Rd, and d << D where, for all pair of points Xi ∈ X and

Xj ∈ N (Xi),

|Xi −Xj|2 = |Yi − Yj|2 (2.2)

and N (X) is defined as the set of points which comprise the neighborhood of X.

That is, Isomap returns an embedding where the distances of local neighbors in the

original space is preserved. Below, we describe the main steps of the algorithm.
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Given: A set of points X ⊂ RD

1. Compute the distance between all pairs of points (traditionally using

the L2 norm distance.)

2. Define the set of points which comprise the neighborhood, N (Xi) for

each point, Xi ∈ X . This is typically done in one of two ways:

• k-nearest neighbors. Select the k closest points to Xi.

• ε-ball. Select all points Xj ∈ X such that |Xj −Xi|2 < ε.

3. Define a graph with a node for each input point, Xi and weighted

undirected edges connecting each node to the nodes corresponding to

the points inN (Xi). For each edge, the weight equals the corresponding

distance between the input points.

4. Solve for the all-pairs shortest paths on this sparse graph to calculate

a complete pair-wise distance matrix.

5. Solve for the low-dimensional embedding Y ⊂ Rd, using Multidimen-

sional Scaling (MDS) [37] (described below). d is the dimension of the

low-dimensional embedding and can be chosen as desired, but, ideally,

is the number of degrees of freedom in the image set.

Output: Y , the low-dimensional embedding of X
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Multidimensional Scaling (MDS)

The final step of Isomap requires embedding using MDS. The basic idea behind MDS

is to convert a matrix of pair-wise distance into absolute coordinates in some (typically

low) dimensional space. Below, we formally describe the procedure.

Given an n×n matrix D, such that D(i, j) is the desired squared distance from point

i to point j:

1. Define τ = −HDH/2, (H is the centering matrix: H = I − ~e~e>/n, where

~e = [1, 1, · · · , 1]>).

2. Let s1, s2, . . . be the (sorted in decreasing order) eigenvalues of τ , and let

v1, v2, . . . be the corresponding (column) eigenvectors. The matrix

Y = [
√

s1v1|
√

s2v2| . . .
√

skvk] has row vectors which are the coordinates of the

best k-dimensional embedding.

The matrix Y Y > is the best rank k approximation to τ (with respect to the L2 matrix

norm). This process finds the k-dimensional coordinates that minimize:

∑
ij

(
|Yi − Yj|22 −D(i, j)

)2
.

2.1.2 LLE

LLE is another manifold learning algorithm which makes different assumptions in

order to learn a low-dimensional embedding. LLE attempts to represent the manifold
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Figure 2.2: Diagram of the LLE algorithm. The three main steps are: (1) define the
neighborhood for each point, (2) solve for the reconstruction weights, and (3) learn an
embedding which preserves the reconstruction weights. Image obtained from http://www.
cs.toronto.edu/~roweis/lle/algorithm.html
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(a) “Fishbowl” data set (b) Non-convexity example

Figure 2.3: Examples of data sets for which early manifold learning algorithms fail. Ta-
ble 2.1 lists a variety of manifold learning algorithms, some of which can accurately param-
eterize data sets such as these.

locally by reconstructing each input point as weighted combination of its neighbors.

Below we formally describe the algorithm and show a diagram in Figure 2.2.

1. Define N (Xi) for each point in X . As in step 3 of Isomap (above), the k-nearest

neighbors or ε-ball methods can be used.

2. Solve for the reconstruction weights, W , where W (i, j) represents the weight of

Xj to reconstruct Xi. For Xj /∈ N (Xi), W (i, j) = 0. Normalize each row of W ,

such that
∑

j W (i, j) = 1, for each row i.

3. Learn the embedding coordinates Y using the weights W by solving an eigen-

problem. Define M = (I −W )′ × (I −W ). Set Y to be the the eigenvectors

of M corresponding to the d smallest eigenvalues after discarding the smallest

(with eigenvalue of zero.)
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Table 2.1: Manifold learning algorithms

Algorithm Class Examples
Isomap variants ST-Isomap [35]

Continuum Isomap [22, 74]
Landmark Isomap [21]
Conformal Isomap [21]

Charting Manifold Charting [10]
Non-linear CCA & PCA [65]

Self-Organizing Maps [1, 7, 66]
Graph Spectral Methods Laplacian Eigenmaps [3]

Kernel Eigenmaps [11]
Hessian Eigenmaps [23]
Locality Preserving Projections [30]

Supervised Methods Local Fisher Embedding [20]
Supervised LLE [19]

Other Diffusion Maps [16]
Manifold Tangent Learning [4]
Proximity Graphs [12]
Semidefinite Embedding [69]
Stochastic Neighbor Embedding [32]
Local Smoothing [44]

2.1.3 Other Methods

The original Isomap and LLE algorithms worked well for data sets such as the “Swiss

Roll” in Figure 2.1. However, due to the assumptions made by these algorithms,

certain data sets are not parameterized very well. Figure 2.3 shows sample data

sets where either Isomap or LLE failed. Some of the reasons include highly curved

manifolds, “short-circuits”, and non-convexity. A number of incremental algorithms

have been devised to deal with these and other complexities in manifold learning.

Table 2.1 represents a list of many of these algorithms for manifold learning. The

breadth of attempted solutions highlight the broad interest in the problem.
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The variants of Isomap all follow the general steps described in Section 2.1.1. ST-

Isomap can be applied to data with a temporal component, such as frames of a

video, and works by modifying the local neighborhood structure and distance matrix

to reduce the distance to both spatially and temporally adjacent points. Landmark

Isomap trades off accuracy for speed by only using a subset of the points for the

embedding step. Conformal Isomap addresses a sampling problem into to faithfully

embed data sets such as the “fishbowl” depicted in Figure 2.3.

Another algorithm, Semidefinite Embedding (SDE), is related to Isomap in that the

goal of the method is to provide an isometric embedding. In fact, the final step,

embedding using MDS, is identical. The major difference is in the construction of

the similarity matrix between all pairs of input points. SDE applies semidefinite

programming to learn this kernel matrix. This method does not fail in the case of

non-convexity like Isomap and can correctly parameterize the “P shape” in Figure 2.3.

Self-Organizing Maps (SOMs) [49], also known as Kohonen Feature Maps, precede

most of the algorithms in Table 2.1. Intended as a visualization tool for high-

dimensional data, the use of SOMs for manifold learning was not discovered until

later. SOMs follow the general framework of artificial neural networks trained using

competitive learning [51] to discover a low-dimensional embedding for the input data.

The charting methods represent the high-dimensional manifold as a set of overlapping

“charts” or “patches”. The chart sizes may either be fixed or expandable until some

assumption is violated, such as local planarity. In contrast to Isomap and LLE, most

of these methods do not provide a globally consistent parameterization of the input

data set, but rather parameterizations within local regions.
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All of the algorithms described so far are largely unsupervised, however, there exist

a related class of semi- and fully supervised manifold learning algorithms which are

variants of LLE. These algorithms generally retain the assumption that each point can

be represented as a local combination of its neighbors, however introduce supervision

in order to output smoother manifolds and better global representations. All of the

work described in this dissertation will focus on unsupervised methods for manifold

learning.

2.2 Summary of Manifold Learning Methods

The previous section described the major algorithms for manifold learning. Even

though all of these methods work well on data sets, such as the “Swiss Roll” depicted

in Figure 2.1, it is important to highlight some of the major limitations of manifold

learning algorithms, in general. First, these methods define a mapping from the

original data set to Rd. That is, the result is a mapping

f : X −→ Rd

and not, as might be more convenient,

f : RD −→ Rd.

This means that once the embedding of an data set X is computed, for X ′ /∈ X ,

the value of f(X ′) is not well defined. Additionally, the inverse mapping is also

problematic. For a point Y ∈ Rd, if Y is not in the set of points defined by f(X ),
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then f−1(Y ) is also not well defined. Although approaches have been proposed to

compute these “out of sample” projections [5], this remains, both theoretically and

practically, a challenge for nonlinear dimensionality reduction techniques.

In summary, there are many varied approaches to manifold learning. While each algo-

rithm makes different assumptions about the input data and the embedding mapping,

all of these algorithms generally follow a simple two-step framework.

• Define the local neighborhood in the high-dimensional input space. This can

be done explicitly using the k-nearest neighbors or ε-ball methods as previously

described or implicitly using charts or diffusion distance.

• Extend the local constraints to learn a global low-dimensional parameterization.

Images can be thought of as points in a high-dimensional image space where each

coordinate represents the intensity value of a single pixel, so a set of images, or a

video, could be considered as a set of points in such a space. In the remainder of this

dissertation, we explore how existing manifold learning algorithms have performed on

image data and how this performance can be improved.
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Chapter 3

Image Manifold Learning

This dissertation focuses on understanding the image changes which are the result of

simple scene or object changes. Figure 3.1 revisits the data set discussed in Chapter 1

showing sample frames from a woman running on a treadmill in a laboratory. As

previously discussed, the cause of the image change is easily describable, however the

changes taking place in each image are rather complex. In this chapter, we apply the

tools of manifold learning to image sets such as these to see if we can learn the simple

representation, or underlying parameters.

3.1 Previous Work

Manifold learning has been successful at finding natural parameterizations, or “per-

ceptual organizations” [60], of a variety of different image sets. Figure 3.2 shows

an example of using Isomap for pose estimation of rigid body motions [45]. In this

experiment, a statue was placed atop a turntable and viewed from a camera on an

elevating arm. In this case, there are two degrees of freedom, namely the rotation
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Figure 3.1: These are example frames of a woman running a treadmill.

of the turntable and the elevation of the camera arm. In this experiment, the pose

of the statue in a set of unordered images was estimated by embedding the images

with Isomap, labeling a small subset of the images with known rotation and elevation,

and interpolating those known values using the embedding coordinates. Figure 3.3

depicts a planar arrangement of fish contours which serves as a useful visualization

of biomedical image data sets [39]. By arranging the unordered contours, previously

undiscovered similarities between various fish shapes were elucidated. Figure 3.4

shows the arrangement of a limited set of articulated hand poses [60]. This data set

consists of images undergoing various amounts of both wrist rotation and finger ex-

tension. These results, which were one of the earliest applications of manifold learning

on images, show how these methods can, at times, recover perceptually meaningful

organizations of data.

In these examples, the “perceptual organizations” returned by the various algorithms

seem to correspond to the intuitive interpretation of these images sets. Thus, it

seems as if these manifold learning techniques overcome the limitations of PCA for

the analysis of images, as described in Chapter 1. However, the changes seen in
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(a) Input Data

(b) Ordered Results

Figure 3.2: In [45], the unordered images (a) were arranged using Isomap (b) to obtain
pose estimates of the object. The mean embedding error over all 1800 images is only 6.98◦

for the rotation, and 2.97◦ for the camera elevation.
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Figure 3.3: In [39], contours of various fish species were arranged using Isomap for visu-
alization purposes.

Figure 3.4: In [60], wrist images were generated by making a series of opening and closing
movements of the hand at different wrist orientations to demonstrate how Isomap captures
the intrinsic degrees of freedom.
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natural image sets are more complex than the simple transformations demonstrated

in the previous images.

The example in Figure 3.5 depicts four frames from an MR acquisition of a heart. MRI

data is typified by large image sets which are often noisy. An image of a particular

subject may vary for a number of reasons, including noise inherent in the sensor itself,

motion of the subject during data capture, and time-varying effects of contrast agents

that are used to highlight particular types of tissue. These variations are difficult to

parameterize in a very general setting, but for a particular subject, the images are

likely to lie on a low dimensional manifold.

The image set depicted in Figure 3.5 contains real-time cardiac MR images, captured

during a 60 ms window during the systolic part of consecutive heartbeats. The data

set includes 180 such images from the same patient.

The variation in these images has three causes. First, there is motion induced in the

heart due to the breathing of the patient. In the sample images in Figure 3.5 this

can be most easily seen by the differences in the relative positions of the heart (the

object in the center of the scene) and the liver (the lighter object at the bottom of the

scene.) Second, there is a general increase in the lighting intensity of the scene as time

passes. This is due to a contrast agent that was administered to the patient which is

slowly permeating through the tissues. Third, the MRI images are noisy. Figure 3.5

shows the 2-D Isomap embedding and a plot of the residual variance indicating that

two parameters capture most of the information of this data set.

It appears that the Isomap algorithm has performed well for this particular data

set. The results shown in the residual plot imply that these images lie on or near
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Figure 3.5: Four samples of a sequence of MR images, and the associated Isomap embed-
ding (using k = 8 neighbors.) The plot of Isomap dimension versus residual error indicates
that 2 dimensions suffice to capture most of the distance information. Each blue dot cor-
responds to an original frame from the video and the red line connects the images in the
original order.
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Figure 3.6: Isomap embedding of the video depicted in Figure 3.5. Each blue dot cor-
responds to an original frame from the video and the red line connects the images in the
original order.

some manifold which can be accurately parameterized with two values. These results,

however, do not appear to provide the most reasonable parameterization of this set.

In Figure 3.6, this Isomap embedding is labeled with two axes which correspond to

the major changes of this data set.

There are two main problems with this embedding. First, the natural x− and y− axes

do not correspond to the known degrees of freedom of this data set. That is, a change

in either parameter does not correspond to a natural change in the images in the data

set. Second, the “scaling effect” seen as the trajectory is followed (in this case, from

bottom right to top left) does not correspond to changes in the object of interest.
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As the images are acquired the heart undergoes a rhythmic non-rigid deformation as

a result of the breathing of the patient. Since the breathing rate of the patient is

consistent, the amount of motion of the heart in neighboring frames should be similar.

However, in this graph, the points spread apart along the “axis” of motion implying a

greater distance (or more motion) for frames later sequence. Ideally, this embedding

would provide two parameters which correspond to the major degrees of freedom of

this data set. In addition, the distances between the points in the embedding should

correspond to the amount of change of the image transformation.

It is worthwhile to point out that, for this particular example, the points in the

embedding could be easily warped to solve these two main problems. However, as

we are focused on unsupervised methods for this general problem, it is important to

discover automated solutions. The remainder of this dissertation focuses on solving

the problems introduced by “real” or natural image sets and proposes a set of methods

which promise to make manifold learning useful for computer vision.

3.2 Learning Meaningful Parameterizations

In the previous section, we showed a cardiac MR example where traditional manifold

learning methods fail to provide an adequate representation for the dominant cause(s)

of change in the input set. The focus of this section is on the failure modes of

current manifold learning techniques to provide natural parameterizations for data

sets derived from images. The problem is that image sets (i.e., videos) which appear

to lie on or near some manifold in image space are not parameterized as such.
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In this work, one of the underlying themes will be providing minimal parameteriza-

tions for data sets. For natural image data sets, we would like to provide parame-

terizations which are minimal, natural, and descriptive. Part of this research will be

to formally define this notion and provide minimal parameterizations for data sets

which arise from natural video.

It is important to differentiate minimal parameterizations from intrinsic dimension-

ality estimates. There has been some recent work which estimates the intrinsic di-

mensionality of data sets which lie on or near some manifold. The methods presented

in [38, 31] are based on well-understood principles from statistics and provide infor-

mation similar to the residual error results obtained from Isomap. These types of

results partially address our goal of minimality, however, do not provide interpretable

parameters.

To address the problem of current algorithms not providing a meaningful parameter-

ization of the image data, it is reasonable to ask two questions.

• Do these data sets, in fact, lie on some image manifold?

• If so, why do manifold learning algorithms fail for this type of data?

Our approach to this problem examines the general manifold learning framework de-

scribed in Section 2.2. A fundamental operation in most manifold learning algorithms

is finding a set of “neighboring” points for each of the input points. In the case of data

lying in a high dimensional space, the most natural distance metric is the Euclidean

distance. For video, when each image is considered a vector in some high-dimensional
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space, the Euclidean distance metric between two images corresponds to the sum-of-

squared differences of pixel intensities. This is the distance metric typically used in

manifold learning on images. The rest of this chapter examines the consequences of

using the Euclidean distance metric and suggests other distance metrics which may

be more appropriate for various image sets.

3.3 Image Distance Functions

A formal theory of the statistics of natural images and natural image variations gives

tools for defining relevant image distance metrics. We postulate that for natural

image data sets, a small number of distance metrics are useful for many important

applications. In this chapter, we propose a set of distance measures that correspond

to the most common causes of transformation in image sets and gives examples of

how these significantly improve the parameterization of natural image sets.

Our exploration starts by considering again the data set of a woman running on a

treadmill, captured by a standard camcorder. Figure 3.7 shows the output of the

Isomap algorithm using the most common image distance metric, the sum of the

squared pixel intensity differences.

It appears as if the Isomap algorithm separates the image variations into two com-

ponents. Tangential motion in the coefficient space (moving around the circle) cor-

responds to changes in the phase of the the running cycle. Radial motion in the

coefficient space encodes the residual variation. In this sequence this most naturally

corresponds to the left to right position of the runner on the treadmill. Figure 3.8
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Figure 3.7: Sample frames of a video depicting a woman running on a treadmill. (Bottom
left) The 2-D Isomap embedding of this data set where each blue dot corresponds to the
an original frame and the red line depicts the original time sequence. (Bottom right) Plot
of residual error shows that two dimensions capture most of the information in these local
distance measurements.
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Figure 3.8: An expanded view of the top of the trajectory shown in Figure 3.7. The radial
variation show images taken at the same part of the running cycle. The dominant variation
here is translation to the left, and can be seen most clearly in the enlarged view of the feet
shown at the right.
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shows an expanded view of the Isomap embedding, and the image set generated by

moving radially through the coefficient space. In this case, with additional post hoc

analysis, Isomap decomposes the data set into its main types of variation. However,

this leads us to ask a number of questions.

• Is it possible to automatically obtain readily interpretable low-dimensional em-

beddings?

• What different types of image variation are likely to arise in natural images?

• Can manifold learning be improved in order to relate the structure of these

embeddings to type of image variation?

In order to address these questions, we examine one of the fundamental operations

of the manifold learning algorithms described in Chapter 2. Defining the local neigh-

borhood, or finding neighboring points, of each point in the original input space is

a key (implicit or explicit) step of each of these algorithms. In the remainder of

this chapter, we will consider how modifying this operation can address some of the

current limitations of manifold learning algorithms on natural data sets.

In the general case, there has been some related work which considers finding “neigh-

bors” in some feature space rather than the original input space. In [15], Kernel

Isomap is presented which modifies the resulting pair-wise similarity matrix to ad-

dress the topological stability problems addressed in [2]. In [29], the argument pre-

sented is that algorithms which use local information to find a global embedding (e.g.,

Isomap, LLE, etc.) can be described as Kernel PCA [54] with different kernel func-

tions. The work of this dissertation frames this image differencing problem in terms

of the changes of the object of interest.
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3.3.1 Pattern Theory, Image Variation and Distance Metrics

Pattern Theory builds upon the characterization of shapes defined by Grenander [26]

and encodes variations in shapes of natural objects as the results of applying elements

of a small group of transformations. The core of the research in Pattern Theory has

been to develop tools to define probability distributions over these transformations.

However, we notice that in many videos of particular objects, the set of observed

transformations is quite limited. For example, a human runner cycles through a

particular set of 3D shapes (related to one another through the action of diffeomorphic

transformation) as she/he passes in front of a camera (varying the rigid transform

relating the 3D object to the camera). When the observed deformations lie on such

a low-dimensional manifold, developing distance measures that approximate geodesic

distances along the manifold suffices to discover interesting structures.

Deformable template analysis [63, 62] is one instantiation of pattern theory that

applies to images. Small deformations in the neighborhood of a particular image

Ia ∈ RD can be expressed in terms of three components:

• image motion (rigid and non-rigid),

• photometric changes, and

• noise.

Following a presentation is adapted from [63], these variations can be expressed as:

Iah(~p) = Ia(~p− hv(~p)) + hσ2z(~p) + N(~p), (3.1)
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Here, the first term uses a displacement field v to define the spatial motion of image

regions (pixel ~p in image Ia provides support for the pixel ~p + hv(~p) in image Iah(~p)),

the second term uses an additive term z defined at each pixel and an overall scaling

factor σ2 to specify variations in image appearance not accounted for by motion

(lighting changes for example), and the third term describes imaging noise, which

ought to be independent of the magnitude of the overall transformation h.

In developing our distance measures, we also distinguish between global motion pat-

terns caused by changes in the camera orientation or translations of the object, and

local motions caused by the non-rigid object deformations. Our goal for this section,

then, is to propose distance measures that approximate geodesic distances along each

group of transforms:

Transform Group Distance Measure

Rigid Motions / Projection Changes Global Motion Estimates

Non-rigid Motions Local Motion Estimates

Intensity Variation Local Contrast Change Estimates

Image Noise Euclidean Distance

In the cardiac MR example, which motivated much of the work of this dissertation,

there are two major but unrelated causes of change in the image set. Therefore, for

each of the proposed distance metrics, one desirable property would be invariance to

orthogonal changes between images.

More formally, consider an image set I that is parameterized by two parameters

(b, c) (which might stand for breathing and contrast), and suppose that I(b, c) defines

the noise-free image that would be generated for a particular part of the breathing
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cycle and contrast permeation. We would like to define a distance measures d1, d2

such that Isomap applied to I using d1 gives a 1-D parameterization such that image

I(b, c) is mapped to the real number b, and Isomap applied to I using d2 gives a 1-D

parameterization such that image I(b, c) is mapped to the real number c. In addition

to being as insensitive to noise as possible, this requires:

• d1(I(b, c), I(b + δ, c)) = δ

• d1(I(b, c), I(b, c + ε)) = 0

• d2(I(b, c), I(b + δ, c)) = 0

• d2(I(b, c), I(b, c + ε)) = ε

That is, we require that each distance accurately measure small variations in the

deformation parameter it is assigned to capture, and furthermore the distance measure

should be invariant to the image changes caused by small changes in the other mode of

deformation. Because only nearby points are used in the Isomap procedure, it is not

required that the distance measures are globally invariant to the other deformation.

Depending upon the application, weaker conditions may suffice, such as requiring the

image distance to be monotonic with respect to (rather than equal to) an intrinsic

parameterization of the deformation.

The remainder of this section describes the traditional Euclidean distance measure

and introduces our novel metrics.
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Euclidean Distance Measure

The most common implementations of manifold learning algorithms when used with

image data start by computing the Euclidean distance (square root of the sum of the

squares of the pixel intensities) between each pair of images. Define ||Ia − Ib||2 to be

the Euclidean distance between of two images. Does this this distance measure have

any concrete interpretation with respect to our deformation models?

If Ia and Ib are separate images of the same object (under the same deformation),

then, from Equation 3.1, v(~p), and z(~p) are uniformly zero, and the Euclidean distance

between Ia and Ib is: ∑
~p

||Ia(~p)− Ib(~p)||2 =
∑

~p

N(~p)

If this noise is i.i.d, Gaussian and zero-mean, then the Euclidean distance ||Ia−Ib||2 is

a negative log-likelihood that the two images are of the same object. That is, under

this model of image formation, the distance measure commonly used in Isomap is

most directly a measure of how unlikely it is that they are the same image, rather

than a measure of how different the two images are. The following sections consider

different definitions of image distances, so that the image embedding function may be

based on local distances more closely tied to magnitude of the image deformations.

Rigid Motion

Some changes to the imaging geometry lead to globally consistent image transfor-

mations; rigid translations of an object lead to translations and scale changes of the
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image, and changing camera parameters (calibration and zoom) are well approxi-

mated by affine image warping. Measuring the magnitude of these changes between

two images can be expressed as finding the image warp that makes those images the

most similar.

For example, we can express the allowable warping of an image Ib as AIb, for A ∈ T ,

where T represents a class of allowable transforms that define a global motion across

the image (such as affine warps). Then, the distance measure can be written as the

magnitude of the transform that minimizes the image difference:

||Ia − Ib||T = || arg min
A∈T

(Ia − AIb)||

However, manifold learning techniques are most relevant to the understanding of non-

rigid motions. To understand non-rigid motion in natural data sets, it is sometimes

important to ignore the image distances caused by rigid motion. A rigid motion-

invariant distance measure can be written:

||Ia − Ib||invar(T) = min
A∈T

||Ia − AIb||

Non-Rigid Motion

For the case of unknown non-rigid transformations, the generic class of diffeomorphic

deformations is a natural choice of transform groups. These deformations may not

have a global structure, so we propose to measure the magnitude of the transformation

by accumulating measures of local motion over the image.
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One implementation of this is to define a distance measure that uses the response

of a collection of Gabor filters to estimate local motions. Complex Gabor filters are

applied to the same positions in both images, and the phase difference of the complex

response is summed over all locations. Given two images Ia, Ib and G(ω,{V |H},σ)

which is defined to be the 2D complex Gabor filter with frequency ω, oriented either

vertically or horizontally, with σ as the variance of the modulating Gaussian, the

distance can be expressed as:

||Ia − Ib||M =
∑
x,y

Ψ(G(ω,V,σ) ⊗ Ia, G(ω,V,σ) ⊗ Ib)

+Ψ(G(ω,H,σ) ⊗ Ia, G(ω,H,σ) ⊗ Ib)

where Ψ returns the absolute value of the phase difference of the pair of complex

Gabor responses.

This distance function is dependent upon the choices of ω, and σ. The wavelength of

the Gabor filter should be at least twice as large as the image motion caused by small

deformations, and σ can be chosen as approximately the wavelength. In practice, this

metric is surprisingly robust to the choice of σ.

Because it is based on the phase of the local image structure, this image distance

measure is robust to small changes in the local contrast. Furthermore, because the

Gabor filters are computed over small regions of the image, the effect of pixel noise

is minimized.

Other distance measures are appropriate when the shape of the object is defined by

its silhouette and the object can be cleanly segmented from the background. If the

segmentation is robust, a distance metric is invariant to any changes in illumination
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or contrast as long as it relies only on binary valued data. For a pair of images

Ia, Ib with point sets falling inside the silhouette Pa, Pb, we can employ the symmetric

Hausdorff distance, h(Pa, Pb). Extending this to become an affine invariant distance

measure requires an additional minimization step:

||Ia − Ib||A = min
A∈T

h(Pa, APb),

where APb is the point set of the second image after deformation by an affine transform

A.

Intensity Variation

For image sets derived from an object undergoing intensity changes (e.g., contrast

changes, lighting, shading, and fog), we exploit a different function of the Gabor filter

bank responses. Given two images Ia, Ib and G(ω,{V |H},σ) which is defined earlier, the

image distance can be expressed as:

||Ia − Ib||C =
∑
x,y

∣∣|G(ω,V,σ) ⊗ Ia| − |G(ω,V,σ) ⊗ Ib|
∣∣

+
∣∣|G(ω,H,σ) ⊗ Ia| − |G(ω,H,σ) ⊗ Ib|

∣∣
where | · | returns the magnitude of a complex value.

Small motions of an image region may change the phase a Gabor filter response, but

do not significantly affect the magnitude of the filter response, so while this distance

measure is closely related to that designed for non-rigid motions, it has the desirable

property of being largely invariant to those small motions.
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3.3.2 Extending Manifold Learning to Images

In this section, we illustrate the use of the proposed distance metrics from the previous

sections on two example application domains: a bird flying against a blue sky towards

the camera and the cardiac MRI data set described in Section 3.1.

Rigid and Deformable Motion

We consider a data set of a flying bird captured against a clear sky. This data

set exhibits two important properties. First, the clear sky background allows very

simple and robust segmentation of the bird. Second, there exists an obvious dominant

motion – the wings flapping. The wing flapping is a non-rigid deformation that is

complicated to parameterize without an explicit bird dynamics model. Furthermore,

the bird is flying past the camera, so the rigid transformation relating the bird and

camera position is continuously changing. Therefore, the variability in this data set is

a combination of rigid and non-rigid motions. These properties of the input data set

suggest that using the previously described Hausdorff distance measure may elucidate

relevant structures within the Isomap embedding.

Isomap is performed on this data set using the symmetric Hausdorff distance and

k = 8 neighbors. This gives the embedding shown in Figure 3.9. There is a circular

motion in the trajectory caused by the cyclic nature of the data. However, there is

also a larger scale consistent radial motion, caused by image differences that arise

from the approach of the bird toward the camera. Thus the Isomap embedding au-

tomatically de-couples the cyclical, non-rigid component of the bird motion from the

rigid component of the bird approaching the camera. To highlight this effect, the right
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Figure 3.9: (Top) Sample images of a video sequence of a bird flying across the sky.
(Bottom left) The Isomap embedding of this set of images. Moving radially in the embedding
corresponds, locally, to an affine transformation of the image that depends only on the
relative position of the bird to the camera. The transform required to move tangentially
in the Isomap space varies by location and requires a motion model of the bird. (Bottom
right) Images closest to the dark radial arrow.

side of Figure 3.9 shows the images closest to a radial line in the Isomap embedding.

The images nearest this line are approximately related by a rigid transformation.

In order to emphasize the deformable motion of the bird, we desire the distance

function to ignore, as much as possible, variation caused by anything other than the

deformable motion. Small rigid transformations of an object lead to locally affine

distortions of the image, so here we consider the affine-invariant Hausdorff distance

measure.
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Figure 3.10: (Top left) Isomap embedding of the bird image sequence where each image
is a dot and the line connects the images in order. (Bottom left) the complete distance
matrix defined by the Euclidean distance metric. (Right) The plots for the same sequence
using the affine-invariant distance measure.
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Figure 3.10 shows the result of using this affine-invariant distance measure. This

defines a more clearly cyclic mapping of the bird images, emphasizing the variation

in the non-rigid deformation of the bird shape by minimizing the image distance

due to rigid variation. In addition, the lower (darker) values along the diagonals in

the distance matrix using the novel distance metric show a periodicity which reflects

the regularity of the flapping wings of the bird. Finally, the solution for the best-

fitting affine matrix A between two images offers an image warping operator for

interpolating between images. This could form the basis for better “out-of-sample”

inverse projections, and could be used to create more realistic image interpolation.

Deformable Motion and Contrast Changes

In this section, we revisit the cardiac MR data set described at the end of Section 3.1.

This image set contains real-time cardiac MR images, captured during a 60 ms window

during the systolic part of consecutive heartbeats. The data set includes 180 such

images from the same patient. The variation in these images has three causes. First,

between images there is variation in the position of the heart (and liver, which is

visible at the bottom of the images) due to the compression of the chest cavity during

breathing. Second, a contrast agent is slowly permeating through the tissues. Third,

the MRI images are noisy. The direct application of Isomap (using the sum of the

squared pixel intensity differences and k = 8 neighbors) to this image set is shown in

Figure 3.11.

Distance functions that measure variation due to breathing motion and are invariant

to the contrast changes or vice-versa — instead of the Euclidean image distance which

varies due to both effects — give distance measures that are more isometric to the
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(a) Sample Frames (b) Direct Isomap Embedding

Figure 3.11: Four samples of a sequence of MR images, and the associated Isomap em-
bedding (using k = 8 neighbors.)

underlying manifold parameters. We use the pair of functions based on Gabor filter

responses previously proposed. Embedding the images in one dimension using Isomap

with these distance functions gives each image two coordinates. These coordinates are

plotted at the right of Figure 3.12. The y-axis corresponds to the embedding based

upon the Gabor filter phase difference (which measures local motions, but is largely

invariant to contrast changes), and correlates to the different deformations of the

chest cavity. The x-axis variation is based upon the Gabor filter magnitude change

(which measures local contrast changes, but is largely invariant to small motions).

Because the contrast change is due to a contrast agent permeating through the tissue,

this is related to the original ordering of the data.

In Section 3.1, we discussed the major flaws of the Isomap embedding, specifically that

the coordinates did not correspond with the major causes of image change and the

“scaling effect” which is a side effect of using the Euclidean distance. The embedding

shown in Figure 3.12 using our novel distance metrics correct both of these problems.
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Figure 3.12: Isomap embedding using a contrast invariant distance measure based on local
Gabor phase. Note how the embedding aligns itself with two concrete degrees of freedom.

3.4 Summary

Techniques such as Isomap and LLE are important tools in processing large video and

image collections. These general statistical tools need to be specialized in order to take

advantage of properties of natural images and deformations because interesting image

data sets are almost never linear combinations of other images, as is the underlying

assumption when using PCA. A small set of image transformation primitives gives

powerful tools for registration of many different kinds of data sets.

Pattern Theory provides a framework for defining relevant image distance metrics.

Specifically, for natural image data sets a small number of distance metrics are useful

for most of the important applications. This research focused on the image transfor-

mations specified by the Pattern Theory framework, namely imaging noise, lighting

changes, rigid motion and non-rigid motion and devised a set of distance metrics

which correspond to each of the major modes of image transformation. These dis-

tance metrics are easy to compute and invariant to the other transform groups. They

are also quite general. That is, it is not necessary to have a strong model of the
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exact transform (i.e., it is not necessary to have an explicit model of the stride of the

woman on the treadmill), rather it is only necessary to know the type of transform

(e.g. diffeomorphic deformation) in order to apply the distance metric. In Chapter 4,

we show some applications which exploit these natural parameterizations.
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Chapter 4

Applications of Image Manifold

Learning

In Chapter 2 we introduced manifold learning and described a number of algorithms.

In Chapter 3, we showed how these algorithms generally fail in the case of natural im-

age sets, but can be extended to provide natural parameterizations. In this chapter,

we describe how these natural parameterizations can be used to improve important

vision tasks such as learning motion models, interpolation, noise reduction, and seg-

mentation. We generally employ Isomap as the manifold learning algorithm of choice.

However, in most instances, our methods can be generalized to the other algorithms

described in Chapter 2.

4.1 Learning Motion Models

Understanding non-rigid deformations remains a challenging problem in the analysis

of images. Here, we consider a special case of this problem: given many images of
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an object undergoing an unknown (but small) set of deformations, characterize the

deformations and give each image parameters which describe how they have been

deformed.

This problem is quite common in the medical imaging community, and one important

application is cardiac MR imagery. Complete low-resolution images can be captured

in modern MRI machines in about 60 ms. MR imagery taken of the same patient

varies primarily due to a small number of causes such as, deformation of the heart

during the heartbeat, deformation of the heart due to breathing, and (potentially)

contrast agents permeating slowly through the tissues.

Current common practice for diagnostic cardiac MRI is to isolate the effects of the

heartbeat by triggering the MR image capture at the same part of the heartbeat

cycle and to isolate the effects of breathing by asking the patient to hold their breath.

This leaves images which vary only because of the permeating contrast agent. For

this application, we provide an image-based method to improve the quality of images

captured during this procedure in the presence of these undesired motions by learning

the model of image deformation. In the future, this could alleviate the necessity that

the patient hold their breath and would allow certain cardiac MRI procedures to be

performed on unconscious patients who are unable to hold their breath.

A gated-cardiac image set consist of images taken at the same part of the heartbeat

cycle. These images, for any specific patient, fall near (but because of image noise,

not exactly on) a 2-D manifold within the space of images. This manifold has nat-

ural parameters, the breathing cycle and the permeation of the contrast agent. Our
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goal can be phrased as learning a mapping between the image set and these natural

parameters, and then learning a model of the image deformation caused by breathing.

Because these image sets can be parameterized by a small number of parameters,

reasoning about such image sets is an ideal application of dimensionality reduction.

For this application, we demonstrate the use of manifold learning with the intelligent

selection of distance functions to automatically parse an image set and parametrize

each image by its magnitude of variation due to different causes. After the images

are so parameterized, surprisingly simple and naive approaches suffice to capture

complex non-rigid deformations. Furthermore, the mapping of the parameterization

onto a specific image deformation defines natural interpolation and projection models,

lacking in classical manifold learning algorithms.

4.1.1 Selecting Image Distance Metrics

In Chapter 3, we demonstrated the value of choosing appropriate distance metrics

when using Isomap to parameterize image data. The axes used to define the coordi-

nates in a traditional parameterizations are difficult to interpret, so instead we seek

to find a pair of distance measures matched to the causes of the image deformation

such that the parameterizations using each distance measure correlates with only one

of the causes of the deformation.

For the example case of a gated cardiac MRI data in this application, there are two

causes of motion, that manifest themselves locally as image motion and contrast

change. We will use the Gabor-filter based distance metrics we previously described

in Chapter 3.



56

Local Image Deformation Distance

1. Given images I1, I2

2. Define G(ω,{V |H},σ) to be the 2D complex Gabor filter with frequency ω, ori-

ented either vertically or horizontally, with σ as the variance of the modulating

Gaussian.

3.

D(ω,σ) =
∑
x,y

Ψ(G(ω,V,σ) ⊗ I1, G(ω,V,σ) ⊗ I2)

+Ψ(G(ω,H,σ) ⊗ I1, G(ω,H,σ) ⊗ I2),

where Ψ returns the phase difference of the pair of complex Gabor responses.

Local Image Contrast Distance

1. Given images I1, I2

2. Define G(ω,{V |H},σ) to be the 2D complex Gabor filter with frequency ω, ori-

ented either vertically or horizontally, with σ as the variance of the modulating

Gaussian.

3.

D(ω,σ) =
∑
x,y

∣∣|G(ω,V,σ) ⊗ I1| − |G(ω,V,σ) ⊗ I2|
∣∣

+
∣∣|G(ω,H,σ) ⊗ I1| − |G(ω,H,σ) ⊗ I2|

∣∣ ,

where | · | returns the magnitude of a complex value.
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We now discuss methods to use the Isomap parameterization of the image set, and

in particular give methods for the analysis of a data set including image which have

undergone an unknown spatial deformation. The advantage given by Isomap is that

the magnitude of this deformation is known, and the images can be re-ordered by

their deformation.

These results derive from a gated cardiac MRI study, with 180 images taken from

an unknown part of the patient’s breathing cycle. Using these distance functions

effectively gives a 1-D parameterization of the image set, with the free parameter

corresponding monotonically with the breathing cycle.

4.1.2 Extracting Deformation Groups

For the class of image sets generated by multiple examples of an object undergoing a

non-rigid transform, we address the principal shortcoming of manifold learning algo-

rithms, namely the inability to extract meaning for the low-dimensional coordinates

and perform an inverse projection from a point not in the original set to a new point

on the image manifold. By using an appropriate distance measure, as described ear-

lier, the images are sorted relative to their major deformation. In order to solve for

the parameters of this deformation, our method takes the following steps:

• Select an appropriate distance measure

• Use Isomap to find an ordering for the images

• Find point correspondences between images

• Extend point correspondences into image warps
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Point Tracking

The main benefit to sorting the points relative to the deformation instead of using

unsorted images is that point tracking is simplified. In general, point tracking is

easier if the putative corresponding points are closer together. Naive methods such

as iterative closest point matching [6] can effectively track points through hundreds

of frames. Here, we use a simple feature tracker [40] which makes an initial guess of

point correspondences and uses RANSAC [25] to improve the solution.

Thin Plate Splines

A thin-plate spline [8] is a two-dimensional interpolation function whose name refers

to a physical analogy involving the bending of a thin sheet of metal. Given an

arbitrary set of points in R2 and some function f(x, y) evaluated at those points, the

thin plate minimizes what is known as the “bending energy” function:

∫ ∫
R2

(f 2
xx + 2f 2

xy + f 2
yy)dxdy

Thin-plate splines have been used frequently in image analysis. This construct has

been used with velocity encoded MR images [53], to calculate cardiac strain from MR

images [27], and analyzing bone structure on radio-graphs [14].

The pervasiveness of this construct in the image analysis domain indicates that thin-

plate splines provide a natural way to move from point correspondences to entire

image warps. Let Pt(i) be the coordinate of the i-th tracked point in frame t. The
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thin plate spline warping function is the function f that minimizes the bending energy

above and simultaneously maps all points P1(i) in the first frame exactly onto their

corresponding points Pt(i) in the t-th frame. That is,

∀if(p1,i) = pt,i,

and for all image points (x, y) that were not tracked in the first image, the function f

maps them in such a was that the overall mapping minimizing the distortion measured

by the bending energy. Figure 4.1 shows a representation of a thin-plate spline cap-

turing the image deformation for two cardiac MR images. Using the image distance

measure described above, the images represented in Figures 4.1a and b had a high

inter-image distance. The thin-plate spline overlaid on these images represents the

deformation of one image to the other. Figure 4.1c shows the result of transforming

the image in 2b to that in 2a.

4.1.3 Evaluation

In a test to demonstrate the effectiveness of this method, we applied our method

to the entire set of 180 MR images. To demonstrate that the motion model was

learned for each image, we solved for the image deformation of each image relative

to the first image in dataset. Figure 4.2 shows the results of capturing the unknown

deformation with and without using the Isomap sorting step. In this experiment,

point correspondences and image warps (to a reference frame) were applied to the

set using the original ordering and the ordering obtained by Isomap sorting. Mutual

Information was used to calculate how similar the warped frames were to the reference
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(a) (b)

(c)

Figure 4.1: Using thin-plate splines to model deformations.

frame. Mutual Information [17, 68, 70] is a widely-used metric in medical image

registration [46].

The results in Figure 4.2 demonstrate that by using our framework, we are able to

accurately learn the motion model and, thus, more easily register all of the images. In

this application, we illustrated the use of Isomap as a preprocessing tool for the anal-

ysis of deformable image sets where the deformation is unknown. By using our novel

image distance metrics, it became possible to separate the effects of different causes

of image variation. This allows the images to be parameterized by their unknown

deformation, which facilitates modeling the deformation.
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Figure 4.2: Mutual information (in bits) of frames in a video sequence warped to a
reference image with and without the use of the Isomap sorting step.

4.2 Image Interpolation on a Nonlinear Manifold

Typical biomedical image sets, such as the sample heart MR frames shown in Fig-

ure 4.3, suffer from poor resolution both spatially and temporally. Improvements in

the imaging apparatus and protocols have helped to mitigate these problems, but

current diagnostic biomedical images and videos are still of low quality. In this ap-

plication, we describe a method for biomedical image deformation analysis which

incorporates all of the video data simultaneously in order to facilitate inter-image

interpolation and de-noising. This method exploits the common condition that a set

of images has an low-dimensional manifold structure.

The primary hurdle in this problem concerns the key limitation to manifold analysis of

images. Namely, the lack of projection functions from the low-dimensional embedding

space back to image space for samples not in the original training set. There has been

some work on this problem, in the general case, where linear interpolation of nearby

images is performed using generalized radial basis functions [24]. However, these



62

Figure 4.3: Sample frames from a heart MR sequence and the 2D Isomap embedding
from this sequence. Images with similar y-coordinates in the embedding were captured
near the same part of the heartbeat cycle; similar x-coordinates means the images were
captured near the same part of the breathing cycle. In this application, we characterize
image deformations in terms of these manifold coordinates.

function approximation methods do not generalize to approximating image manifolds

where the major cause of image change is non-rigid deformation. By employing our

framework of embedding using novel distance metrics, we integrate explicit models of

image deformation with manifold representations of image data sets.

4.2.1 Manifold of Deformation Fields

We seek to build a parametric representation of the deformation fields which charac-

terize the image variation on the manifold. In this section, we describe the free-form

deformation (FFD) [55] model, then illustrate how to describe an image manifold

using a parameterized model of image deformations. Finally we use this model to

reconstruct images corresponding to arbitrary points on the manifold.
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Deformation Model

Using the FFD model, the resulting deformations can be written as the 2D tensor

product of standard one-dimensional cubic B-splines:

f(x, y) =
3∑

m=0

3∑
n=0

Bm(x̃)Bn(ỹ)Φm+i,n+j (4.1)

where Φ denotes a nx × ny lattice of control points which parameterize the FFD, i, j

denote the indices of the control points, and x̃, ỹ represent the relative positions of

x, y in lattice coordinates (i.e. relative to the B-spline control point grid).

Commonly, when optimizing the FFD deformation to fit noisy image data, it is im-

portant to impose a smoothness term to prevent artifacts such as folding. A common

smoothing term is:

S[f ] =

∫ [(
∂2f

∂x2

)2

+ 2

(
∂2f

∂xy

)2

+

(
∂2f

∂y2

)2
]

dx dy (4.2)

Since the global transformation fglobal can still be represented by rigid or affine trans-

formation of the control lattice of FFD, we simply use FFD to model the transfor-

mation f between two images.

Integrating Manifold Constraints

In this section, we propose a method to solve for deformation fields in all images of a

data set simultaneously. This offers a powerful new constraint by penalizing variation

in the FFD relative to nearby images in the manifold.
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We illustrate the algorithm on an image set which varies due to two main causes.

By using Isomap and our motion-specific image distance metrics, we automatically

parameterize all images and obtain u and v, the 2D image manifold coordinates. The

deformation fields on the manifold are also a function of u and v, and our goal is to

describe these deformation fields explicitly by a set of FFD control points. Figure 4.3

shows example images and the Isomap embedding of a 100 frame cardiopulmonary

image data set, for which the image changes are caused by the heart beating and

breathing of the patient.

Given such an image data set I = {I1, I2, · · · , IN} the transformation between any

image Ii and the reference image Iref is denoted by a transformation fi. This trans-

formation is the FFD transformation described in the last section and defined by the

motion of nx× ny lattice of control points: Φi = {φi,1, φi,2, · · · , φi,nxny}. The set Φ

contains all of the control points in all images, where φi,j is the j-th control point in

the i-th image. However, image i is associated with manifold coordinates (ui, vi), so

we can express these control points as a function of the manifold coordinates (ui, vi).

We do this with another FFD to express the variation of the j-th control point as a

function of the manifold coordinates (u, v). We parameterize this FFD with variables

Θj, and there is one such FFD for each control point used to define the image warps.

Summarizing, we express the transformation of image i as a function F(ui, vi). In

order to express a transformation, F describes the process of creating image warping

FFD control points as {Θ1(ui, vi), Θ2(ui, vi), . . . Θnxny(ui, vi)}. These control points

define the warp for image i. The only free variables in this system are the parameters

of the mapping Θj between manifold coordinates and the control point positions.

Thus, to solve for the deformation fields, we minimize the following joint energy
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functional, over the set I of all N images, with respect to Θ (which affects the F

term):

E[I, Iref ;F ] =
N∑

i=1

D[I
F(ui,vi)
i , Iref ] + λS[F(ui, vi)] (4.3)

where D measures the error between image I warped according to the manifold coor-

dinates and the reference image (using SSD, correlation or mutual information), and

the second term corresponds to the regularizer defined as:

S[F ] =
N∑

i=1

∫
[

(
∂2F(ui, vi)

∂x2

)2

+ 2

(
∂2F(ui, vi)

∂xy

)2

+

(
∂2F(ui, vi)

∂y2

)2

]dxdy + γ

nxny∑
j=1

∫
[

(
∂2Fj

∂u2

)2

+2

(
∂2Fj

∂uv

)2

+

(
∂2Fj

∂v2

)2

]dudv (4.4)

where γ is a weighting parameter. The regularizer (the corollary to Equation 4.2 in

the single image case) ensures the smoothness of the deformation fields. The first

term constrains the transformation between images to be smooth, while the second

term penalizes the large local variations of control points Φ on manifold space.

The optimal deformation fields are found using gradient descent minimization of

Equation 4.3 with respect to Θ. To avoid the high computation cost associated with

the transformation complexity required to capture the deformation fields, one can use

a multi-resolution approach [18] in which the resolution of the control points mesh Φ

increases along with the image resolution, in a coarse-to-fine manner.



66

Figure 4.4: An artificial data set constructed by composing two deformations (illustrated
on the left), a non-rigid variation and a rigid translation. Eight sample frames are shown
on the right

4.2.2 Interpolation on an Image Manifold

Once manifold deformation fields F are obtained, we can calculate the transforma-

tion of any image on the manifold with respect to the reference image. Given two

images Ip and Iq, as well as their associated transformation functions fp and fq re-

spectively, we can furthermore approximate the transformation fp,q between these two

images by computing the thin-plate spline [8] on image point position correspondences

{fp(x, y) ↔ fq(x, y)}.

Now, given a query point p on the image manifold, we want to approximate its

associated image Ip. The approximation Îp can be obtained, in a straightforward

manner, by transforming the image Ii closest on the manifold to position p, that is

Îp = I
fi,p

i . To reduce the bias introduced by transforming a single image, one could

consider Îp as a weighted sum of images transformed from neighbors by using natural

neighbor interpolation [56]

Îp =
∑

ωi(p) I
fi,p

i (4.5)

where ωi(p) is the natural neighbor coordinate of image Ip with respect to the image

Ii.
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4.2.3 Evaluation

We examine our approach on artificially generated data, for which we control the

deformation parameters. We also tested this method on a noisy cardiopulmonary MRI

sequence. All of the experiments were initialized with the same set of parameters.

The computation of deformation fields is performed in a multi-resolution fashion by

successive refinement of the FFD F(ui, vi) using control points resolutions of 4 × 4,

7 × 7 and finally 13 × 13. The resolution of the FFD Fj controlling image control

points is kept as 5× 5.

We generated an artificial 100 frame data set by defining a shape and deforming

it using a non-rigid deformation and a rigid translation. Thus, this data set has

a 2D manifold structure, indexed by the magnitude of each deformation. The two

deformations and eight sample frames of this data set are depicted in Figure 4.4. After

learning the image manifold coordinates using Isomap, the images on convex hull on

the manifold were chosen as the training image set. The goal was to reconstruct the

remaining images from the data set.

To assess the quality of the interpolation results, we calculated the mean and variance

of the SSD between the ground truth and the reconstructed images:

SSDi =
1

n

√∑
(Iref − Ifi)2 (4.6)

where n is the number of pixels on the image. Another measure used to assess the

quality of interpolation results, especially in medical image analysis, is known as the

normalized mutual information (NMI) [59]. This represents the amount of overlay

between two images.
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Figure 4.5: Results on the artificial “star” data set. (1st row) Ground truth results. (2nd
row) Results by directly interpolating between natural neighbors. (3rd row) Results using
our method.

Table 4.1: Comparison for artificial “star” data set experiment between natural neighbor
interpolation and our method. Our method improves both the SSD error measure, and the
NMI similarity measure. Each cell shows the mean and variance over all of the images.

Method SSD NMI
Direct 0.90± 0.42 1.80± 0.048

Our Method 0.37± 0.12 1.91± 0.013

The large image changes make this a challenging data set for standard image in-

terpolation techniques. The top row of Figure 4.5 shows the ground truth results

for this synthetic data set. The middle row gives results for direct natural neighbor

interpolation on the image manifold. We show the results of using our method in

the third row. The SSD and NMI measures shown in Tables 4.1 show the increased

performance of our method versus the direct method.

We applied our method to the heart MR sequence depicted in Figure 4.3. Figure 4.6

shows examples of two sets of deformation fields. The top half shows three deforma-

tion fields relating four images along a vertical strip of the cardiopulmonary image

manifold which roughly corresponds to variations in the heartbeat cycle, but not the

breathing cycle. The bottom half shows images and deformation fields corresponding
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to a images that are translated due to breathing. Finally, Figure 4.7 shows the re-

sults of interpolating an image for the manifold coordinates corresponding to a given

image, illustrating its de-noising properties.

This application integrates tools for manifold learning with standard models of image

deformation. For important image sets such as cardiopulmonary MR data, using

this manifold structure regularizes the solution to the deformation fields relating all

images. Better deformation fields offer diagnostic value in measuring heart volume

and dynamics and support image de-noising. Furthermore, for the case of image

manifolds which vary due to image deformation, this offers the ability to reconstruct

images for arbitrary manifold positions, lifting an important limitation of nonlinear

manifold learning algorithms.

4.3 Image De-noising

In this section, we describe how using meaningful embeddings improves image de-

noising. The image set we consider is a cardiac-gated MRI sequence of a heart. To

acquire these images, the MRI pulses are triggered at the same point in consecutive

heart beats until enough pulses are captured to reconstruct an image. Each image is

created in this way, and the data set includes 180 such images from the same patient.

The variation in these images has three causes: variation in the position of the heart

and liver due to breathing, lighting changes due to a contrast agent slowly permeating

through the tissue, and noise.
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Figure 4.6: Two examples of a series of images, and the deformation fields computed
using the manifold constraints. The top row shows the expansion during a heart beat; the
bottom row shows the dominant translation due to breathing.
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Figure 4.7: An example of de-noising using learned deformation fields on the image man-
ifold. On the top row are the original images and the bottom row shows the de-noising
possible by correctly warping the nearby images.
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(a) (b)

(c) (d)

Figure 4.8: Reducing MR image noise by blurring with neighboring (in Isomap order)
images. Images (a) and (b) are (originally) temporally distant and differ due to the effect
of a contrast agent. Images (c) and (d) are the result of applying a blur using nearby (in
Isomap order) images. Minimal motion blur is introduced using this method.

It is common practice to blur consecutive images in a video to remove image noise.

However, due to the significant motion between temporally adjacent frames, this in-

troduces motion blur, which is visually unappealing and partially defeats the purpose

of de-noising the images. However, by reordering the images based on their order-

ing on the image manifold, the motion in between images is generally small enough

that motion blur is not introduced. Figure 4.8 shows two consecutive images (after

reordering using Isomap) and the result of blurring. In the original ordering, these

are not proximal frames. In fact, due to the effects of the contrast agent used in

the procedure, there is a difference in the average intensity of each image, which can

clearly be seen in Figure 4.8b where the vasculature is more pronounced.
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Figure 4.9 depicts another example of image de-noising using neighbors along the

image manifold. The images whose projections onto the y-axis are similar are taken

at essentially the same part of the breathing cycle. A video sequence that plays the

original images in the order they appear when projected onto the y-axis shows a very

slow deformation, because the frames are ordered by what part of the breathing cycle

they capture. Taking a window of 10 consecutive frames within this movie (all of

which have similar y-axis projections) gives 10 images of the heart at the same part

of the breathing cycle. These can be averaged together to de-noise the image without

introducing motion blur. One frame of this sliding window average is shown at the

bottom of figure 4.9.

4.4 Image Segmentation

By using the transformation-specific distance metrics, it is possible to obtain embed-

dings which can be the basis for improved segmentation of noisy cardiac MR data.

In some recent work, algorithms were developed to incorporate image manifold con-

straints in image segmentation using both active contours [75] and level sets [76].

These methods simultaneously segment every image from data sets which lie on

low-dimensional image manifolds. These methods rely heavily the meaningful low-

dimensional embeddings described in the previous chapter.

For this test, an artificial data set was constructed by defining a shape and deforming

it through a composition of a non-rigid deformation and a rigid translation along

diagonal direction. Thus, this data set has a 2D manifold structure indexed by the
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Figure 4.9: (Right) Isomap embedding using the Gabor-based metric. (Top left) A sample
image from the cardiac MR image set. (Bottom left) The result of averaging 10 images with
similar y-component values. Since the y component encodes motion of the object in the
image, averaging images with similar y-components does not result in spatial blurring, but
does minimize pixel noise in individual images.
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Figure 4.10: Artificial data set generated by composing a non-rigid shape deformation
(left) and a diagonal translation. (Right) Eight examples from 100 generated images with
SNR 10dB. Random white patches are added to the images to make the segmentation more
challenging.

magnitude of each deformation. One hundred images were created and each was then

corrupted by additive white Gaussian noise and the introduction of small random

white patches. Figure 4.10 depicts the shape deformation and eight selected frames

among the 100 generated images.

The noise in the image and the random patches make this a challenging data set

for traditional level set approaches to converge to the correct boundary. The first

row of Figure 4.11 shows the iso-contours of the final estimate of φ. The second row

gives the contours which are the results of applying the our algorithm, which exploits

the manifold structure of these images. Note our proposed method is very robust

to the added noise. Conventional level set methods fail to detect the correct object

boundaries.

This framework was also applied to segmenting cardiac MR images of the left ventricle.

Figure 4.12 show examples of the segmentation result for eight consecutive frames.
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Figure 4.11: Example segmentation results from the level set approach described in [76]
using image manifold constraints. Without being informed by the image manifold, conven-
tional level set methods fail on this data set.

Figure 4.12: Segmentation examples of cardiac MR images.
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In this work, it was discovered that the manifold structure was most important for

images that are especially low contrast or noisy. This was shown by comparing the

results from single-image level set segmentation with the two proposed level set seg-

mentation methods. Figure 4.13 gives examples of images where the manifold based

solutions differ significantly from the single image solution. In the first two cases, the

manifold constraints show a significant improvement — the single image solutions

are incorrect because of insufficient contrast. The last two cases show segmented

shape boundaries that are different than the single image segmentation, which may

reflect more accurately the correct boundary, although it is difficult to quantify the

improvement (see details on the figure).

These results demonstrate how integrating manifold learning can improve the simulta-

neous segmentation of large image sets, if those image sets lie on some low-dimensional

manifold and meaningful parameters can be learned. The natural applications of this

likely lie primarily in medical imaging, particularly cardiopulmonary images.

The segmentation results shown in this section are not part of the work of this dis-

sertation, however, the framework described in Chapter 3 forms the basis for this

approach.
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Figure 4.13: A comparison of single image based segmentation (top) and the simultaneous
solution for all image using the 4D level set method (middle) and the 2D multilayer level
set method (bottom). In the left two images, the single image solution fails because of
low contrast, on the right manifold based solution differs and draws a perceptually more
reasonable boundary.
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Chapter 5

Complex Topologies

In the previous chapters, we discussed extending current manifold learning techniques

in order to provide minimal parameterizations for natural image sets. This framework

was using to improve common vision tasks such as registration and segmentation. In

this chapter, we explore manifold topologies found in natural image sets and show how

correctly parameterizing these types of manifolds can lead to algorithms which are

relevant not only to researchers in computer vision, but the broader pool of machine

learning.

In order to visual this problem and motivate this work, consider the video depicted in

Figure 5.1(a). This video consists of an actor performing a series of basketball referee

signals. The actor performed each of the three signals (technical foul, jump ball, and

carrying) three times in the sequence. The data set consisted of 2212 frames of x−,

y−, and z−coordinates for 175 markers. Each frame therefore represented a point in

some 525-dimensional space (175 markers * 3 coordinates).

The Isomap embedding of this video data into two dimensions is depicted in Fig-

ure 5.1(b). Figure 5.1(c) shows the residual variance of the Isomap embedding for the
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(a) Example Frames (b) Isomap Embedding (c) Residual Variance

Figure 5.1: The actor in the video performed a series of 3 basketball signals (technical
foul, jump ball, and carrying) 3 times. (a) The images show examples of each signal plus
the actor in the neutral position. (b) The original Isomap embedding of the 2212 frame
motion capture data. (c) An output graph which estimates how well Isomap matches the
original point distances. In this case, there is no significant gain by embedding into more
than two dimensions.

given dimensionality. For this data set, there is no significant increase in embedding

accuracy by using more than two dimensions. In other words, this data set can be

described well by two parameters, namely the x− and y− coordinates in the embed-

ding space. One question which then arises, is how meaningful are these coordinates?

While, visually, one can see that Isomap has “discovered” the three different motions,

it is not so clear that, given the x− and y− coordinates of an individual frame, one

could know anything about the frame this point represents. For instance, it would be

difficult to determine if two points were examples of the same motion or what phase

of a given motion a frame represented. The rest of this section describes a method

for parameterizing data sets such as this. The result is a novel algorithm which is

generally useful for nonlinear, nonparametric subspace clustering.
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Figure 5.2: An example of data points drawn from intersecting manifolds.

5.1 Manifold Clustering

Up to this point in this dissertation, each of the data sets considered lies on low-

dimensional manifolds that are nonlinear subspaces of the (high-dimensional) input

data space. Current manifold learning approaches, as described in Chapter 2 seek to

explicitly or implicitly define a low-dimensional embedding of the data points that

preserves some properties (such as geodesic distance or local relationships) of the high-

dimensional point set. However, when the input data points are drawn from multiple

(low-dimensional) manifolds, such as the video from Figure 5.1(a), many manifold

learning approaches suffer. In fact, if there is significant overlap in the manifolds, as

shown in Figure 5.2, prior methods fail because these methods implicitly assume that

connected data points lie along a single manifold.
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The desire would then be to partition an input data set into clusters where each

cluster contains data points from a single low-dimensional manifold.

Figure 5.3 shows three example data sets. Figure 5.3(a) shows the so-called “swiss

roll” data set which consists of 3D points drawn from a 2D manifold. All of the

manifold learning algorithms previously described provide reasonable parameteriza-

tions for data sets such as this. Figures 5.3(b) and 5.3(c) depict cases when the input

data points are drawn from multiple (low-dimensional) manifolds. For data sets such

as these, many manifold learning approaches suffer. In the case where the multiple

manifolds are separated by a gap (as in Figure 5.3(b)), techniques such as Isomap

may discover the different manifolds as different connected components in the local

neighborhood graph, and spectral clustering techniques [3] may identify and cluster

each manifold based upon the optimization of certain objective functions. However, if

there is significant overlap in the manifolds as shown in Figure 5.3(c), prior methods

fail because these methods implicitly assume that connected data points lie along a

single manifold.

Before we describe the algorithm, we review related methods and discuss the lim-

itations of existing algorithms on data sets where the points come from multiple,

intersecting manifolds. In Section 5.1.3 we show results of our algorithm on artifi-

cially generated data, human motion capture data, and image data.

5.1.1 Related Work

Clustering data into multiple, underlying models is a well-studied problem in many

fields of science and engineering. Most approaches apply statistical methods to fit
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(a) “Swiss roll” data set (b) “gapped” data set (c) “4-arm spirals” data
set

Figure 5.3: Three data sets with different topologies. (a) shows the classic “Swiss Roll”
example which can be parameterized by all manifold learning algorithms. (b) shows an
example of a manifold with a “gap.” Some algorithms parameterize this as two separate
manifolds and some learn the global structure. (c) shows an example of intersecting mani-
folds, which is type of data considered in this chapter.

each data point to a parametric model, such as the Expectation-Maximization (EM)

method for fitting Gaussian distributions.

There has been some recent work which is more closely related to the problem ad-

dressed here which considers the segmentation of data drawn from intersecting linear

subspaces. Two algorithms, the K-subspaces algorithm [33] and generalized principal

component analysis (GPCA) [67] model this type of input data. In Section 5.1.3, we

describe these methods in more detail and compare the performance of our algorithm

on artificially generated data.

These also exists recent work in manifold learning which has focused on data sets

whose points do not lie on a single, simple manifold. [4] describe the multi-manifold

problem where the data comes from an underlying, possibly large set of low-dimensional

manifolds. The authors exploit smoothness constraints in the tangent spaces on dif-

ferent parts of the manifold in order to learn manifolds for under-sampled data. [71]
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present the multi-class manifold problem. This considers data sets whose points come

from a single, underlying low-dimensional manifold; however, this manifold is sam-

pled in such a way that large “gaps” are introduced and the data set is fragmented.

The algorithm presented described by [71] addresses a failure mode of Isomap [2]

where, for data sets with certain properties, any neighborhood size selected either

“short-circuits” the true manifold or only learns the manifold for a subset of the data

points. The authors demonstrate an algorithm for learning the underlying manifold

by differentiating between intra- and inter- fragment distances. Similarly, [28] de-

scribe a method where data sets whose points lie on disjoint manifolds are embedded

on a single coordinate system.

In this work, we consider the case where the data is drawn from multiple, underlying,

intersecting manifolds with unknown parametric forms. In addition, these manifolds

are not necessarily fragments of a single underlying manifold and may have differing

topology or dimensionality.

5.1.2 The k-Manifolds Algorithm

Our goal is to partition an input data set into clusters where each cluster contains

data points from a single low-dimensional manifold. We start by assuming that the

number and dimensionality of the low-dimensional manifolds are known. We define

the manifold clustering problem as:

Given a set of points {X1, X2, · · · , Xn} derived from k intersecting

nonlinear manifolds where Xi ∈ RD for some dimension D, output the set

of labels {c1, c2, · · · , cn} where ci ∈ {1, 2, · · · , k} is an index specifying to
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which output manifold a point belongs, and {Y1, Y2, · · · , Yn} where Y ∈ |Rd

(for d < D) is the low dimensional embedding of a point on its associated

manifold.

Without any priors on the labels of the input data, we are left to simultaneously

learn this labeling and estimate the parameters of the underlying manifolds. The

natural solution to this class of problems is an Expectation-Maximization (EM) type

algorithm. For this problem, we propose a variant of the well-known k-means [41]

algorithm, which we call k-manifolds. In our case, the cluster representation is a

mapping function from embedded coordinates to a high-dimensional representation

as opposed to the centroid of the set. We now provide a sketch of the algorithm.

The remainder of this section describes the problems that arise and their technical

solutions.
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Given: A set of data points X = {X1, X2, · · · , Xn}, where Xi ∈ RD and a

set of embedding dimensions {d1, d2, · · · , dk}, where di < D:

1. Calculate DE(i, j) = ||Xi −Xj||2

2. Create a graph G = (V, E) with a vertex for each point, and an edge

between pairs of neighboringa points. For points, i, j, let the edge

weight equal DE(i, j).

3. Compute all pairs shortest path distances on G. Let DG(i, j) be the

length of the shortest path between node i and node j. Define a distance

matrix D such that D(i, j) = DG(i, j)2.

4. Initialization: For each point, Xi and each cluster c, let wci be the

probability of Xi arising from the manifold described by cluster c. By

default, these values are initialized randomly, unless domain-specific

priors are available.

5. M-Step: For each cluster, c, supply ~wc and D and apply node-

weighted MDS (described in section 5.1.2) to return the coordinates

{Y c
1 , Y c

2 , · · · , Y c
n} of the embedding in dc dimensions. Learn the func-

tion fc : Rdc → RD which generalizes the mapping Y c
i → Xi

6. E-Step: For each point, calculate the residual to the manifold,

Xi − fc(Y
c
i ), and re-estimate the cluster probability for each point ac-

cordingly.

7. Go to Step 5 until convergence.

aTwo common methods for selecting neighboring points are ε-sphere and k-nearest
neighbors.
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The algorithm begins (in the same manner as the Isomap algorithm) by estimating

geodesic distances between points. The goal is to partition the points so that within

each partition, the geodesic distances are consistent with the Euclidean distances of

the low dimensional embedding. This partitioning step is performed using an iterative

approach. The classic k-means algorithm has two distinct steps: the assignment of

data points to model(s) of best fit (E-Step) and the estimation the parameters of those

models (M-Step). In most cases, the assignments of points to models are partial, or

soft, assignments. In the M-Step, these assignments serve to weight the contribution

of each data point in defining each model.

Since current manifold learning algorithms treat each data point equally, one challenge

is to develop a manifold embedding technique for weighted point sets. This challenge

is met with our algorithm by using Node-Weighted Multidimensional Scaling, which

we introduce in Section 5.1.2. We then generalize the mapping from the embedded

coordinates returned by node-weighted MDS to the original data points using a radial

basis function network, which we describe in Section 5.1.2. This mapping function,

whose domain is the coordinate space of the embedding, is used in the E-step to

update the assignments of each point by determining how well they fit each model.

Node-Weighted MDS

In our approach, we require a weighted version of traditional multidimensional scaling

(MDS). We call this procedure node-weighted MDS to distinguish it from traditional

weighted multidimensional scaling, commonly referred to as individual differences

scaling or INDSCAL [13], which considers the problem of balancing multiple distance

(or similarity) matrices when each point may have different weights with respect to
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different distance matrices. Below, we outline traditional multidimensional scaling.

Multidimensional Scaling. Given n×n matrix D, such that D(i, j) is the desired

squared distance from point i to point j:

1. Define τ = −HDH/2, (H is the centering matrix: H = I − ~e~e>/n, where

~e = [1, 1, · · · , 1]>).

2. Let s1, s2, . . . be the (sorted in decreasing order) eigenvalues of τ , and let

v1, v2, . . . be the corresponding (column) eigenvectors. The matrix

Y = [
√

s1v1|
√

s2v2| . . .
√

skvk] has row vectors which are the coordinates of the

best k-dimensional embedding.

The matrix Y Y > is the best rank k approximation to τ (with respect to the L2 matrix

norm). The process [37] finds the k-dimensional coordinates that minimize

∑
ij

(
|Yi − Yj|22 −D(i, j)

)2
.

Node-Weighted Multidimensional Scaling. In contrast to traditional MDS,

node-weighted MDS seeks to minimize the following:

∑
ij

wiwj

(
|Yi − Yj|22 −D(i, j)

)2
.

The process starts by changing the initial centering matrix to be a weighted centering

matrix:

H ′ = (I − ~e~w>)
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and then defining the correlation matrix τ = −H ′DH ′/2. We then seek τk, a rank-k

approximation to τ , that minimizes the weighted L2 matrix norm:

∑
ij

wiwj (τk(i, j)− τ(i, j))2 .

The weighted low rank approximation problem is formally:

Given a matrix τ and a weight matrix W of the same dimensions, find

the matrix τk of rank k that minimizes the Frobenius norm of the weighted

difference: ||W ⊗(A−M)||F , where the ⊗ operator indicates element-wise

multiplication of matrix elements.

This problem has been approached with both the weight matrices constrained to be

{0, 1} valued and the general case of real-valued weights. Recent work suggests an

iterative solution to this problem.

However, our application has additional constraints on the matrices τ and W that

allow a direct solution to this problem [58, 34]. In particular, our weight matrix is

symmetric and of rank one, and can be expressed as the outer product of the node

weights expressed as a column vectors W = ~w~w>. If we define W̃ = diag(~w), (a

matrix of all zeros with the weights w along the diagonal), then this special case of

weighted low-rank approximation simplifies as follows:

||(~w~w>)⊗ (τ − τk)||F = ||W̃ (τ − τk)W̃ ||F

= ||W̃ τW̃ − W̃ τkW̃ ||F

= ||W̃ τW̃ −R||F , (5.1)
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where R is the low rank (unweighted) approximation to W̃ τW̃ . R can be found with

standard singular value decomposition, leaving:

W̃ τkW̃ = R

τk = W̃−1RW̃−1. (5.2)

Given τk, finding Y such that Y Y > = τk, (using the same eigenvector decomposition

as in MDS) gives the k-dimensional coordinates of the node-weighted MDS embed-

ding.

Distances to Implied Manifolds

To implement the E-step of the algorithm, we need to re-weight the points based on

how well they fit each of the k manifolds. This section details a method to estimate

the distance of a point to a manifold which is defined only implicitly through the

weighted embedding of points.

The result of node-weighted MDS and other manifold learning methods is a low

dimensional embedding of the original data points, Y , where Y ⊆ Rd for some di-

mensionality, d. This implies a mapping of points in the embedded space to points

in the original space of higher dimensionality, D:

M : Rd → RD.

We must now generalize this mapping into a function of the same form. One method

for this generalization [24] employs generalized radial basis functions (GRBF) [47]
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which estimate functions of the form:

fc(x) =
C∑

j=1

λjφ(||x− zj||2) + b, (5.3)

where fc : Rdc → RD and dc is the specified dimensionality of cluster c and D is

the dimensionality of the original data points, b is a bias vector, λj is the real-valued

weight of kernel center zj, for j ∈ 1, 2, ..., C, and φ is a real-valued basic function. In

our algorithm, we choose the Gaussian function for φ: φ(r) = e
− r2

σ2
w , where σw is the

average intra-center distance.

In addition to selecting the type of kernel, another free parameter for radial basis

function networks is the number of kernel centers to use as hidden units in the network.

This parameter can be tuned and optimized using cross-validation on the training set,

however this operation is quite costly. In practice, a small number of kernel centers

C ≈ .05n, where n is the number of training set examples, produces reasonable results.

We fit these C kernel centers to our input data Y ⊆ Rdc by fitting a Gaussian mixture

model with spherical covariances using the EM algorithm.

We now create the n×C activation matrix, R. Let Ric be the distance from embedded

point Yi ∈ Y to kernel center c. To learn the weight and bias vectors, λ and b (shown

in Equation 5.3), respectively, we solve the following equation:

 λ

b

 = (W [R ~1])−1(WX),
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(a) Original Data Set (b) After 1 Iteration (c) After 2 Iterations

(d) After 3 Iterations (e) Final Manifold Hypotheses (f) Final Assignment

Figure 5.4: (a) depicts the “4-arm spiral” data set of 1000 points in 2-dimensions. (b)
through (e) show the hypothesized manifolds for both of the 1-dimensional clusters during
the iterations of our algorithm. (f) shows the final assignment of each data point to its
nearest hypothesized manifold. There were a total of 4 iterations in this trial.

where W is a diagonal matrix containing the values wc which represent the weight of

point i on cluster c, X contains the original data points, and ~1 is a column vector of

1’s.

Classifying Data Points

For each iteration of our algorithm, we calculate the likelihood of each point belonging

to each of the k clusters, using the softmin function. That is, the likelihood of point Xi

belonging to cluster c, given the embedding coordinates Y c
i and the cluster manifold
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prediction function, fc, is:

wc
i =

e
−(Xi−fc(Y c

i ))2

σ2∑k
j=1 e

−(Xi−fj(Y
j
i

))2

σ2

where σ2 is simply the weighted variance for each cluster:

σ̂c2 =

∑
wc

i

(
∑

wc
i )

2 −
∑

(wc
i
2)

∑
wc

i (Xi − fc(Y
c
i ))2.

In practice, we apply a lower bound threshold to σ equal to the average inter-neighbor

distance between the points in the original data set.

Figure 5.4 shows example manifold hypotheses for a synthetic data set and the final

classification assignments for each data point using the k-manifolds scheme.

5.1.3 Applications of k-Manifolds

The extension of manifold learning to data sets that arise from multiple intersecting

manifolds is an important step in applying these techniques more broadly. In this

section, we present results showing manifold clustering results on a several examples

including manifolds of different topology and dimension, and an application to a

natural data set of human motion capture. In each case, the dimensionality of the

component manifolds was provided to the algorithm.
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Figure 5.5: Two classification results from our algorithm on the “4-arm” spirals data set.

Locally Optimal Solutions

For certain data sets, multiple valid classifications are possible. Figure 5.5 shows two

different results for our “4-arm spirals” data set. As with most unsupervised algo-

rithms, depending on the random initialization of the cluster weights, our algorithm

converges to either solution. The algorithm can be biased towards one solution or the

other by specifying initial weights for the points in the original data set.

Comparison to Similar Methods

In this section, we compare our method to other, similar methods for unsupervised

high-dimensional data clustering. We briefly describe each method and show the

classification results in Table 5.1.

Spectral Clustering. Spectral Clustering is a recently popular technique for data

clustering. Spectral clustering, which descends from graph partitioning, examines the

eigenvectors of the Laplacian of a pairwise similarity, or affinity, matrix. In [9], an

algorithm is presented which performs well for clustering data points which arise from

disjoint manifolds. The affinity matrix, A is constructed using the pairwise Euclidean
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Table 5.1: Comparison to other clustering methods. Each algorithm required specifying
the number of clusters. For the first two examples, we specified 2 clusters, and for the
“6-arm” spirals we specified 3 clusters.
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distance between points, where Aij = e
−||xi−xj ||

2

2σ2 . This matrix is then normalized

and the projected onto low-rank matrices. For the examples in Table 5.1, we used

an implementation of the algorithm described by [9]. This competing algorithm is

sensitive to the kernel size, σ, so we hand-tuned this free parameter to give the most

reasonable results. This led to the choice of σ = 10σs, where σs is the average distance

between a point and its closest neighbor, as this seemed to produce the best results.

GPCA. Generalized Principal Component Analysis (GPCA) extends PCA to the

class of problems where the input data sets consist of points drawn from multiple,

intersecting linear subspaces. GPCA applies methods from algebraic geometry to

segment the data set in a non-iterative fashion. It is also important to note that

GPCA can be extended to segment data drawn from intersecting nonlinear manifolds

if the parametric form of the distribution is known a priori. GPCA has been used in

computer vision for segmenting images, motions, and dynamic textures. The GPCA

results in Table 5.1 were obtained using source code from [48] which is described

in [73].

K-subspaces. K-subspaces is algorithm originally designed to cluster various 3D

objects under varying illumination conditions. This algorithm, like our method, uses

an iterative approach to learn the classification. However, unlike our algorithm, the

input points must be derived from a linear subspace. The K-subspaces results were

obtained using code from [72].

We compared our algorithm against implementations of spectral clustering, GPCA,

and K-subspaces on three synthetic data sets:
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• 3D points drawn off two perpendicular hyperplanes. Each of the hyperplanes is

modulated by a sinusoid

• 2D points drawn off two intersecting “spirals” of the form:

< es cos(s + θc), e
s sin(s + θc) >,

where s ∈ (0.0, 1.0) and θc a constant for all the points generated on each spiral

• 2D points drawn off three intersecting “spirals” of the same form as above.

Unsupervised Semantic Segmentation

We applied the k-manifolds algorithm to the analysis of human motion capture data

of various simple activities from the CMU Motion Capture Database. Each data set

contains examples of a single actor performing a series of simple motions. Each motion

lies on a one-dimensional manifold in image space and the task is an unsupervised

segmentation of the frames of the video into classes of different motions. Ground

truth was obtained by manual annotation of the original video sequence.

One test was applied on a data set of an actor performing a series of basketball

referee signals. The actor performed each of the 3 signals (technical foul, jump ball,

and carrying) 3 times in the sequence. The data set consisted of 2212 frames of x−,

y−, and z−coordinates for 175 markers. Each frame therefore represented a point in

some 525-dimensional space (175 markers * 3 coordinates). We applied our method

using k = 3 one-dimensional clusters to classify each frame and compared our results
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(a) Example Frames

Cluster 1 2 3
Technical 514 20 0
Jump Ball 1 461 53
Carrying 17 0 672

(b) Confusion Matrix

Figure 5.6: Results on human motion capture data. The actor in the video performed
a series of 3 basketball signals (technical foul, jump ball, and carrying) 3 times. (a) The
images show examples of each signal plus the actor in the neutral position. (b) The confusion
matrix describing the clustering results of our algorithm in terms of the number of frames
classified as each signal.

to the ground truth. Figure 5.6 shows our results on this data set. In this case, our

method performs with 94.8% accuracy.
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Chapter 6

Conclusions and Future Work

The work of this dissertation makes the methods of manifold learning applicable to

natural image sets and provides the framework for image manifold learning. Specifi-

cally, the major contributions include:

• Applying a statistical framework to quantify the differences between related

images.

• Using the constraints implied by this framework to improve common vision

tasks such as image registration, segmentation, and interpolation.

• Developing a novel algorithm for parameterizing complex topologies found in

natural image sets.

In its current stage, this framework provides for generalized video analysis under

known image transformation. In the future, this framework could be extended to

automatically select which of set of metrics is most useful for a given data set. Con-

sider the case where image variation is due to multiple causes, drawn from the set

major modes of natural image transformations (rigid transform, non-rigid transform,
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lighting variation, noise.) It would be useful to find a set of distance measures d1,

d2, d3, and d4, such that two images A and B that vary due to only one cause (mea-

sured by d1) have d1(A, B) >> 0 and dx(A, B) < ε, for x ∈ {2, 3, 4}. Then, selecting

a set of metrics for a particular problem can be posed as choosing among the dif-

ferent distance measures according to some criteria, such as minimizing embedding

distortion.

These results have proven useful in the important domain of medical imaging and, in

the future, could be used to improve current diagnostic techniques and develop new

medical procedures.
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