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ABSTRACT

There are several basic approaches that can be used in attempting to produce high-resolution DNA
resiriction maps. A standard approach is the match/merge approach in which first the topology of the map
units being mapped together is suppressed and lists of potential matches between fragments are generated,
and second the topology is introduced to eliminate matchlists which are inconsistent with the topology.
This technical report documents a different approach to DNA Mapping, known as topological mapping.

In topological mapping the precedence of the two criteria are reversed, i.e., the topology of the two
map units is used as the primary search constraint and only those fragments within specific topologically
constrained bounds are considered for a potential match. In this approach, the primary topological con-
straint reduces the number of fragment comparisons that must be considered, in comparison to the
match/merge approach. The more topological structure is present in each map unit, the greater the reduc-
tion.

The conceptual approach is discussed in general. Specific mechanisms for implementing the ideas
are presented, and the structure of the software based in these mechanisms is described. Heuristic
approaches which can be used for pre- and post-processing are suggested and analyzed. Execution results
are given for the application of the software to a number of laboritory generated mapping problems, which
were provided by the Olson laboratory.
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1. Introduction

DNA, is the genetic material which supplies the blueprint for an organism’s development. A DNA
molecule is composed of nucleotides, with each nucleotide consisting of a sugar, a phosphate, and a
“pase”. There are four bases: A (Adenine), T (Thymine), C (Cytosine), and G (Guanine). Nucleotides are
distinguished by the base they contain, Sugar-phosphate bonds bind the nucleotides into strands, and a
base on one strand can "pair” with a base on another strand. However, only certain base pairings are
allowed: A bonds with T, and C bonds with G. Thus, A and T are known as complementary bases, as are
Cand G. A DNA molecule is made of two complementary DNA nucleotide strands bonnd together by this

base pairing, the base sequence on one strand determining the complementary sequence on the other strand.

DNA restriction mapping deals with determining the positions of specific sites of interest along a
given DNA strand, or genome. The sites of interest are called restriction sites, and consist of a specific
subsequence of DNA, often six nucleotides long. These restriction sites are recognized by specific
enzymes, known as restriction enzymes; a restriction enzyme cleaves (or cuts) DNA that it encounters at
exactly these restriction sites. Thus, a restriction ¢nzyme reacting with a strand of DNA will produce frag-
ments of DNA whose lengths are exactly the distance between two successive restriction sites along the
original DNA. The process of electrophoresis can be used 10 measure the lengths of these fragments,
which are known as restriction fragments. If the order of these restriction fragments within the original

DNA can be determined, then the restriction map can be constructed.

Ordering of the restriction fragments is achieved by fracturing multiple copies of the original DNA at
random positions to produce randomly overlapping strands of DNA, known as clones. Each clone is dig-
ested by the restriction enzyme (of interest) and electrophoresis is used to determine the lengths of the res-
triction fragments within it. This list of restriction fragment lengths is known as the fingerprint of the
clone. Overlap between the clones is inferred based on the similarity of the fingerprints of the restriction
fragment Iengths, and the order of the clones is inferred based on multiple clone overlap. As overlap
between the clones is inferred due to a significant number of restriction fragments of similar (within meas-
urement error bounds) lengths, the exact order of the resiriction fragments within each clone may remain

unknown; only the relative (partial) order of large groups of fragments may be inferrable. As more clones
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are found to overlap a specific region of the original genome, the random positions of the clone ends are
used to refine the original partial order (of the restriction fragments) by reducing the size of the groups for

which the fragment order is unknown.

This process of DNA restriction mapping is analogous to solving a large jigsaw puzzle. However,
the uncertainty of where a clone should be placed can be significant, due to measurement error (during
electrophoresis), experimental error (during cloning or digestion with the restriction enzyme), and certain
biological properties of the DNA being mapped (e.g., two fragments of the same length do not necessarily
contain the same sequence of nucleotides). When putting together a jigsaw puzzle, the pieces of the puzzle
have several cues (shape, color, pattern on the surface) which can be used to guide their ultimate position-
ing in the final solution. In DNA restriction mapping, the clones have no shape or color, but the fingerprint
information can be viewed as a "pattern” to be matched against potentially overlapping clones. The objec-
tive is to find a consistent positioning of clones with respect to one another in which fragments in different
clones can be identified with one another while all fragments of each clone remain contiguous and no
"gaps"” or unpaired fragments are present internally. There may be multiple "solutions” to this restriction

map puzzle, and the one (or ones) which is most compact is preferred.

This technical report describes one basic DNA resiriction mapping algorithm, known as topological
mapping. This technique uses the topology (or structure) of the map units (preliminary partial restriction
maps) being considered as the primary criterion for searching for a solution; this is in contrast to other tech-
niques in which the topology is originally suppressed, and the possible pairings between restriction frag-

ments in the map units being considered is used as the primary criterion for searching for a solution,

The technical report is organized in the following manner. Section 2 presents the basic approach and
set of working assumptions used in all restriction mapping techniques. A number of examples are given,
and the overall strategy is explained intuitively and by example. Section 3 extends these basic ideas by
presenting a more concrete methodology of how the process of resiriction mapping might be performed.
Intrinsic problems with restriction mapping and specific aspects of the restriction mapping process are dis-
cussed, Section 4 gives an overview of the philosophy and structure of the basic topological mapping

software that has been developed. High-level pseudocode is given, and different modes of interacting with
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the software are discussed. Section 5 continues the discussion of the software by focusing on concrete data
structures and pragmatic issues dealing with the quality of the solution found and the efficiency by which it
was found. Section 6 presents a number of top-level strategies and heuristics that can be layered on top of
the basic topological mapping software. Different techniques are compared and contrasted, Section 7
presents some results of applying the topological mapping software to a variety of different data sets.

Finally, Section 8 attempts to put this work in perspective.

2. Handmapping of DNA

In order to understand a computer solution to DNA restriction mapping, it is necessary to understand
a human approach to the problem. The process that humans use to create a DNA map will be referred to as

handmapping,

2.1. Clones

The type of data considered in handmapping is the fingerprint clone data. The following is a more
in-depth discussion of the process described in the introduction. Prior to any mapping, the original DNA
sequence 10 be mapped is duplicated using traditional biological means. Then, the DNA is randomly
cleaved into smaller sections by partially digesting it with a restriction enzyme; this produces random clone
inserts. The partial digestion process causes different copies of the DNA to be cleaved at some (randomly
selected) restriction site, but not all restriction sites. This tends to produce clone inserts which have ran-
dom overlap with one ancther. These clone inserts are then inseried into a biological organism known as a
lambda phage. The size of these inserts is limited to roughly between 10,000 and 25,000 base pairs (bp);
these length restrictions are caused by the packaging mechanism used by the lambda phage. The combina-

tion of the lambda phage and the inserted DNA, is known as a clone.

During the creation of this initial biological data, enough lambda clones are created so that a redun-
dancy of approximately five is produced. This means that any region of DNA is likely to appear in about

five clones. Since the inserts of DNA are the result of random cleavings, each insert may or may not con-
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tain some overlap with another insert from roughly the same region. This overlap may range from partial
overlap, where each insert contains DNA besides the region of overlap, to total overlap, where one insert
is simply a subsection of another. The success of handmapping depends on the fact that the clones contain
these overlapping regions of DNA. It is this overlap which will aliow the clones to be rejoined in the order

in which they existed in the original genome.

After the clones are formed, further processing is done on them. First, the clones are separated by a
multi-level dilution process, and colonies resulting from a single clone are grown to produce enough DNA
for subsequent processing. For each clone, the clone DNA extracted from this augmentation process is
completely digested by a resiriction enzyme (the restriction enzyme being mapped), producing fragments
of DNA called restriction fragments. The lengths of these fragments (in base pairs} are then measured
using electrophoresis gel technology. Upon placing an electric current through an agarose gel in which
DNA fragments have been placed, the fragments will migrate down the gel, It is easier for smaller frag-
ments to move through the gel than larger ones, so the fragments arrange themselves in order of decreasing
length. This creates lanes of DNA fragments in which bands of DNA of the same length have migrated io
the same position on the gel. After staining the gel, these bands can be detected and their positions on the
gel determined. Reference lanes, containing DNA fragments of known length, also are present on the gel.
Using the positions of the bands present in these reference lanes and the process of interpolation, it is possi-
ble to estimate the lengths of restriction fragments in the data lanes. Unfortunately, electrophoresis tech-
nology is incapable of accurately detecting fragments whose lengths are outside the range of 400 bp to 7.5
kilobase pairs (kb). However, since the majority of the restriction fragment length data falls in this range,

this is not a serious problem.

The final stage of the data gathering process is to convert the position of the fragments along the gel
into actnal numeric data. This will result in a list of integers, where each integer represents the Iength of a
restriction fragment (in number of base pairs) from the clone. The current methed of converting the data
from gel form to this list of fragment lengths is through the use of a digitizing tablet. A gel image is pro-
Jjected onto the tablet, and a human operator touches the tablet at the positions of the bands corresponding

to fragment locations, The incoming data are displayed on the computer screen in real-time to allow for
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error detection and editing,

Once the fragment position data are available, it is possible to calculate the lengths of the fragments
by interpolation. These length data are what will be used in the process of DNA restriction mapping. It is
impossible to be 100% certain of the data that are produced. There are (at least) two sources of error which
create this uncertainty. First, at the current state of the technology for transferring the data from gel to
numeric form, along with the chance of human error in the process, the exact fragment lengths cannot be
determined. From experimental evidence, there is approximately a 3% error window around the true
length of the fragment, 1.5% on either side of the actual length, Because of this, a fragment which is 1000
bp in Iength may be measured anywhere from 985 bp to 1015 bp. It is thought this error window will
shrink in the near future, due to better data gathering techniques and the elimination of some of the human
involvement. This will be accomplished by utilizing a CCD digitizing camera to photograph the gel, elim-
inating the human/digitizing tablet combination. For now, however, the 3% error window must be kept in

mind while mapping,

The other source of uncertainty comes from incorrectly extracting the fragment data from the gel.
Two fragments of identical or nearly identical length may migrate to the same location on the gel. Thus, it
is possible for two (or three, or four, efc.) fragments to be in the same band when the gel is stained. If this
is not taken into account, the list of fragment lengths will contain a number of lengths which does not accu-
raiely reflect the number of fragments which exist in the clone. It is possible but difficult to identify this
situation. The intensity of the stained DNA bands should decrease along the expanse the gel, due to the
fact that there is less DNA material to stain in smaller fragments. Deviation from this expected intensity

distribution can be used to estimate the number of multiple restriction fragments present in & band.

Both of these sources of error should be remembered while doing DNA mapping, either by hand or
on the computer. If something will not map together, but there is a high likelihood that it should, it is pos-
sible that data extracted from the gel were incorrectly handled in the data gathering process. By going back

and examining the original gel, the inconsistency may be explained and/or resolved.
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2.2. Mapping two clones

The reason that clone data can be used to create a map of a genome is the fact that fragments which
come from a single clone must be contiguous in the original DNA sequence. Given just one clone, it is
impossible to know the ordering of the fragments within it; it is simply known that they are contiguous in a
certain region of the original DNA. A more refined view of that area can be created by considering other
clones which are suspected to overlap the same region, Consider a clone with fragments of length:

5000
4000
3000
2000
1000
and another with fragments of length:

6000
5000
3000
2000
1000

900

800

Since these two clones share four fragments of the same Iengths (5000, 3000, 2000, and 1000), it is
highly probable they are partially overlapping clones from the same general region of the original DNA.
However, it is impossible to be sure these two actually do overlap without doing more biological work.
Simply because they contain four fragments of the same lengths is no guarantee they actually overlap,
since two fragments of the same length are not necessarily the same fragment. One of the ways that this is
taken into account while mapping is to require more than simply a one fragment overlap before assuming
an actual overlap is present. Often, the minimum number of fragments which must seem to overlap (before

actual overlap is inferred) is taken to be either three or four. This increases the probability that the two
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clones about to be mapped are actually from the same region and should map together.

Returning to the example, it is known that the five fragments in the first clone are contignous (in
some order). Similarly, the seven fragments of the second clone must be contiguous. This is all that can be
determined from examining the clones independently of each other. However, more information can be

extracted by examining the two clones in concert.

The four fragments which overlap must also be contiguous. This means that each clone can be
divided into two sets, one set containing the fragments which overlap and the other set containing all the
remaining fragments in the clone. In the first clone, these two sets are:

{4000} {5000, 3000, 2000, 1000}
while in the second clone, they are:
{5000, 3000, 2000, 1000} {6000, 900, 800}.
Since each of the two clones contains an overlapping region with the other clone, it is possible 1o fit the two
back together into one partial sequence. This sequence is:

{4000} {5000, 3000, 2000, 100Q} ({6000, 900, 800}

Second clone

This ordering contains more information than either of the original two clones provided. Namely, it
is now known that there is a restriction site 4000 bp in from one side of the first clone. Similarly, there is a
restriction site 7,700 (6000 + 900 + 800) bp in from the other side of the of the second clone. The informa-
tion about this particular region of the genome is still relatively unrefined. It is known that there are three
sets of fragments, with one fragment in the first set, four fragments in the second set, and three in the last
set. Itis also known how the three sets are positioned in relation to each other. It is not known, though,
what the exact ordering of the fragments is in any one of the sets, To gain a higher level of refinement,

more clones would need to be added to the map.
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The previous example is a contrived one. It ignored many of the problems which can occur while
mapping, but its intent was to provide a first level of understanding about the basic process, With that

understanding, it is possible to approach the mapping of a more complex, more realistic example.

2.3. Mapping a set of clones

The human DNA mapper would generally have a set of clones which are suspected of coming from a
certain region of the genome being mapped. Figure 1 presents such a set of clones. The fragment lengths
of each clone are sorted from longest to shortest, but this is for convenience only. At this stage, no
knowledge about the ordering the fragments in any of the clones is known to the mapper. There are five

clones, with the number of fragments ranging from five 10 eight.

The first consideration is to determine with which two clones the mapping should be started. This is
one arca where intuition and experience are useful. A poor choice will result in problems with mapping
later clones. Although intuition plays a large role in this initial choice, there are some guidelines which a
mapper may follow; one of the easiest ones is to make initial choices based on the number of fragments in
the clones, starting with the two clones which have the most fragments. In this case, these are Clones #1

and #3,

There are several ways to approach a clone-clone mapping. The easiest way is just to start at the top
of the two clones and begin to scan downward for matches. Please note at this point that "top" is used for

the convenience of the human reader. Itrefers only to the way the clone data are being represented on

#1 #2 #3 #4 #5
6198 8567 6109 8644 4087
4082 7605 4087 6110 1085
1614 1605 1139 1600 529
1592 1586 1078 1573 517
1150 1139 630 1146 406
1092 623 527 632 e

637 0 e 5315 memmmeeee

513 smemeeme—

Figure 1: Set of clones to map
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paper. There is no direction associated with the data other than this representation. The top of a clone will
always be the fragment with the longest length. Keeping this in mind, the first match discovered would be
6198—6109. Although not the same length, the two fragments are within the 3% error window. So, there

is a chance that they are the same fragment.

After creating a match, neither fragment is available for subsequent matches. Having paired 6198
with 6109, the process of scanning for matches continues down the two lists of fragment lengths, 4082 and
4087 are within 3%, so they are matched. Next, although there is a fragment of Iength 1614 in Clone #1,
there is no corresponding fragment in Clone #3. So, 1614 does not maich with anything. It is possible to
use the ordering of the fragments by size to cut down on the amount of work performed in finding a match.
If 1614 is under consideration, as soon as a fragment smaller than 1614 is found in the second clone (keep-
ing in mind that "smaller than" must take into account the 3% window), no further searching for a match to
this fragment is required. In this example, the search for a match for 1614 can stop as soon as the fragment

1139 is seen in Clone #3.

As with 1614, 1592 is unable to match with anything in Clone #3. This means that the next match
that does occur is fragment Iength 1150 with fragment Iength 1139. This is followed by matching 1092
with 1078. Then, 637 is matched with 630. There is now just one fragment left (o examine in Clone #1
and two left to consider in Clone #3. The fragment with length 513 is the only unexamined one in Clone
#1. The problem with matching it is that there are two possible maiches. It might match with 527, or it

might match with 515, Both are within the 3% error window.

A dual match like this is referred to as an equivalent match. Note that the term equivalent as used
here shouid not be confused with the term as used in the mathematical definition of equivalence relation or
equivalence class. While the reflexive and symmetric properties do hold for this usage, the transitive pro-
perty does not hold. Eguivalent match, in this paper, simply means that since the only data being worked
with are length data and a 3% error window exists, two such matches are (in most senses) equally valid. A
choice must, however, be made. The procedure to follow is to choose the "better” match of the two. The
problem lies in determining exactly what better means. Better is defined in this case to mean "a smaller

number of base pairs separating the two lengths." Using this metric, the 513—515 match is better since
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there is just a two base pair difference in the lengths. On the other hand, there is a fourteen base pair length
difference between 513 and 527. Consequently, 513 is chosen to match with 515, and 527 remains

unmatched.

Since there are no more fragments to consider, the mapping of Clone #1 with Clone #3 is complete.
There is now a matchlist which describes the matches which exist between the two clones. 1t is also
known which fragments in each did not pair. Using these data, the two clones can be put together as shown
in Figure 2. It is no longer proper 1o call this finished structure a clone, since it is not that anymore. The
term map unit is used to refer:to the result of a mapping, such as this one. Map units can be formed from
mapping any two structures together: two clones, a clone with an existing map unit, or two map units.

Map units generally contain more structure than the units used to produce them. It is important to note that
it is always possible to "pick out" the individual clones which exist in a map unit, as Figure 2 illustrates,

because the fragments present in a clone must always be contiguous in a map unit.

In a map unit, some of the fragment lengths are not the lengths of the original fragments present in
the clones. Instead, they are the average lengths of the fragments which matched. To emphasize this dis-
tinction, the term virtual fragment is used to describe a fragment which is the result of some matching.
This is in contrast to real fragments which are the actual fragments in the clones. The distinction often is

irrelevant, and the blanket term fragment is used in most cases.

!
[
[
|
4085 | clone #1
'
[
| clone #3
|

!
I
[
[
I
I
I
|

Figure 2: Map unit produced from mapping clone #1 and #3
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Now that the first two clones are mapped together, it is time to map the remaining ones. Both #2 and
#4 have the same number of fragments, so either could be considered next. In this example, Clone #4 is
chosen next, 50 the mapping now being attempted is the map unit just produced (Figure 2) with Clone #4.
This mapping will not be presented in as much detail, but the same ideas as previously presented are being

followed.

The 1614 and 1600 match, as do the 1592 and 1573. This is another case of equivalent matches,
since 1614—1573 and 1600-—1581 are also valid matches. Once again, the better set of matches is chosen;
in this case that is 1614~-1600 and 1592—1573 (a 14 bp and a 19 bp length difference as opposed to a 41
bp and a 19 bp difference). Continuing, the 6154 and 6110 match, as do the 1145 and 1146, and the 634

and 632. The map unit, as it now stands, is shown in Figure 3.

Clone #2 is chosen as the next one to add. The fragments with lengths 8644 and 8567 maich. Other
matches are 1607--1605, 1583—1586, 1145—1139, and 633623, There are still the equivalent matches
involving the fragments with lengths in the 1500 to 1700 bp range to consider, but once again, the better
match is chosen. Figure 4 shows the current state of the map unit being produced from the original set of

data.

Figure 3: Clones 1, 3, and 4
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|
|
I I
l I
I | #2
I I
- | #4 I
I I
! !
I
!

Figure 4: Clones 1, 2, 3,and 4
Finally, the last clone (#5) is added to the map. The 4085 and 4087 match, the 1085 and 1085 match,
the 514 and 517 match, and the 527 and 529 match. The final completed mapping of these five clones is

shown in Figure 5.

#1

Figure 5: Completed mapping of clone set
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This example was complex enough to demonsirate several key facts about the handmapping process.
Most importantly, it showed that equivalent matches are a problem with which the algorithm must deal.
Also, it showed when a mapping is finished, which is when all the fragments have been considered and are
either matched with something or are found to be incapable of matching with anything. Plus, it illustrated
the process of gradually building towards a final answer. All of these ideas must be considered when

developing a computer algorithm,

2.4. Final thoughts on handmapping

At first glance, handmapping may not appear to be a complex problem. However, the uncertainty
about the validity of the fragment length data along with the problem of determining the order in which a
set of clones should be mapped make the procedure a difficult one to automate effectively. It is possible to
do this, though. In fact, several algorithms exist which can be used to map DNA. With a background
knowledge of how handmapping is done, it is now time to examine one of these algorithms in depth,

specifically the topological mapping algorithm,

3. Topological mapping

This section presents the top-level ideas embodied in the topological mapping algorithm. The name
"topological mapping” stresses the fact that this algorithm uses the topology of the items being mapped as
an aid to the overall mapping process. As a contrast, another major algorithm is the match/merge algo-
rithm. The match/merge algorithm initially disregards the structural information present in the two starting
map units, obtaining a preliminary solution based solely on how fragments in the two map units might be
paired with one another (given specific error ranges). Subsequently, it then reintroduces the structural
information to determine if the topology is consistent with this preliminary solution. Because of this, it is
possible for the match/merge aigorithm to consider a preliminary solution which is inconsistent with the
topology of the map units being mapped. Such a prefiminary solution would then have to be discarded.
Topological mapping, on the other hand, is primarily concerned with the map units’ topological structures.

It will only create mappings which are valid within this framework.
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3.1. Topology as an aid in restricting searches

There are certain advantages to considering topology as a primary concern in a mapping attempt.
One large benefit comes from using the structure o reduce the amount of work which the algorithm must
perform. This limiting property is what makes topological mapping such a useful technique. The best
way to understand how this works is to see an example, as presented in Figure 6. This shows a clone and a
map unit which are to be mapped together. The map unit currently contains six divisions of fragment

length data, while the clone contains only one,

The mapping begins as all the examples have, by starting at the top of the two units and scanning
downward until a match is found. Preceding in this manner, the 944 of the map unit maiches with the 944

of the clone. At this preliminary point, there is no difference between topological mapping and the type of

Map Unit Clone
3369 2489
2567 2154

944 944
583 897
———————— 771
767 660
647 609

———————— 585
2472 521
2108 mmmeeaa

603
518
1695
1531
901
829
720
1034
6106
406

Figure 6: Example of topelogy’s usefulness
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mapping presented in the earlier cases. It is after this first match is made that topology can become useful,

If there are any more valid matches, then there must be a valid match in either the top set of the left
map unit or the next set down. At first this may not be obvious, but its validity can be shown. The best
way to illustrate this is by contradiction. Suppose there are no valid pairings involving the fragment
lengths in the second set from the top in the first map unit. However, assume valid matches do exist
between the clone data and data from the first, third, fourth, and fifth sets of the map unit. This mapping
would be invalid. This is due to the fact that all the fragments from a given unit (whether this is a set,
clone, or entire map unit) are known to be contiguous. The first set of the map unit is "next to" the second
set which is "next to" the third set and so on. Similarly, all the fragments of the clone are contiguous, in
some as yet undetermined order. If a clone is mapped into the map unit and there exists an unmatched
fragment in the "middle” of the matching sets (of the map unit) that would imply that the fragments
involved in the matchlist are a) contiguous in the clone, but b) not contiguous in the map unit. This is
impossible. So, a clone must map onto a contiguous series of sets in a map unit to be considered a valid
mapping. Similarly, in a mapping involving two map units, A and B, A must be contignous along the sets

of B, and B must be contiguous along the sets of A,

This fact can be used to limit the region which is being considered for possible matches. Once one
set is known to be involved with the matchlist, only that set {or one "next" 1o it) needs (o be considered for
the next match, However, once a set fills up with matches (i.e., all the fragments represented by the
lengths of that set are involved in pairings in the matchlist), then that set no longer needs to be considered.
Instead, one of the sets on either side of it must now be taken into account as the mapping continues. The
only sets which do not need to be full before they are removed from consideration are the seis on the
“ends" of the region which is involved in the maichlist. Although the region of matches must be contigu-

ous, all of the fragments in the end sets do not need to be included for this to occur.

When viewing a mapping in progress, there are three distinct regions in each of the areas of matches
in the two units. One region is the end set of the area; another region is the current set being worked on;

and the last region is all of the sets in between these two which have been filled with valid matches (filled

sets).
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Applying the ideas of the past few paragraphs to the example in Figure 6, the top set of the map unit
1s initially the current set. The next match discovered is 593 with 585. When another match is atiempted,
it is discovered that there are no more fragment lengths in this first set of the map unit which will map with
anything from the clone. At this point, this set can stop being considered for valid matches, and the current
set will become one of the adjacent sets. Since the mapping was started at one end of the map unit, there is
only one adjacent set, so the second set down becomes the current one. The map unit now contains an end

set and & current set.

The search for the next match only involves the fragment lengths of the current set, namely 767 and
647. Instead of having to search all eighteen lengths in the map unit for the next match, the search only
involves two fragments. This restriction allows the topological algorithm to search efficiently for possible
matches. Both of the fragment lengths in the current set match with lengths from the clone, 767 with 771

and 647 with 660.

With the current set now filled, the current set can move to the next set down (in this case, the third
set from the top). An end set, a filled set, and a current set now all exist. The area involved with the
matchlist will continue to grow in this fashion until all the matches have been made. The lengths in the
third set of the map unit match with clone lengths as follows: 24722489, 2108-——2154, 603—609, and
518—>521. Finally, the 901 from the fourth set of the map unit matches with the 897 length from the clone.
At this point, the mapping is finished because no more fragments in the clone are unmatched. As before, in
the finished mapping (see Figure 7) it is possible to pick out the clone which exists within it. Also as
before, the addition of the clone has added more information about the ordering of the fragment data. The
new map unit contains eight sets, a refinement of the same information originally represented by the previ-

ous six sets.

3.2. The problem of ambiguous solutions

When a human is handmapping, he or she is concerned with finding a valid answer. Once this
answer is found, it is easy to assume that it is the only mapping which can exist for a collection of data.

Unfortunately, this is not always the case. It is possible for two map units to map together in two distinctly
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|
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________ | Site of original clone
2481 |
[
|
i
!
|

Figure 7: Result of mapping from Figure 6
different ways, each way being equally valid. These distinct mappings need not reduce to the case of
equivalent maiches which has been discussed earlier. When presented with this situation, it is impossible
to know which mapping is the correct one, and neither answer can be used. Such a case is known as hav-
ing ambiguous solutions. A simple example of this is shown in Figure 8. The two map units in Figure
8(a) can be used to form either of the solutions shown in Figure 8(b) and Figure 8(c). Since both are valid,

this is an ambiguous mapping.

The only way to be sure that a mapping is unambiguous is to attempt to map the data in every possi-
ble manner. If more than one solution results, then ambiguity exists. The topological mapping algorithm
attempts to discover every possible (valid} mapping which can be made between two map units. This is

one area in which the antomation of the mapping process can have tremendous benefit to the human
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mapper. He or she gains the assurance that a mapping is unambiguous without the lengthy handmappings

which would be required without the computer’s help.

The strategy of not mapping two map units together if the mapping is ambiguous is a conservative
approach intended to solve the following problem. If one of the possible maps is arbitrarily chosen, it may
be the wrong map, and problems will occur in subsequent processing (i.e., since a piece of the puzzle was
placed in the wrong position, other pieces placed subsequently will not fit correctly). Of course, one possi-
bility is to take each solution in turn, using backtracking techniques (when subsequent processing reveals
problems). However, backtracking has two disadvantages. First, it is compatationally expensive, since it
is exponential in nature. Second, since data are supplied for mapping incrementally, subsequent processing
is effectively unbounded and it is unwieldy to keep track of backtracking information across distinct com-
putational sessions. This conservative strategy of not mapping ambiguous data together relies on two pos-
sible resolutions of the ambiguity. First, the mapping of subsequent data may introduce topology which
will eliminate all of the alternative maps, thus eliminating the ambiguity. Second, a human may be able to
resolve the ambiguity either by applying data not available to the mapping algorithm itself or by heuristic

insight,

3.3. Directionality of growth

Another problem of mapping is directionality of growth. In all of the preceding examples, the map-
ping has begun at the top end of the map units and continued towards the bottom. This may seem perfecily
logical from a human perspective. However, “top” and "bottom" really have no meaning in these map-
pings. It is simply convenient to use these terms because it puis the data in a common environment so it

may be discussed. In actuality, such directionality is meaningless.

Because of this, it is equally valid to begin the mapping at the bottom of the map units and move
towards the top. This may seem like an unimportant detail. However, it is definitely not. It is possible that
starting a mapping at two different locations will yield two different, ambiguous answers. Consider Figure
8 again. The solution in Figure 8(b) will result if the mapping is begun at the top of the two map units, If

mapping is begun at the bottom, the solution in Figure 8(c) will result. Since the algorithm is concerned
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Map unit #1 Map unit #2
5412 6453
4793 5452
2103 4794
976 2124
———————— 977
719 617
———————— 412
6419 e
5501
4795
2137
619
{(a) Initial map units
6453 | 5412 |
617 | 4793 I
412 ! 2103 !
________ | (2) —— 976 |
5432 | L |
4794 | f 719 [ (1)
2114 [ e —— [ -—
877 i | 6436 | |
-------- - | 5477 i |
719 | 4795 f I
"""""""" i (1) 2131 [ |
6419 r e | 1 (2)
5501 ] 618 | |
4795 - [
2137 f 977 |
________ | 412 |
619 lr meme———— ———
(b) Possible map unit produced {c) Second possible map unit
from data in {(a) from data in {(a)

Figure 8: Ambiguous solutions
with generating all possible mappings, in order to identify ambiguities, it begins the mapping at several
locations in the map units {(exactly how it does this is discussed in Section 5.1). Therefore, it is imperative

that the algorithm be able to map in either a downward or an upward direction.
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Ideally, the topological mapping algorithm should handle both directions equally well. However, it
is far easier to allow it to be biased in favor of one direction. Which direction is favored is unimportant.
What is important is that both directions are eventually handled if needed. As currently implemented, the
algorithm favors the downward direction; if at all possible, it will continue a mapping by advancing in this
direction, Of course, the algorithm can map in an upward direction, it simply docs not do so until advance-

ment downward is no longer possible.

3.4. Orientation of the map units

The examples up to this point have left out an important detail which must be considered for the
topological mapping algorithm to work. When a human handmaps, he or she is likely to ignore the orienta-
tion of the two units being mapped. In all of the examples so far, the units have mapped together by work-
ing on both of them from the top fragment down to the bottom one. It is possible, however, to have a situa-
tion in which one of the map units is oriented in the opposite direction. This is the case in Figure 9, Map
unit #1 and map unit #2 will map together, but one of them is "upside down.” A human working on this
problem would realize this and simply keep it in mind while mapping. The algorithm, on the other hand,

must handle this in a more explicit way.

Map unit #1 Map unit #2
7120 1909
6515 731
417 e

———————— 935
1201 402
g8 e
536 1200
400 542
3214
1907
728

Figure 9: Map unit orientation
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The solution to this orientation problem is a simple one; the algorithm simply flips the orientation of
one of the map units during mapping. It is irrelevant which one is actually flipped; flipping either one in a
case like this will result in both having a compatible orientation. Of course, it is not known if they are
correctly oriented or not at the beginning of mapping. To handle this, the algorithm attempts to map the
pair of map units exactly as they arrive. Then, it will flip the orientation of one and attempt to map the pair

that way. This ensures that all possible solutions are discovered.

4. An overview of the code

The majority of the algorithm is embodied in just two routines: topological recurse and
grow. However, before examining the actual code, one should recognize and answer a cracial, undetlying
question; namely, how is the limiting property which is such an integral part of topological mapping going
to be implemented in an algorithm? In order to understand this concept, it is useful first to consider exactly
how the map unit data are stored by the software. Then, the larger question of the limiting property can be

approached and understood.

4.1, Internal representation of map units

The mechanism used to represent all map units is an abstract data type known as a sequence-set
tree, or simply a SST for short. The name describes the underlying structure of this data type. The root
node of the tree is a sequence node whose children are set nodes. These set nodes correspond to the dis-

tinct sets of fragment lengths in a2 map unit, for which the order (sequence) is not known.

The children of the set nodes are of two types: fragment lengths and clone ends. A set node with
five children, all of which are fragments, will correspond to a set in a map unit containing five fragments.
Clone ends are the other data which may be associated with a set node. Clone ends are, literally, the ends
of the clones being considered. Including clone ends in the sequence-set tree adds more information about
the structure of the map unit. This can be particularly useful when sets of clones are being considered.

They are also useful in a postprocessing test used to determine map unit equivalency (see Section 5.2). Itis
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difficult for a human to keep track of the clone ends in addition to the fragments. This is another benefit of
using a computer to assist in mapping, since the computer can keep track of more data about the clones and

map units.

Figure 10(a) shows a map unit along with the clones from which it was constructed. Figure 10(b)
shows the corresponding SST which is used to represent the map unit, Here, the clone ends are agsumed
not to occur at restriction sites. Thus, the clone ends associated with a clone appear in the set node just out-
side the boundary of the clone as defined by the restriction fragments present within it. In fact, the clone

end resides on the interior region of one of the fragments in the set node where the clone end appears.

I

I

I

I

|

| #4
[

I #5
|

I

i

(a) a map unit with its clone composition
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(b} the correspording SST

Figure 10: Representation of a map unit as a sequence-set tree
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4.2. The focus

One of the major advantages of using the topological mapping algorithm is the decreased number of
computations which must be performed in order to find the next match, due to the limiting property result-
ing from the structure of the map unit. To implement this idea in software, a data type known as a focus is
used. A focus corresponds to the set of the map unit which can be searched for the next valid match. It
operates in much the same way a human mapper would, by keeping track of the three different regions ina

map unit mentioned previously:. the end set, the filled sets, and the current set.

Each focus contains four pieces of information: the Iocations of the border and the candidate, and
the current status of each. As new matches are made, the fragments in a set are internally shuffled to creaie
two partiions. All the matched fragments are placed in one partition, and all the unmatched ones are
placed in the other partition. The border indicates the boundary between the two partitions, while the can-
didate points to the next fragment length to consider for a possible match. The status of each simply
reflects whether that particular component is uninitialized, active, no longer in the current set, or out of the

map unit completely,

The focus is well suited for implementing the ideas of end set, current set, and filled sets. As map-
ping begins, a map unit always starts with only one focus active in it. As the mapping continues, and the
area that contains matches grows, a second focus may be added. One of these two foci keeps track of the
end set, and the other keeps track of the current set. All of the sets in between the ones to which these two

foci point at are filled.

At the start of mapping, four foci are created: one in each map unit SST referred to as a botiom
focus, and one in each known as a top focus. Initially, the border and candidate pointers in the bouom foci
are set to the top fragment in one of the set nodes of the SST. The top foci’s pointers are simply set to

uninitialized, because these will not be needed until the scope of attention must be expanded.

As mapping proceeds, the border and candidate pointers will move to reflect the matches being
made. When all of the fragment lengths in a particular set node have been considered, the candidate

pointer will "run off the edge” of that set node the next time it tries 10 move to a new fragment. When this
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happens, it is time to move to the next set node. Before doing so, however, the second focus is initialized.
One of the two foci will remain in this set node as the other focus moves into a new set node. Which focus
stays and which one advances depends on the current direction of growth. If growth is downward, then the
top focus remains in this set node and the bottom focus expands (moves) into the next lower set node. If

the direction of growth is upwards, then the reverse is true,

Eventually, a candidate pointer will not only run out of a set node, it will run off the end of the SST
completely. When one top focus and one bottom focus have candidate pointers which are out of the SST,
then the mapping attempt is finished. If these two foci belong to the same map unit, then the mapping was
an assimilation (see Figure 11). This simply means that one map unit was totally absorbed into the other.
On the other hand, if the two foci belong to different map units, then this is known as an extension (Figure
12), which means the obvious, i.¢., the two map units contain an overlapping region, but each contains

fragments not found in the other,

Map unit #1 Map unit #2
7120 417 7120 |
5515 e 5515 I
417 1307 e E ---
———————— 1201 417 I I
1201 920 e | |
918 545 1201 ] |
536 000 e 919 1] 2 |
———————— 5211 541 | [
A | |
1307 1307 | |
428 e I I
———————— 5213 | |
________ ] e o —
428 i

Figure 11: Example of an assimilation
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Figure 12: Example of an extension

4.3. Main routines of the algorithm

The routines which perform the majority of the work associated with topological mappings are
topological recurseand grow. Asthe name implies, topological recurse isarecursive
routine. Topological recurse is also mutnally recursive with grow, meaning that grow can

call topological recurse which in turn can call grow again.

Since the goal of a mapping attempt is to find every valid solution, all possible ways of combining
the fragments in two map units must be considered. Many of these ways are destined to lead to dead-ends.
When this occurs, the algorithm must have the ability to "back out” of its last move (the one which directly
led 1o this faiture) and attempt a different move. Also, since all solutions are desired, even a sequence of
moves which leads to a correct answer must be backed out of, in order to find other valid solutions. This
backing out of a move, or backtracking is implemented partially by the recursive nature of the routines.

The majority of the backtracking, however, is accomplished through the use of do-undo procedures.
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4.3.1. Do-Undo Backtracking

Do refers 1o those routines which cause a change in the state of the map units or in the state of foci
associated with the map units. Undo refers to routines which restore the local computational environment
to the exact state it was in prior to the calling of a do routine. The exact sequence of events which would
be followed is :

(do action A) (call topological recurse) (undo action A)

For example, a routine may be called which makes a maich between the two fragment lengths being
pointed to by the current candidate pointers. Once this match is made, the algorithm needs to consider all
the possible solutions which can be reached with this match in effect, so it calls
topological recurse. Uponreturning, all such solutions containing the match will have been con-
sidered. Since it is possible that solutions exist which do not include this match, this match is undone. At
some point later, topclogical recurse will be called again and will find all of the solutions which

do not include this match.

4.3.2. Pseudocode for topological_recurse

With the understanding of the backtracking method used, it is now possible to understand the logic of
topological_recurse. This is presented in pseudocode in Figure 13. The actual parameter list is
suppressed here because the purpose of this pseudocode is only to convey the overall logic, and some of

the physical parameters deal with concepts not presenied here,

The first thing the routine checks for is to see if the current mapping is finished. As stated earlier,
this is the case when one bottom focus and one top focus are out of the SST. If this criterion is met, then

the routine simply calls zip which forms the resultant map unit for this mapping.

If the mapping is not finished, then the algorithm attempis 1o determine what it should do next by
examining the status of the four foci. It is at this point that the bias towards downward growth can be seen.
The first thing the routine always tries is to grow downward. Itis only when a downward growth attempt is

impossible or all the downward growth attempts have failed that the algorithm turns to the upward
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4.3.3. Pseadocode of grow

The major routine that is called by topological recurseis grow. Before this function can

be called, there is some set-up which must be accomplished.  grow accepts the foci as parameters, as

well as the current direction of growth. Prior to each callto grow, then, in topological recurse,

there is a call to aroutine named advance_to_next match. This routine attempis to discover the

next valid match, and moves the candidate pointers to this match. Then, immediately after the call to

topoleogical recurse ()

{

if (mapping is done)
combine the two map units into an answer ({zip)

else

if (4 focl active) and {(bottom foci are in map units)

else

else

else

attempt to find a match downward
grow()
undo this attempt
if (4 foci active) and (bottom foci are not in map units}
attempt to find a match upward
grow ()
undo this attempt
if {4 foci are NOT active)
if (can find a match downward)
grow ()
unde this attempt

flip(} the direction of current set in first map unit
topological recurse()
unflip() the current set

force an attempt to grow first map unit upwards, maturef{)
topological recurse()
undo this attempt, demature ()

flip() the direction of current set in second map unit
topoleogical_ recurse ()
unflip{) the current set

force an attempt to grow second map unit upwards, mature()
topological recurse()
undo this attempt, demature ()

} end topelogical recurse()

Figure 13: Pscudocode for topological_recurse()
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grow, these pointers are moved backed to their original positions, an action performed by the routine

retreat_from last_advance.

As the pseadocode in Figure 14 indicates, the first action performed by grow is to force the match
to be made between the fragment lengths pointed to by the candidate pointers. Then, the software checks
for aneed to expand. At this point, topological_recurse iscalled. Then, as in all major actions,
this move is undone upon return from topological_recurse. This return may occur, however, after
many more recursive calls to these two routines. Regardless of when this return takes place, it signals that
all the possible mappings involving the matchlist currently being worked with have been considered. The
success or failure of these considered mappings is irrelevant to the algorithm at this level, since all possible

mappings must be examined at some point.

grow ()
{
make the match with current candidate pointer fragments
check for possible need to expand
topological recurse()
contract if expanded
unmake the match

if (growing downward)
move the first unit’s candidate pointer one fragment down
topological recurse()
unmove the candidate pointer

move the second unit’s candidate pointer one fragment down
topological recurse ()
unmove the candidate pointer

else /* must be growing upward */
move the first unit’s candidate pointer one fragment up
topological recurse()
unmove the candidate pointer

move the second unit’s candidate pointer one fragment up
topological recurse()
unmove the candidate pointer

} /* end grow() */

Figure 14: Pseudocode for grow()
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4.3.4. Pseudocode for zip

The functions topological recurse and grow are the heart of the topological mapping
algorithm. There is, however, one additional routine which is important in its own right. This routine,
zip (see Figure 15), is what creates the finished map unit produced by the mapping attempt. While doing
this, zip is also responsible for checking for certain error conditions, as well as comparing answers for

"bestness," as determined by some metric,

The =zip function works with the matchlist which was built during the mapping process. This
matchlist is used in three ways. First, it is used for an immediate test to see if this mapping can be valid, If
the matchlist is empty, or contains fewer than a required minimum number of matches, then no new map
unit is created. Second, the matchlist alone is the first thing which is tested by a metric for goodness,
namely, matchlist subsetness, a topic which is discussed in greater detail in Section 5.3. Last, itis the
matchlist and its relative position in the two map units which controls how the two map units are "zipped”

together 1o form the finished resalt.

zip ()
{
if (matchlist is empty) or
{matchlist does not contain minimum number of matches)
return /* no mapping exists */
check matchlist against current list of answers for "best" one
if (this is a bad mapping}
return
create the tree which will store this answer
copy everything above matchlist in the first map unit into the tree
add matchlist to the right end of the tree
copy everything below matchlist in map unit #2 onto right end of tree
check the "bestness" of this complete answer against previous ones
if (answer is OK)
insert answer into global list
} /* end of zip */

Figure 15: Pseudocode for zip()
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After creating the finished map unit, zip then checks this result against any which already exist. At
this point, another test for "bestness” is performed, this time one involving tree equivalency (sce Section
5.2). If the new map unit gets past this final test, then it is considered to be a valid mapping of the two
starting map units, independent of any others which might have been formed 10 this point. If this is the
case, the new map unit is added to the global list of current answers and control is returned to

topological recurse.

4.4. Communicating with the program: the user interface

The purpose of a user interface, in general, is to provide some sort of logical method for a human
user {o interact with a computer program. Ideally, the interface should be intuitive, easy to remember, and
offer a more knowledgeable user the ability to accomplish complex tasks. The user interface for this
implementation of the topological mapping algorithm is a menu driven one. This interface was designed
with flexibility as a primary concern, as seen by the many options which it allows, But, it is also meant to
shield the average user from inadvertent mistakes. For example, certain menu items are only shown and
active at the times in which their selection would be valid and logical. This prevents the user from being
bombarded by more data than he or she can handle, data which may have no meaning during most of the

program use.

4.4.1. Ways of using the user interface

Since the user interface was designed with flexibility as a goal, it is possible 10 use the software

package at several different levels.

4.4.1.1. Electronic bookkeeper

At the lowest computational Ievel, it is possible to utilize the software for nothing more than a means
of electronically organizing the handmapping process. When a human operator performs a mapping on
even just two map units, the amount of data which must be kept track of is large. As the number of map

units involved in the mapping attempt grows, so does the complexity of the bookkeeping. Then, since all
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possible answers must be considered for an answer to be known to be unambiguous, the process must be
repeated in an attemnpt to generate all of these possibilities. Finally, if a mistake is made with pencil and

paper tracking of the process, time is lost while it is corrected and more paperwork is generated.

While it is possible to perform topological mapping totally by hand, it is a tedious process, prone to
errors. This is where the lowest level of the software can be seen to be useful. Much in the same manner
that a word processor gives a person an electronic notebook for thought comyposition, the topological

software presents the user with an elecironic mapping environment.

Ali of the functions needed while mapping are available as menu selections, A user can choose to
load new map units from storage, choose which sets within a particular map unit 10 work on, match frag-
ments of one map unit with fragments of another, flip a map unit, expand a focus into a new set if the
current is filled, and so on. In addition, the software keeps track of certain potential problems. If, for
example, the user selects to match a fragment of length 789 with a fragment of length 871, the program
will warn that these lengths do not fall within the accepied error range of allowable matches. Still, the
software never tries to limit the operator. Since it is possible that such a match might be vatid (due to
measurement errors, etc.), the program offers the user a chance o override this warning and perform the

match anyway. Protecting without suffocating is the goal of the interface.

With the computer easing the bookkeeping side of topological mapping, it becomes possible for a
human operator to map more efficiently. This is analogous to what happens when someone moves from a
typewriter to a word processor--without the overhead of worrying about the details of the process, the pro-
cess can go faster and with fewer errors. It also frees the mind of the human user for more thought on the

intuitive side of the mapping instead of the more mundane, accounting side of the process.

4.4.1.2. Automatic utilization of the topological algorithm

Diametrically opposed to the bookkeeping use of the software is the sofiware’s ability to map data
antomatically. With the choices available on the menus, the user can load map units into the program and

have it attempt to map them together. All valid answers are presented 1o the user, who then has the option
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of saving one or more of them for future consideration. However, as DNA mapping involves a great deal

of intuition, it is possible that a fully automatic mapping may not yield the best answer.

4.4.1.3. Sharing the burden

To answer the objection to the fully automatic mode, the software has the ability to interact at a high
level with a human user. This process of working together can capitalize on the duality of the DNA map-

ping process; the human can provide the intuition while the computer handles the details,

To use the software in this manner, the human operator would first allow the program to attempt to
find all the valid mappings for a set of data. Then, he or she would analyze these results to determine if
there are any problems which the software did not address in a reasonable way. If this is the case, then cer-
tain parameters may be changed. After this, the software would again be applied to the data to see if any
new and possibly better solutions are discovered. For example, one of the most common parameters to
alter would be the 3% error window which fragment lengths must fall within to be considered the same.
Often, two fragments are known to maich, but they may differ by 3.1% or 3.2%. The human with his or
her experience may realize that the two fragment lengths should match, at which time he or she can change

the error window to a larger value.

This mode of operation js the most efficient. It uses the strengths of both participants in the mapping.

The computer provides speed and thoroughness, while the human adds intuition and experience.

4.4.2. Undoing in the program

As part of the system’s flexibility, it offers the choice of undoing any major action. This is not lim-
ited to a single action; instead, the user can undo any number of operations. In order to implement this
ability, the program uses a stack. As the user selects operations from the menus, each of the actions is
pushed, or placed onto the stack. Each single entry in the stack consists of the actual operation being per-

formed, as well as any parameters needed for the operation.
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When the user decides to undo an operation, the program simply pops, or removes the top element
off of the stack, Since a stack operates in a last-in-first-out manner, the top element will be the last opera-
tion performed. After removing the operation from the stack, the program determines which operation it

was. Then, it determines what operation needs to be performed in order to undo the original action.

This undoing process is aided by the fact that, as explained earlier, each major action needed for the
topclogical algorithm has a comresponding function which will undo it. This greatly eases the whole pro-
cess of undoing an action. The fact that the program allows a user to undo a sequence of actions frees the
user from constantly worrying about the consequences of an action. This allows more experimentation (o

occur.

4.5. Control of parameters

One primary reason for using a computer is 10 increase the ease of doing something. One way that a
software package can do this is to minimize the amount of adaptation that a user must make in order to use
it effectively. With this idea in mind, the topological mapping program uses a set of routines to achieve
parameter conirol. This allows a variety of options to be set at run-time; that is, it allows the user to alter
the settings of the program at the time it is being used, without having to go through the lengthy process of
recompiling it. This greatly speeds any sort of experimentation with the default values which the user may
wish to undertake. The complete list of parameiers available to the user are listed in Table 1. Some of
these options have not yet been presented, but will be discussed in subsequent sections. These are accessi-

ble to the user through the menu option of Param.

5. Decisions which must be made during topological mapping

The lowest level of the software knows how to do one thing: given two map units and four foci
pointing to various positions in them, the software will create a set of every possible way that the two map
units can map together. By limiting the basic activity to this one task, it was possible to program it to do

this one thing very well. However, there are several additional questions which must be addressed about a
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Error Window Percentage
Minimum Number of Matches
Maximum Number of Backiracking Steps Allowed
Subsetness of Matchlists
Tree Equivalency
Top-level methods :
Tree
Linear
Sorted
Ascending
Descending
Subclone Handling
Mid-level methods :
mXn (sets)
m+n-1 (sets)

Table 1
User options

Topological Mapping

mapping, in addition to generating all the possible answers which result from mapping the map units

together. The first is perhaps the most obvious--how are the four foci to be initially chosen?

5.1. Choaosing the foci

Choosing the positions of the foct at which mapping should be started is a preprocessing event, as it

occurs before the base algorithm can start to work. The idea behind this needed action has been mentioned

before. When mapping, a person wishes 10 be certain that all possible combinations of the two initial map

units are considered, in order to ensure that ambiguity does not exist. Each map unit consists of a number

of seis, each containing a number of fragments. Choosing different starting positions (that is, choosing two

different sets as starting Iocations) for the foci may lead to different results. In order to find all possible

solutions, the base algorithm must be started in a variety of ways, which in the aggregate allow any specific

fragment in one map unit to be matched with any fragment in the other map unit.

5.1.1. Every fragment with every other fragment

When considering a mapping involving two map units, one way to ensure that all possible mappings

are created is to begin with the candidates of the initial foci pointing to every possible fragment in the map

units. The first mapping which this approach might try would begin by considering the first fragment in



DNA Mapping -35- Topological Mapping

each map unit as the initial candidate for that unit. After all the possible mappings had been generated with
these two fragments as the initial candidates, the next step would be to move one of them to the next frag-
ment. Then, every possible mapping with these two fragments as initial candidates would be generated.

Eventually, all possible pairs of starting candidate fragments would be checked.

This method would certainly ensure that every possible starting situation had been considered. The
drawback to this method is efficiency. This methed is slow due to its thoroughness. To check every possi-
ble mapping using this method would involve

(@ fragments in map unit 1) % (# fragments in map unit 2)
different starting positions. The software would generate all the possible mappings from each one of these.
Since each starting situation might lead to several mappings, the amount of time required is staggering, For

map units involving any reasonable number of fragments, this method is clearly unmanageable,

A careful analysis of the above approach will reveal a way of improving it. The approach ends up
generating numerous maps for each beginning position of the candidate pointers. If all the possible map-
pings are generated with the candidates initially pointing to the top fragments in each map unit, and then all
the possible mappings are generated with one candidate pointing to the top fragment of the first map unit
and the second candidate pointing to the second fragment of the second map unit, it is highly likely that
many of these mappings will simply be duplicates. The solution to this problem of efficiency is to elim-

inate some of this duplicated work.

5.1.2. Every set with every other set

Instead of considering a fragment-fragment match, there is a better method. By understanding that a
great deal of redundancy is inherent to the fragment-fragment approach, it should be easy to see that it is
possible simply to begin the mappings with every set of the first map unit matched with every set in the

second map unit. The first fragment in each set would be the initial candidate of the foci.

The jump from every fragment to every set does accomplish the desired purpose of reducing the

number of mappings which would be performed as well as lowering the number of redundant answers.
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The important thing to consider is whether or not the set-set method is as thorough as the fragment-

fragment method. It can be shown that it is.

Consider a single set of fragments in any map unit. In a set-set match, the candidate of the focus will
be pointing to the first fragment of this sct when the initial call to topological_recurse is made.
This fragment may be matched with a fragment in the other map unit, and the mapping will continue from
this point, with all mappings involving this first fragment being generated. Obviously, these are the same
that would have been generated by the fragment-fragment method on its first attempt, which also involved

this initial fragment.

At this point, due to the backtracking of topological recurse, the candidate pointer in this
set will move from the first fragment to the next one. The process will repeat itself, generating all map-
pings in which the second fragment matches with something in the other map unit. It is crucial to realize
that this movement of the candidate pointer to the second fragment occurred because of backiracking. In
the fragment-fragment methed, backtracking would also result in this occurring. Then, after
topological_recurse has been returned from at the top level, the fragment-fragment method would
move the focus to the second fragment and call topological recurse again. In summary, every
callto topological recurse with the candidate pointer of the focus pointing to a particular frag-
ment will generate all of the mappings involving this fragment, as well as all of the mappings involving the
remaining fragments in this set (these latter mappings coming about from the backtracking nature of the
algorithm). There is no reason for the method of choosing initial foci positions to test each fragment-
fragment pair in a set explicitly; it is sufficient to test only the initial fragment-fragment pair, and to allow

backtracking to take care of the rest.

But the set-set approach still has efficiency problems. Through empirical testing, there is evidence
that redundancy still exists, although at a greatly reduced level. Additionally, the number of starting
configurations is still significantly large. The actual number of different starting positions will be

mxn

where m is the number of sets in the first map unit, and n is the number of sets in the second map unit. One
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primary reason for using the topological mapping algorithm in the first place was to capitalize on the infor-
mation provided by knowledge of the map units’ structure. But, the more that is known about the structure
of the map units, the more sets they will contain, With the set-set strategy described above, more sets will
yield longer running times. This fact tends to counteract the benefits of using topological mapping in the

first place. A better method needed to be found.

5.1.3. A modified every set with every cther set method

The original set-set (m X n} approach is still relatively inefficient because one specific match between
two sets in the different map units can produce essentially the same "shift" between the map units as
another different match between the sets. The way to eliminate this inefficiency is to cause the two map
units to "slide” continuously without reproducing any equivalent positionings. To follow the logic, con-
sider the example shown in Figure 16. With the four sets of map unit 1 and the five sets of map unit 2, the
set-set method would have to consider 20 (4 x 5) different starting configurations. Admittedly, this is a
greatly reduced number than the fragment-fragment method, which results in 285 different starting
configurations (15 fragments in map unit 1 and 19 fragments in map unit 2), but efficiency is still an issue,

As before, the key to improving efficiency is to consider the problem of redundancy.

Consider the set-set method as it has been presented. The set-set method would first find all the map-
pings which result from initially matching set A with set Z. Then, A would be matched with Y. A would
next be matched with X, W, and finally V. With A having now been matched with every set in map unit 2,
B would now be matched with Z. After B is matched with all the sets in map unit 2, the process would be

repeated for C and for D.

Now, however, carefully examine the case when A is matched with Z. At some point in the course
of the mapping corresponding to this initial configuration, the focus of map unit 1 will move to B, and the
focus of map unit 2 will move to Y. Alternatively, consider a subsequent starting configuration of B
matched with Y. Since the mapping proceeds in both directions, at some point the foci will have moved

into A and Z, respectively. This overlap of work is the source of the redundancy in the raw set-set method.
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Map unit 1 Map unit 2
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-------- 6776
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Figure 16: Example of set-set mapping attempt

In order to combat this, a modified set-set approach was designed. Instead of every set in one map
unit being matched with every set in the other map unit, the two map units are treated as "sliders.” Return-
ing to the example of Figure 16, set A is maiched with every set in map unit 2. Then, set Z is matched with
sets B through D, Since the foci expand freely between the individual sets of a map unit, this reduced
number of initial positions still allows all possible mappings to be discovered, while reducing the number
of redundant answers produced. The actual number of starting configurations is reduced to

m+n-1

with m and n again being the number of sets in each map unit. For this particular example, the number of
starting configurations which need to be considered is only 8, as opposed to the 20 required for the original

set-set method. With larger examples, the savings would be even greater.
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5.2. Choosing the best mapping: map unit equivalency

As mentioned earlier, one problem associated with topological mapping is that of equivalent solu-
tions. The term tree equivalency is used to describe the new siiuation, as define below by length
equivalency. (This refers to the internal representation of the map units as sequence-set trees. The alternate
term map unit equivalency represents the same concept.) When it occurs, it is necessary to determine
which mapping is the "best" one and continue the mapping with that map unit. There are a number of
methods by which "bestness" can be determined. The one which is currently implemented by the software

is a rough analysis of best calculated fit.

Best calculated fit attempts to determine which of the mappings involves pairs of fragments with the
least “spread” separating the fragment lengths. The mapping which contains the least difference calculated

over all of the match pairs is considered "best”.

The best calculated fit implements a multilevel test. First, the two map units in question are tested
for structure equivalency. Two map units are defined as structurally equivalent if and only if they contain
the same number of sets of fragments, the corresponding sets contain the same number of fragment lengths,
and the positioning of clone ends in the corresponding sets is identical. If the two map units are determined
to be structurally equivalent, they are next tested for length equivalency, This is the property of 1) being
structurally equivalent and 2) having all the corresponding fragments in the two map units falling within

the error threshold with regard to their lengths.

If the software determines that two map units are Iength equivalent, it then calculates a fit number for
each. The map unit with the best (lowest) fit number is kept, and the other is discarded, This test is per-
formed on every pair of map units produced by a mapping attempt. As with all of the pre- and post- pro-
cessing routines, it is the option of the user to enable and disable this functon. There may, for instance, be

times when a user wished to be presented with all the possible answers, and not just the "best" ones.
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5.3. Choosing the best answer: mafchlist subsetness

When mapping, the "best" answer is often the answer which is the most compact. Consider the two
map units in Figure 17. There is a total of four fragments which can be matched. Each of the mappings
shown is a possible answer. In a case like this one, it is generally best to choose the first answer, because it

contains fewer total fragments and is, therefore, more compact.

The key to identifying the most compact map unit lies in the matchlist being constructed by the algo-
rithm. The most compact map unit has the matchlist containing the greatest number of matches. In fact,
the matchlists of each of the nearly identical, but less compact map units, are simply sets of fragments
which are subsets of the set of fragments contained within the longest matchlist. This property is defined as

matchlist subsetness. Utilizing this property, the software has an option to invoke a postprocessing test

#1 #2
6198 8567
4082 6105
1614 4109
1392 1586
1150 1139
637 0 mmmmm—n
513
Answer A Answer B Answer C Answer D
8567 8567 8567 8567
———————— 6105 6105 6105
6157 = ——————— 4109 4109
4096 4096 20 ———————- 1586
1600 1600 1600 000 mmme—————
1145 1145 1145 1145
13%2 6198 6198 6198
637 1392 4082 4082
513 637 1392 1614
-------- 513 637 1392
~~~~~~~~ 513 637
~~~~~~~~ 513

Figure 17: Four different answers
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for matchlist subsetness. As each new potential answer is discovered and is attempted to be zipped into
existence, zip first does a test in order to discover if the current matchlist is a subset of an existing one.

If so, this potential answer is discarded.

There are two ways to determine matchlist subsetness. The first method was the one originally
employed by zip. Matchlist A is a subset of matchlist B if and only if each fragment-pair of A exists in
B. This involves a comparison of actual fragments; fragments which are equivalent are not used for this

test.

In many cases, this method suffices. However, consider the case in which matchlist A is not a subset
of maichlist B, but is a subset of matchlist C where matchlist C came from a map unit which was
equivalent to the map unit which matchlist B came from, and was discarded earlier. The map unit which
would be formed from matchlist A is not as compact as possible, and should be discarded, but the simple

subsetness test would fail to discover it.

To combat this problem, a test for matchlist subsetness relying on length was developed. However,
this method, in its pure form, would also be unsatisfactory. Consider a case of equivalent map units. These
must have the same matchlist, at least as far as length is concerned. The subset test would eliminate one of

the equivalent answers without incorporating a proper test to determine which was "better”.

To overcome all of the deficiencies mentioned to this point with regard to subsetness, a combination
of the two methods is used. This hybrid method uses the exact fragment subset test if the two matchlists
have the same cardinality. This addresses all the possible equivalent answers, since two equivalent
answers must have matchlists of the same length. If, on the other hand, matchlist A is a proper subset of
matchlist B, that is, there is at least one fragment length in B which is not contained in A, then the subset
test involving length is performed. By successfully combining the two ideas, a new method is created

which still permits the later testing for map unit equivalency, yet discards any valid subsets.



DNA Mapping -42. Topological Mapping

5.4. Limiting the search for answers

"The base topological mapping algorithm is designed to produce all the possible answers for a given
set of map units. This can Iead to a lengthy running time in some cases. The case where two map units
have a large number of matches is an example of this. Consider two map units which have a ten fragment
overlap. The algorithm will produce an answer incorporating a ten fragment matchlist. The algorithm will

also generate an answer which contains a nine fragment matchlist: in fact, it will produce ten such answers

{
(the number of nine fragment combinations from a field of ten fragments is given by the formula ( 1'1 )(Zé)!)

(or simply 10). The algorithm will also create possible answers containing eight fragment matchlists, of

10!
(2181

down to whatever the minimum Iength of the matchlist is defined to be), the algorithm does a tremendous

which there are » or 45. Considering all of the possible sizes that a matchtlist could be (from 10

amount of work in order to produce all of these answers. Most of this work is unnecessary as well. With a
ten fragment maximal matchlist, all nine fragment matchlists are subsets of the ten fragment one, All of
these answers will be filtered out by the postprocessing matchlist subset routines, By this time, however,

the program has already expended a lot of work.

The solution is 10 eliminate such answers as the algorithm is creating new potential maps. In order
to accomplish this goal, a thorough understanding of the algorithm and its backtracking implementation

was needed.

When a mapping is first attempted on two map units, the algorithm accepts the first matches that it
finds at every level of recursion. Each level of recursion represents one entry in the matchlist. Because of
this ordering, the first answer produced is one containing a matchlist with a maximal number of fragments.
At this point, the last fragment match is undone, and a new match is searched for. If one is found, then two
answers now exist with matchlists which differ by one fragment. If, on the other hand, no new match is
discovered, then the next answer created is the one containing the maximal matchlist minus the last match.

This matchlist is a subset which should be discarded,

In order to implement this idea of limiting searches to matchlists which are not subsets of others, it

was necessary to limit the amount of backtracking allowed by the algorithm. By keeping correct count of



DNA Mapping -43- Topological Mapping

the calls between the two recursive routines, it was possible to keep a record of when backtracking was
performed, Every call to topological_recurse checks this count to see if it exceeds a maximum

allowed backtrack count. If it does then no further backtracking is allowed.

5.4.1. When is backtracking not backtracking

There is a special case of backtracking when it should not truly be counted as a backtracking attempt.
Consider a case where one map unit contains a fragment of length 1000, and the other map unit contains
fragments of lengths 1010 and 990. The initial match would be between 1000 and 1010. When backirack-
ing is performed and this match is undone, 1000 and 990 would match next. But, this is not a new match, it
is simply an equivalent match. No backiracking has actually taken place, from the point of view of the

matchlist. It still contains the same lengths, at least when the error window is considered.

Added to the software to take care of this is a routine which checks the next match to determine if it
is an equivalent match. If so, the backtrack count is decreased by one to offset its incorrect increase earlier.
This checking routine is not foolproof, and can sometimes be fooled, especially if the equivalent match
does not occur at the next match or is in another set of the map unit. Still, by allowing this level of check-

ing, more refinement can be gained.

5.4.2. What is lost, what is gained?

The important guestion to consider is how this modification affects performance. Obviously,
answers are discovered more rapidly, often in only a fraction of a second. There is also a high probability
that the answers provided are the best of all the valid answers. There exists the possibility, however, that
the backtracking check will inadvertently wipe out an equivalent answer which may be better than any it
discovers. This should be kept in mind while using the software. The ideal usage of this tool would be to
have the backiracking set to a low level at the start of a mapping attempt. This will rapidly generate
answers which are highly likely to be the best ones. If the user determines that something is being lost, he
or she always has the ability to increase the level of backtracking permitted, in order to discover these lost

answers.
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6. Top-level strategies

Up to this point, the discussion has centered on how to take two map units and produce all the valid
mappings which can result from them. There is a higher level of operation than this one. This can be
stated as :

Given a set of n map units, what is the best way to attempt

to map pairs of map units together, with the goal being to

create as few (hopefully ong) final map units as possible?
In this case, set has an imprecise meaning, more akin to the common usage of it referring to any group of
objects. For the purposes of the computer algorithm, the map units are actually stored in an abstract data
structure called a list. This is 1o allow the algorithm to access the map units by position; for example, pick

the fifth map unit in the list and perform some action on it

Returning to the problem, a brute force method would work. Simply determine every sequence in
which the list of map units can be mapped together. Then, try each of these mapping sequences, Finally,
determine which of the sequences leads to the best final answer. With n map units in a list, this method
would require n! sequences to be generated and attempted. Also, since each sequence consists of n map
units, a minimum of n-1 mappings will need to be performed in order to map the data together for each
sequence tried. Once again, it is not sufficient 1o stop after a successful mapping, as all the sequences
must be generated and tested in order to assure that ambiguous answers do not exist. This means that (n-
1){n!} mappings need to be attempted. Finally, with each mapping attempt being time consuming, the

amount of running time needed for this brute force method is too large to be effective.

The solution is to to create a heuristic which has a high probability of success, This heuristic wounld
not have to consider all the possible mappings, just the most likely ones, Naturally, this leads to a decrease
in time required o map a list of map units. On the other hand, no such heuristic is guaranteed to work in

all cases. The problem becomes a time-certainty tradeoff.
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6.1. Methods of ordering the mapping of a list of map units

At the most basic level, a method of determining the order in which to attempt the mapping of a list
of map units must be developed. There are two basic ways of looking at this problem. Both have sirengths

and weaknesses, and neither has proven itself to be 100% useful.

6.1.1. The linear methed

The linear method (see Figure 18) of mapping is the easiest 1o visualize. In fact, this is the method
normally utilized by humans during handmapping, and was used during the example depicted in Figures 1
through 5. Consider a list containing five map units, labeled A through E. First, the algorithm would
attempt to map A and B together. If successful, the number of total map units drops to four. Then, the new
map unit A+B would be mapped with C, if possible. This process continues, with each new map unit sim-
ply being added to the map unit being built. If all of these map units correctly map together, then the linear
method will make a top level call to topological recurse a total of four times. In general, a best
case performance of the linear algorithm on a list of n map units requires n-1 top level calls to

topological_ recurse.

If a mapping is unsuccessful, some type of action must be taken. Assume that A and B failed to map
together and give a unique solution. In such a case, B would be delayed from further consideration until all
the other map units had been examined. Consider a case where A, C, and D mapped together. After the
first pass through the list, the map units now look like this:

A+C+DBE
with neither B or E being mapped successfully with A+C+D. Now the algorithm will stop considering
A+C+D and attempt to map B and E together. If successful, the list is now A+C+D and B+E. The algo-
rithm would atiempt to map these two units together, and, if it failed, would return these two as the solu-

tion.

It is possible for a mapping attempt on a map unit list to be unsuccessful in mapping all of the map

units together. If this is the case, then islands are said to have been formed. It might actually be that the
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for 1 =1 to {# of map units in list} {
success = TRUE
while (success = TRUE} AND (more than one map unit) {
success = FALSE
get treel from position i of list
for j = (i+l) to (# of map units) {
get tree2 from position j
attempt to map treel and tree2
if (successful mapping) f{
success = TRUE
remove tree2 from the list
store answer
}
}

replace position i with answer

Figure 18: Pseudocode for linear method
initial data list contained map units from two noncontinuous regions of the original genome, or it may indi-
cate that the software was simply unable to find a unique, unambiguous solution. It is the responsibility of
the user to determine this, and to act on it. It is always possible to alter various parameters and then to
resubmit the new list of map units to the program, in order to try to create a single map unit. It is this flexi-

bility which makes the software useful.

6.1.2. The tree method

As an alternative 10 the linear method, the tree method (see Figure 19) was developed. Rather than
the answer growing in a linear fashion from left to right, the answer is built up in pieces. Again, assume a
working list containing five map units, labeled A through E.  The tree method begins on the left and
attempts to map A and B. Then, it attempis to map C and D. E is a leftover map unit and must be delayed

until the next pass.

After the first pass, the list has become (assuming that all mapping attempts were successful):
A+B C+DE
Next, A+B is mapped with C+D, again leaving E as a loner. This results in A+B+C+D and E. Finally, the
algorithm attempts to map A+B+C+D with E and finished. Notice that the number of top level calls to

topological recurse is again four, the same as with the linear method, In general, best case
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performances of both methods yields a total of n-1 top level callsto topological recurse, givena

list of n map units.

As before, it is important to ask what happens if a mapping attempt is unsuccessful, If the algorithm
attempts to map A with B and fails, it attempts A with C, then A with D, and, if needed, A with E. No map
unit which fails to map is ever discarded completely since there is always the chance that it might map into

the answer at some latter point.

6.1.3. Comparison of the two methods

Both the tree method and the linear method require the same number of top level calls to
topological recurse. Even so, the tree method is superior to the linear method for ordering map
units. This is due to the fact that the tree method quickly adds topological information to the mapping
attempts. The linear method does not give this added benefit. Since topological mapping depends on struc-
ture in the map units as a way to improve efficiency, it is advantageous to attempt to build this structure as

quickly as possible.

While working on a map unit list with the linear method, there is one map unit which represents the

answer being built. All of the other map units are the original ones. No new structure is added except

success = TRUE
while (success = TRUE) AND (more than one map unit) {
success = FALSE
for i = 1 to (# of map units in list) |
get treel from position i in list
for j = (i+1l) to (# of map units in list) {
get tree2 from list at position j
attempt to map treel and treel
if (successful mapping) {
success = TRUE
remove treel and tree2 from the list
put (treel + tree2) in list at position i

Figure 19: Pseudocode for tree method
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when a map unit is finally mapped into the answer. This is in contrast to the tree method. Afier the first
pass on a list of map units, several map units should have mapped together. This forms map units with
more structure, Then, when the second pass is performed, the algorithm is working not with the original
map units, but with the more structured results of the first pass mappings. Each subsequent pass is working

with more structured map units.

Because of this fact, the tree method is best used along with the method of combining sets which
results in m + n - 1 mappings. On the other hand, the m + n - 1 method gives no performance advantage
over the m X n method on a map unit list being mapped with the linear method, if the list contains only
clones. Clones contain only one set. The m % n method of combining sets will always yield m X 1 = m ini-
tial configurations with the linear method, while the m +n - 1 method will canse m + 1 - 1 = m initial
configurations as well, providing no improvement. In contrast, the tree method will map these one set map
units together, rapidly forming more complex map units, so that the savings of the m +n - 1 over the m X 1t
method becomes more prevalent. This combination creates an extremely efficient method of attacking a

mapping problem.

6.2. Preprocessing to aid the software

On top of the software as a whole, there are several techniques which have proven valuable in reduc-
ing the amount of time required to map a kst of map units, as well as to improve the quality of the results.
These are referred to as preprocessing techniques, Often, these preprocessing routines do not have to be
as efficient as the routines contained in the base mapping algorithm itself, because preprocessing usually is

performed only once,

6.2.1. Sorting the clones

The easiest type of preprocessing to perform on a map unit list is simply to sort them, based on the
number of fragment lengths. Then, mapping can begin with the two map units with the most fragments.
This is exactly what the original example in this report used when the two longest clones were selected.

This helps in three areas. First, there is more information to work with in longer map units, providing a
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large amount of data early in the mapping process. Second, if a minimum number of matches is required, it
is more likely that two long map units will overlap with this minimum than two shorter map units. Last,
shorter map units are delayed in the mapping attempt. Smaller map units tend to be more likely to lead o

ambiguities than do larger ones.

6.2.2. Delay of subclones

Another method, similar to sorting, involves a delaying action performed on any subclones which
exist in the data list. -A subclone is defined as a clone whose fragment set is a proper subset of another
clone’s fragment set. This second clone is referred to as a superclone. A subclone may have several
superclones with which it may be associated. The problem with subclones is that, by their very nature, the
data which they contain adds no new knowledge about the fragments contained in a mapping being per-
formed. A subclone can only add structural information. Unfortunately, if a mapping is attempted
between a subclone and one of its superclones, this mapping will be ambiguous. For example, if the sub-
clone

{5430, 3332, 1010, 876, 545)
is involved in a mapping attempt with its superclone

{5450, 3334, 2560, 2019, 1012, 880, 549}

then this problem of ambiguity arises. It is known that the set of fragmenis

{5440, 3333, 1011, 878, 547}
overlap. The problem is what to do with the two "leftover” fragments of the second clone. Do they both
go on cne “"end"” of the mapping, producing

{2560, 2019} {5440, 3333, 1011, 878, 547}
or do are they split, one on each "end" of the created map unit?
{2560} {5440, 3333, 1011, 878, 547} {2019}

Since there is so Iittle structural information available in the clones, it is impossible 10 know the correct
way for this assimilation to be resolved. So, this yields an ambiguous mapping. It is therefore advanta-

geous to ensure that the algorithm does not attempt to map subclones onto superclones.
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On the other hand, it is impossible to ignore subclones completely. Towards the end of a mapping
activity, the data which they contain become invaluable for refining the final map unit produced. The sub-
clones do not provide any information about new fragment lengths (since all the fragments of a subclone
have already been handled by its superclone mapped earlier), but they can provide more information con-

cerning the topology of the map unit in the region into which the subclone maps.

The software attempts to allow the topology-aiding benefits of subclones while protecting itself from
the detrimental effects. In order to accomplish this duality, the software first sorts the list of map units
under consideration. It then separates this sorted list into two lists, one of superclones and one of sub-
clones. Next, the software attempts to create a mapping for the list of superclones. Finally, the Iist of sub-
clones is rejoined to the list of answers produced from the initial mapping attemnpt. This new list is resub-
mitted to the mapping algorithm. This protects the software from including the subclones too early
(increasing the chances that a subclone will not map directly to one of its superclones), yet still permits the
data in the subclones to contribute to the final answer. Also, there are additional safeguards in the software
which will catch a subclone if an attempt is made to map one onto a supercione. If so, that particular map-

ping atternpt is discarded, just as a normal failure would be.

6.2.3. Godslist

An extremely promising form of preprocessing exists in a form known as godslist. This rather lofty
title simply refers to a list which contains maiches which are known to be correct--either through human
intuition or by experimentation. The "god" in the name refers to the fact that the algorithm is ignorant of
the source of the knowledge; it merely assumes that this knowledge is valid. From the algorithm’s perspec-

tive the data comes from an all-knowing, infallible god.

As the algorithm proceeds in a mapping attempt, every move to a new candidate fragment causes a
check to be made against godslist. If this fragment is found to be in godslist, then it is immediately
matched with the correct fragment in the other map unit, and the mapping continues. This saves all of the

time which would normally have been spent in order to find this match.
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As with all other base routines, there is a routine which undoes a match from godslist. If the algo-
rithm is backing out of a particular mapping attempt, and a godslist match is undone, then this routine han-
dles the repositioning of the fragments and the foci pointers to their positions prior to the making of this

match.

In addition to decreasing the ime required to find certain matches, another helpful aspect of godslist
lies in determining the validity of the final answer produced. If godslist contains five pairs of matched
fragments, and a solution contains only four of these, then this solution is invalid, given the knowledge
contained in godslist. In this way, godslist is an aid in cutting down postprocessing time. Godslist is also a

valuable preprocessing tool. This is the area where its usefulness becomes most readily apparent.

6.2.3.1. Ways of using godslist as a preprocessing aid

The easiest way to use godslist in this fashion is simply to have the user select the fragments in the
two map units which he/she knows belongs together. This knowledge may come from exact DNA
sequencing of the data, or from the user’s intuition that two particular pieces "have" to fit together, even if
an initial application of the software failed to reveal this. As the algorithm proceeds in the mapping
attempt, all of the matches in godslist will automatically be made, if possible. As mentioned earlier, this

reduces the amount of time required for the final mapping.

Another potential use of godslist comes from an interesting fact concerning DNA fragments lengths,
The probability of a certain fragment length occurring in a data list decreases as the length of this fragment
increases. In other words, there is a higher probability of shorter fragments being present than longer ones.
If two map units contain fragments of 6900 bp and 7100 bp in length, respectively, these two fragments
have a high probability of being the same one, even though they are farther than 3% apart. By making use
of this fact, the software could make a prescan of the map units, searching for such large fragments. When
two long fragments had been discovered and there was a high likelihood that they pair, then this match

could be added to godslist to be acted upon later,
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6.2.3.2. (iodslist and group interaction

Once a godslist is formed and being used, the question addressed earlier of how to maich sets in one
map unit with sets in the other becomes irrelevant. As long as one fragment pairing is known to exist
between two map units, then the starting set in each map unit should be the set containing this known
paired fragment. If more than one match is known, any of the corresponding sets may be used. This fact
drops the number of top-level callsto topological recurse from m X n (for set-set), or even from

m+ n - 1 (modified set-set) down to exactly one.

6.2.3.3. Using godslist to determine mapping probability

Another interesting preprocessing use for godslist is to determine whether or not a requested map-
ping is actoally possible, given the current topology of the two map units, as well as the maiches in
godslist. It is possible to test two map units for a property known as compatibility with godslist. This idea

is closely related to the simpler idea of the order of the fragment lengths.

Once a godstist is known for two map units, it would be possible to order this list based on the first
fragment of each pair. One way of ordering would be to order the pairs of godslist in the same order that
the first fragment of each appears in the first map unit. After this is done, the second map unit could be
compared to the second fragment of each pair. If the order that these fragments appear in the now ordered

godslist matches the order that they appear in in the second map unit, then a mapping is possible.

A second case would be that the order of the fragments in godslist is exactly the reverse of the order
of the fragments in the second map unit. I this is the case, it is simply necessary to flip the second map
unit and then a possible mapping could exist. The final case is that the two orders are completely different,
in which case no mapping can exist between these two map units, since the validity of godslist is unques-

tionable by the software.

Unfertunately, this simple idea of order is not sufficient to determine compatibility, The specific
order of the fragments within any particular set is irrelevant. A simple ordering of all the fragments is not

able to take this into account, and would fail to identify some valid mapping attempts as such. Due to this
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limitation, the idea of compatibility is used instead of order.

Two map units are said to be compatible with a given godslist if and only if the godslist could have
been created from both map units. Using this idea, the rest of the checking routine is identical to the one
presented for ordering of godslist. The two map units are checked for compatibility against godslist. If
they are compatible, then there is a chance of producing a valid mapping. If they are not compatible, then
the second map unit is flipped, and the test is performed again. If they are now compatible, then the new
orientation may produce a valid mapping. If they are still incompatible, then no valid mapping can exist
for these two map units given this godslist. By spending the small amount of time needed to check godslist
compatibility, map units with no hope of mapping together are eliminated without any calls to

topeleogical_ recurse. Thiscan translate into very significant time savings.

7. Results of the methods presented

In order to examine the abstract ideas developed in this paper, the software was run on a variety of
test cases. Although one can never prove a general idea by examining test cases, test runs allow valuable

knowledge to be discovered about the concept.

7.1. Sources of data used

There were two sources of data used for the test cases. One was aciual data collected from Maynard
Olson’s laboratory, for which maps had been created. These data were useful due to the fact they came
from the "real world." However, it suffered from certain inherent limitations, Part of the reason for run-
ning test cases is to form some sort of idea about the accuracy of the results. The problem with this first set
of data is that the true solution is not actually known. Since DNA mapping is a statistical puzzle, it is only
possibie 10 know that the answer produced from these past mappings has a high probability of being
correct. If the topological algorithm produced different results, these results may be invalid or may be as

valid as the ones produced earlier by the Olson laboratory.
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In light of this, a DNA simulator was developed for use in the DNA mapping group. This was used
to produce test cases as well. There is one major advantage of this type of data over the other; since the
creation of the map unit data is simulated, it is possible to determine the true map. It becomes possible,

then, to gauge the true strengths and weaknesses of the topological algorithm,

7.2, Results of real-world data

The tests performed on the real-world test cases were the most successful. There were a total of nine
separate test cases, ranging from.lists containing as-little as four clones, up to lists containing thirteen
¢lones. The results from the first test runs are shown in Table 2; all times are shown in seconds on a Sun

3/60.

These cases show several interesting facts about the algorithm. First, speed is not directly related to
the number of clones involved. Instead, the time required for a mapping is directly related to the number of
possible mappings which can exist within a set. This, in tum, is the result of the number of fragment

Iengths which match between any two map units. Because of this, the number of map units to be mapped

Metheds
A : linear, m X n
B : tree, m+n -1
C : sort decreasing length, then 2
D : sort decreasing length, then B
# of clones A B C D Successful
5 5.32 11.79 3.52 2.28 yes
7 6.02 5.30 3.94 4.86 ves
4 102.00 4.20 6.66 3.66 yes
5 585.58 45.54 99.99 99.68 ves
13 19.86 18.56 42.00 25.80 ves
10 23.58 37.08 270.90 50.68 yves
11 17.44 6.74 235,00 330.78 3 islands
11 5.62 8.26 81.82 85.64 2 islands
10 36.08 6.22 28,04 11.34 3 islands
Table 2

Results from initial test runs
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is not an accurate method of estimating time requirements.

Second, the algorithm proved fairly effective. On this initial run, six of the nine sets of data were
successfully resolved by the software, Human examination revealed that the remaining three data sets
failed to map together due to fragments being slightly more than 3% from each other in length. By altering

the error window parameter, it was eventually possible to map all nine of these test data sets successfully.

Last, as expected, the tree method of attempting a mapping proved 10 be faster, in general, than the
linear method. In some cases, this difference was significant (for example, 585.85 seconds io 45.54
seconds). There were three cases where the time for the tree method actually increased in comparison 1o
the linear method. Still, the tree method performed better overall. Also, sorting the sets proved effective in
many cases, but there were some significant degradations of performance (most notably 6.74 seconds

becoming 330.78 seconds after sorting).

To summarize these initial test cases, it is obvious that the software is effective. It is also obvious
that no one method seems assured of always being the most efficient. From these results, though, method

B seems to provide the best chances for success.

After these initial test runs, the software was modified by implementing the backtrack limiting idea
discussed earlier in Section 5.4. By setting a backtracking level of 0, only mappings with the longest
matchlists will be created. This greatly cuts down on the number of map units produced. It eliminates a
good number of postprocessing tests for equivalency and subsetness. In general, the speedups from this

method will be phenomenal.

Of course, nothing is gained without a price. The price in this case is the decreased number of suc-
cessful mappings. Instead of six of the data sets immediately leading to valid mappings, only four did.
However, these four were discovered in a fraction of the time it took using the original method. Again, the
human always has the opportunity to alter the parameters and remap a data set. Because of this, all nine
data sets can still be successfully mapped; it simply requires human intuition and intervention. Thus, data
sets that can be mapped together easily can be mapped quickly. More difficult data sets will require more

time and human intervention, but time has been saved, overall, by eliminating the simpler cases.
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7.3. Results from simulator data

The results from the simulated data were less encouraging, but enabled several problem areas o be
discovered. Test cases were run on simulator data containing 16, 32, and 64 clones. The 16 clone set
proved no problem. However, neither the 32 nor the 64 clone set mapped successfully. Careful examina-

tion of the data revealed two sources of problems.

First, there existed more subclones in the data than expected. This cut down on the number of valid
clones available for the initial mapping attempt. Second, the normal random error introduced into the frag-
ment length data often resulted in a greater than 3% difference in fragment lengths. This, of course, led to
fragment pairings being overlooked. When the error window was expanded to allow these matches to
form, too many other fragments matched as well. This caused ambiguous solutions to be produced. A

proper balance was never obtained.

The simulator test cases reemphasize the earlier point of combining the abilities of a human and the
software, Although neither of the larger data sets was successfully mapped, the preliminary results which
the software was able to obtain would reduce the amount of work a human would have to do in order to
finish the mapping. Again, this is the utilization of the software which should prove the most effective and

efficient in the majority of mapping cases.

8. Conclusion

DNA mapping is a complex and intuitive process. The fact that it relies on a great deal of data mani-
pulation implies that it can be computerized, at least 10 some degree, The method of topological mapping
presented in this paper is a promising one. The results it is capable of producing are encouraging, While
the current implementation of it is not guaranteed to perform correctly in all situations, it has shown itself

to be a valuable ool.

The software exists in a modularized form. When better top-level algorithms for ordering the map

unit data are developed, they can easily be linked into the existing framework, Whether or not the degree
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of accuracy reached by the topological mapping algorithm ever reaches that of a human remains to be seen.
However, this was not the primary design consideration for this software. Its goal was to provide a product
capable of aiding a human mapper, producing a combination which is more effective and accurate than the
sum of its parts. In this respect the software is a success, even in its current state. Future modifications

will improve its abilities even further,

Many of the ideas developed during the creation of this software have already been transferred to
other forms of DNA mapping. For instance, the concept of subclone/superclone is now used elsewhere,

and the strategies presented in Figures 18 and- 19 have been incorporated as a general approach,
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