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ABSTRACT
Identifying intrinsic structures in large networks is a funda-

mental problem in many fields, such as biology, engineering
and social sciences. Motivated by biology applications, in this
paper we are concerned with identifyingcommunity structures,
which are densely connected sub-graphs, in large biological
networks. We address several critical issues for finding com-
munity structures. First, biological networks directly construc-
ted from experimental data often contain spurious edges and
may also miss genuine connections. As a result, community
structures in biological networks are often weak. We introduce
simple operations to capture local neighborhood structures for
identifying weak communities. Second, we consider the issue
of automatically determining the most appropriate number of
communities, a crucial problem for all clustering methods. This
requires to properly evaluate the quality of community struc-
tures. We extend an existing work of a modularity function for
evaluating community structures to weighted graphs. Third,
we propose a spectral clustering algorithm to optimize the
modularity function, and a greedy 
 -way partitioning method
to approximate the first algorithm with much reduced running
time. We evaluate our methods on many networks of known
structures, and apply them to three real-world networks that
have different types of network communities: a yeast protein-
protein interaction network, a co-expression network of yeast
cell-cycle genes, and a collaboration network of bioinforma-
ticians. The results show that our methods can find superb
community structures and the correct numbers of communi-
ties. Our results reveal several interesting network structures
that have not been reported previously.

Supplementary information: http://cic.cs.wustl.edu/kcuts/

1 INTRODUCTION AND OVERVIEW
Complex network structures have drawn much interest lately
in many fields of research, ranging from biological studies
(e.g., genetic networks, [2]), engineering (e.g., the Internet,
[8]), and social sciences (e.g., scientific collaborations [11]).

�
This research was supported in part by an NSF grants ITR/EIA-0113618

and IIS-0535257, and a grant from Monsanto Corporation.�
Corresponding author. Email: {jruan,zhang}@cse.wustl.edu.

In a framework of network analysis, a system is modeled as a
graph, in which the nodes are the elements of the system (e.g.
genes in a regulatory networks), and the edges represent the
interactions, links, or similarities between pairs of elements.

One of the key problems that attracted a great deal of interest
recently is discovery of the so-called community structure,
a relatively densely connected sub-graph. Discovering such
structures is fundamentally important for understanding the
dynamics and design principles of complex systems. In the
context of computational biology, large-scale experiments
and integration of large sets of experimental data have pro-
duced maps of several biological networks, such as metabolic
networks, genetic interaction networks,protein-protein physi-
cal interaction networks, transcriptional regulatory networks
and gene co-expression networks. Several attempts have been
made to identify patterns from these networks including com-
munity structures, which are often referred to as functional
modules in bioinformatics literatures [14, 20, 23].

Identifying community structures in a network amounts to
clustering nodes into groups.Many clustering algorithms have
been proposed in diverse areas, including bioinformatics, data
mining, VLSI design, and social networks. However, most
conventional algorithms, e.g. k-means, self-organizing maps,
hierarchical clustering, and many other surveyed in [6], are not
designed specifically for clustering networks. These methods
usually cluster objects in a metric space, and make strong
assumptions of the statistical or topological properties of the
clusters, e.g., Gaussian distributions and spheric shapes. Most
real networks do not agree well with these assumptions. Ano-
ther critical issue in clustering networks is to determine the
right number of clusters. This fundamentally important pro-
blem is difficult in general, and requires deep insight into
the data of interest. A few ideas have been proposed for this
problem, however, with limited success [3, 24].

Recently, Newman and Girvan [12] proposed a network
clustering algorithm that depends heavily on the topological
information of a network. Their method is based on the con-
cept of edge betweenness centrality [5], which measures how
likely that an edge will connect two nodes in two commu-
nities rather than within the same community. Furthermore,
they also proposed a modularity function,called  , to quantify

© Oxford University Press 2003. 1
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the strength of community structures [12]. They empirically
showed that high  values are often correlated with high-
quality clusters for both computer-generated and real-world
networks. Therefore, their method can potentially be used to
automatically determine the number of clusters. Their method
has been successful on a variety of networks [12].

Another family of approaches for clustering that have been
studied extensively in computer science is the spectral clu-
stering algorithms. According to spectral graph theory, it is
well-known that many graph properties are related to the
eigenvalues and eigenvectors of the Laplacian matrix of a
graph [4]. Several algorithms have been designed to suc-
cessfully partition graphs by embedding nodes into eigen
space and clustering them with geometric algorithms in the
eigen space [17, 13]. Recently, Whilte and Smyth [22] showed
that partitioning networks using spectral methods is equiva-
lent to optimizing the modularity function  in a relaxed sense
that ignores the discreteness constraints.

We make three contributions in this paper. First, most
existing network clustering methods[12, 22] assume sparse
networks and networks with strong or tight community struc-
tures, which have more intra-community edges than inter-
community edges. In the context of biological networks,edges
are often derived logically (e.g. in co-expression networks),
and/or measured with techniques that have a high error rate
(e.g. in protein-protein interaction networks determined by
yeast two-hybrid experiments). Therefore, many spurious
edges are often included whereas some genuine edges may
be missing or have incorrect weights in biological networks.
In such networks, community structures are typically weak in
the sense that there may be more edges crossing the boundary
of a cluster than within the cluster, although the edge densities
within clusters may still be higher than other regions of the
network. To discover weak communities, we introduce a set
of simple operations to capture local neighborhood structures
of a node. Our method is based on a transitivity property of
many real networks, i.e., two nodes that are connected to a
third node are likely to be directly connected as well [10].
In social networks, this means that a friend of my friend is
likely to be my friend as well. Consequently, two nodes in
the same community are likely to be linked by short paths or
loops than those not in the same community. By exploiting
such local information, and combining it with spectral clu-
stering, our method can identify weak community structures
with significantly improved accuracies.

Second, the modularity function  proposed in [12] provi-
des a potential solution to automatically determining the most
appropriate number of communities in a network. One can
run any clustering algorithm multiple times, each time spe-
cifying a different value � for the number of clusters to be
returned. The correct number of clusters can then be determi-
ned by choosing the � that optimizes  . However, this method
can be very costly for large networks with thousands of nodes,
which can be potentially partitioned into hundreds of clusters.

We develop a � -way partitioning algorithm under the frame-
work of spectral clustering to optimize  function greedily.
Empirical studies show that the best  obtained by this greedy
approach approximates the costly iterative method very well
with much reduced computation.

Third, we address the issue of automatically determining
the most appropriate number of communities in weighted
dense graphs in many applications where the similarities
or distances of objects can be measured (e.g., similarity of
gene expression profiles). Under a good community struc-
ture, intra-community edges tend to have higher weights (or
shorter distances) than inter-community ones. Applying the
modularity function  to such community structures, howe-
ver, often results in very low  values. Although it is still
possible to select the number of clusters using the  measure,
it does not shed light on the quality of community structu-
res. Furthermore, the  function is not stable with respect to
rank-preserving transformations of edge weights. We propose
a simple extension to estimate the  function on weighted and
dense graphs by a rank-based transformation of edge weights
that produces much meaningful results.

The paper is organized as follows. We first investigate local
neighborhoods in real-world networks and propose two local
operations in Section 2.1. We then discuss modularity and
number of clusters in Section 2.2 and present two algorithms in
Section 2.3. In Section 3, we extensively evaluate our methods
on various networks of known structures, and apply them
to three real-world applications: an protein-protein interac-
tion network in yeast S. cerevisiae, a co-expression network
of yeast cell-cycle genes, and a collaboration network of
bioinformatics researchers. Finally, we conclude in Section 4.

2 METHODS
2.1 Local structures
Real-world networks often possess intrinsic properties that
are lacked in random graphs, such as heavy-tail distribu-
tions of node degrees and small-world structures [10]. In
particular, it has been observed that real-world networks
often have surprisingly higher clustering coefficients than ran-
dom graphs [10]. The clustering coefficient � is defined as

������� (number of triangles in the graph)
(number of connected triples) , where a “connec-

ted triple” means a path of three nodes. This coefficient is
related to node transitivity, i.e., two nodes connecting to a
third node are likely to be directly connected. In terms of
social networks, this means that a friend of your friend is
likely to be your friend as well. In fact, � is the probability
that your friend’s friend is also your friend. For real-world
networks, ��������������� � , while for random networks of  
nodes, !�"�#%$�&�'(�)�*� [10].

Formally, let +,�.-0/214365 be a network or graph , where/ is the set of  nodes and 3 the set of 7 edges. Let8 �9- 8;:=< 5 be the adjacency matrix of + , i.e.,
8>:=< �?�
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if -A@ : 1B@ < 5DCE3 , or 0 otherwise. Let F be the diagonal
degree matrix of

8
, where F :�: �HG < 8 :=< . We then define

a matrix IJ � 8�KL8NM -O�%PRQS5 , and IT � 8�KL8NMU8
,

where Q is an identity matrix, “
K

” represents ordinary matrix
multiplication and “

M
” means entry-wise multiplication. It is

evident that IJ :=< �VGXW 8Y: W 8Z< W if []\�_^ , or 0 otherwise,
and IT :=< � 8 :`< IJ :`< . Therefore, IJ :=< is the number of common
neighbors shared by nodes @ : and @ < , which is also the number
of paths of length two between them. So the sum of all entries
in IJ , a�abIJ a�ac�ed K (number of connected triplets). Similarly,IT :=< is the number of common neighbors of nodes @ : and @ < if
they are directly connected, and 0 otherwise. In other words,IT :=< is the number of triangles that contain edge -A@ : 1B@ < 5 . The-
refore, a�a IT a�a��gf K (number of triangles in the network), and
the clustering coefficient can be calculated as �)�ha�a IT a�a ija�a IJ a�a .

The above transitivity property indicates that two nodes with
many common neighbors tend to be in the same community.
Therefore, the number of common triangles shared by an edge,
normalized by the probability that this may happen by chance,
can be used to weight the edge. On the other hand, if two nodes
are both connected to many common neighbors, regardless
whether they are directly connected or not, they have a higher
chance to be in the same community than random. Therefore,
we define two normalized matrices:

J � F�kZlm K IJ K F�kZlm�n (1)T � F k lm K IT K F k lm 1 (2)

in which
J :=< � IJ :`< ipo F :�: F <q< and

T :`< � IT :=< ijo F :�: F <q< .
The square root in the denominators gives relatively higher
weights to node pairs that share more common neighbors.

Both
J

and
T

can be considered as the adjacency matrices
of some weighted graphs transformed from the original graph8

.
T

is a weighted subgraph of
8

, where the edges belonging
to more triangles gain higher weights. Thus, comparing to8

, intra-community edges in
T

have increased weights while
inter-community edges have lowered weights. However, the
edges that are not in any triangle are simply removed. This
may cause some problems if a community is sparse, which
may be broken into several disconnected components. As a
remedy we can combine

8
and

T
, which brings the edges in

8
back to the graph. The relationship between

8
and

J
is more

complex, in that
J

contains all the edges in
T

, as well as some
additional edges that may or may not be in

8
. In general,

J
is

much denser than
8

or
T

. If the original graph is sparse, the
added edges due to similar local neighborhood structures may
provide additional information of communities.Therefore, we
can consider the combination of the three:

r �h-ts Ku8 5wvg-tx K J 5wv T 1 (3)

where s and x are parameters. Ideally, smaller s and x are
preferred for dense graphs or graphs with high clustering coef-
ficients, and larger s and x should be used for sparse graphs.

As to be seen in Section 3, we found that simply taking s andx such that -ts Ku8 5 , -Ax K J 5 and
T

have the same maximal
weight is sufficient for most cases that we studied.

Although the above discussion is for unweighted networks,
Equations (1) - (3) can be directly applied to weighted graphs,
where

8 :=<
is a positive weight for an edge between nodes @ :

and @ < . In the special case where a network is a weighted
complete graph, we choose sy��xX��� since

T
would not

remove any edge from
8

, and empirically it turned out to be
better than any other combination in our study (see Section 3).

2.2 Modularity and number of clusters
Given a clustering z W of a graph that partitions its nodes into� groups, the modularity  of z W [12] is defined as

%-tz W 5{�
W| :�}�~ -t� :�: P��S�: 5�1 (4)

where � :�: is the fraction of the edges that fall within cluster [ ,
and � : the fraction of edges each of which has at least one end
connecting to cluster [ . The  function is conceptually intui-
tive: It measures the edge density within a cluster, subtracted
by the density that one would expect by chance, and sums
such differences over all clusters. If a particular partitioning
gives no more intra-community edges than would be expected
by chance, the modularity ��*� . For a trivial clustering with
no partitioning,  is always equal to zero.

A nice feature of modularity  is that it provides a glo-
bal quality measurement of community structures. It has been
found that most real-world networks have ������ � , which
was suggested as a threshold for good community structu-
res [12]. We have also found that networks with ����j� � are
relatively easy to cluster because most existing algorithms will
return good clustering results; while the clustering quality of
most clustering algorithms decreases dramatically when the value is below 0.3 (see Section 3).

The definition of  can be generalized to weighted networks
by extending � :�: and � : to corresponding fractions of edge
weights, instead of fractions of edges. However, the generali-
zation is only meaningful for sparse networks. Although most
real networks are sparse, weighted networks from real appli-
cations are often dense or complete graphs. This is because
the weights in a weighted graph are usually similarities bet-
ween nodes (objects), so that a similarity can be computed
for any pair of nodes, resulting in a dense or complete graph.
On dense weighted networks, the  function often fails to
produce meaningful results, as we will see in Section 3.

A simple way to fix this problem is to use a threshold to
filter out some edges to make a dense weighted graph sparse.
However, without knowing the underlying community struc-
tures of a network, it is difficult to choose the right threshold.
Furthermore, it is always possible to use a high threshold to
break a network into small disconnected components, so as
to obtain a high  value, whereas the resulting clustering

3
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may not be meaningful for the original network. Therefore,
maximizing  alone is not a good criterion.

Here we propose a method to determine an edge-weight
threshold for edge removal so that meaningful community
structures can be revealed, and the corresponding  value can
be used to unbiasedly compare results from different cluste-
ring methods. The intuition of our method is as following.
Since a community is a set of nodes that are highly connected
among themselves but only loosely to the rest of the net-
work, we can select a threshold to remove low-weight edges
so that in the ideal case, the remaining edges would be just
enough to form completely connected communities with no
inter-community edges. Therefore, in the ideal case, perfect
community structures have all the weights of intra-community
edges higher than that of inter-community edges, and the
threshold can be uniquely determined given the communities.

Based on this insight, our method for determining the
edge-weight threshold is the following. Suppose a cluste-
ring method returns a partition z W ����� ~ 1�� � 1 M�M�M 14� Wb� on
a weighted graph. The number of edges needed to completely
connect the intra-cluster node pairs is �;� G : -4a � : a K -4a � : a�P��54i�d�5 . We sort all the edges in the network in a non-increasing
order of their weights. We then set the weights of the first �
edges to 1, and discard the rest edges. In case where the � -th
edge is tied with other edges, we may remove all or none of
them, while keeping the number of remaining edges as close
to � as possible. The  value of the resulting clustering can
be computed according to Equation (4).

Due to the last step in handling ties, the above method works
for sparse and un-weighted graphs as well. We call a  value
computed as above the thresholded  value, or 6� in short.
Note that certain variants of our method are possible. For
example, we could use the weight of the � -th edge as the
threshold, while not changing the weights of the remaining
edges. The other variant is that, instead of keeping the top �
edges, we can keep only a fraction, � , where �����]�D� , of
them if we require the community structure to be sparse. From
our experience, however, we have found the results of these
variants are very similar, given that � is not too small.

Note that the procedure we proposed for estimating the
thresholded  value on a weighted dense graph only esti-
mates the strength of community structures after partitioning.
We also considered an EM-like method to iteratively optimize�� explicitly. With this method, we first cluster the network
using all the edge weights as usual.Based on the threshold that
is used to calculate  � , we remove those edges with weights
below the threshold and re-cluster the network. This proce-
dure iterates multiple times, and the clustering with the best�� value is returned as the final solution. This iterative pro-
cedure, although not guaranteed to converge, can in practice
often improve clustering quality and help estimate the correct
number of clusters, as we will see in Section 3.

2.3 Algorithms
Based on our method for constructing a new graph from
the adjacency matrix of a network and the method for auto-
matically determining the number of clusters, our overall
algorithm is generic since it can be combined with any cluste-
ring algorithm. In our study, we considered spectral clustering,
due to its close relationship with maximizing  as shown
by White and Smyth [22]. In this research, we adopted the
widely used spectral clustering algorithm in [13]. Given a
graph +���-0/214365 and its adjacency matrix

8 ��- 8>:=< 5 , our
first algorithm, called g-cuts, executes the following steps:

1. Compute matrices
J

and
T

by Equations (1) and (2).

2. Compute
r �gs 8 vux J v T , where s and x are chosen

such that the maximal weights in s 8 , x J and
T

are
approximately the same. For a weighted complete graph,
we suggest s��Lx��*� .

3. Let F be a diagonal matrix with F :�: � G < r :`< and

construct a matrix �]�gF k ~B� � r F k ~4� � , following [13].

4. Find the � largest eigenvectors of � , � ~ 1B� � 1 M�M�M 1B��  ,
and form matrix ¡2 ¢�¤£ � ~ 14� � 1 M�M�M 1B�U ;¥ in ¦ $ �   ,
where � is an upper bound of the number of clusters.

5. For each integer � , d§���¨�©� :
a. Form matrix ¡ W using the first � columns of ¡2  . Scale

each row vector of ¡ W to have unit length.

b. cluster the row vectors of ¡ W using � -means clustering,
and calculate the ª� value for the result.

6. Select a � that gives a clustering with the highest �� .
If a network is large and contains many clusters, this algo-

rithm can be inefficient for two reasons. First, deriving a large
number of eigen-vectors may require a substantial amount of
computation. In the worst-case, the running time for compu-
ting � eigen-vectors is «¬-A � 5 if � is nearly linear in  , where is the number of nodes in the network and � the number of
eigen-vectors to compute. Second, the algorithm needs to run� -means many times in order to select the � that optimizes the value. With no prior knowledge, the upper-bound of � for a
given network could be proportional to the number of nodes.
To be conservative, we may have to over-estimate the number
of clusters significantly. Therefore, in many real applications
it is impractical to iterate over all possible � .

We now propose the second algorithm, called k-cuts, which
is an approximation and faster version of the first. It follows a
greedy strategy to recursively partition nodes into clusters to
optimize  . Unlike the algorithm in [22] and [17] that always
bisect nodes, we consider a � -way partitioning at each step,
where � is typically a small integer in £ dp1�����¥ , and select a� at each step that maximizes the  value of the clustering.
Each cluster is then split recursively if by doing so the  value
increases. The k-cuts algorithm is as follows.

4
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1. Given an adjacency matrix
8

, compute
J

,
T

, and
r

as
in algorithm g-cuts.

2. Initialize z to be a single cluster with all nodes, and�O®�¯Y�g� .
3. For each cluster � in z

a. Let Ir be the sub-graph of
r

that corresponds to the
nodes in � . Let F be a diagonal matrix with F :�: �G < Ir :`< and construct a matrix �°�gF k ~4� � Ir F k ~B� � .

b. Find the � largest eigenvectors of � , � ~ 14� � 1 M�M�M 1B� W ,
and form matrix ¡ W �¢£ � ~ 1B� � 1 M�M�M 1B� W ¥ in ¦ $ � W ,
where � is an upper bound of the number of partitions
at each step, and typically �¨C�£ dp1����±¥ .

c. For each integer ^ , d§��^²��� ,
(1) Form a matrix ¡ < from the first ^ columns of ¡ W ,

and scale the rows of ¡ < to unit lengths. Cluster the
row vectors into ^ clusters, z´³< , with � -means.

(2) Calculate  value of the clusters as  < $�µq¶ �%-tz¸·¹zw³<»º ��5 .
d. Find the ^ that gives the best  value, ^�¼½�¾�¿4À # ¾�Á ^U-0 < $�µO¶ 5 .
e. If  <ÃÂ$Äµq¶ �h O®�¯ , accept the partition by replacing �

with zw³< Â , z��*z · zw³< º � , and set  B®�¯ �X <ÃÂ$�µq¶ .

f. Advance to the next cluster in z , if there is any.

4. At termination, z contains the best clustering, and  O®�¯
is the best  value achieved.

Note that in step 4(d)(2), if the network is sparse, i.e.,  can
be calculated by Equation (4) instead of �� , we do not need to
re-calculate  for the whole network. Since the contribution
of each cluster towards  is independent of the other clusters,
updating  after partitioning a cluster into sub-clusters can be
computed locally as well. Therefore, this step is very efficient.
The advantage of the greedy method is two-fold. First, it redu-
ces the time required for calculating eigen-vectors. Instead of
calculating the top � eigenvectors of the graph, where � is
linear to the number of nodes in the network, we only need to
calculate the top � eigen-vectors on the graph for the first par-
titioning, where � is a small integer independent on the size of
the network. The computation of eigenvectors in subsequent
steps is negligible since they are calculated on much smaller
subgraphs. Second, the program improves  progressively.
When terminated, it reports both the maximum  and the best
number of clusters. Therefore, the problem of over-estimating
the number of clusters disappears.

3 EXPERIMENTAL RESULTS
3.1 Computer-generated networks
We first tested our methods on networks with known com-
munity structures embedded to evaluate their performance.
We generated a large number of un-weighted networks of 100
nodes, divided into four communities of 25 nodes each. Edges

were randomly placed with probability � : $ for edges within
the same community and with probability �ÅBÆ � for edges
across communities. We varied � : $ from 0.8 to 0.2, repre-
senting networks with highly connected to loosely connected
communities. For each � : $ , we varied �Ç4Æ � from 0 to � : $ i±d
with an interval of � : $ i±f . With the trivial case of � : $ �È� ,
there is no inter-community edge and all the communities
are disconnected. When �cBÆ � �*� : $ i�� , the total numbers of
inter- and intra-community edges are roughly equal. When� BÆ � �É� : $�i�� , each node has more inter-community edges
than intra-community edges on average, although edge den-
sities within communities are still higher than other regions
of the network. For each network + and its adjacency matrix8

, we computed matrices
J

and
T

using Equations (1) and
(2), and applied the g-cuts algorithm with the exact number of
clusters. To measure the accuracy of the results, we computed
the minimal Wallace Index [21] between the true clusters z
and the predicted clusters z�Ê , which is defined as follows:Ë -tz214z Ê 52�L#¸"�Ì�-ÎÍ ~�~ i±Ï)-tz´5�14Í ~�~ i�ÏZ-tz Ê 545Ç1 (5)

where Í ~�~ is the number of edges in the same cluster in bothz and z Ê , and ÏZ-tz�5 is the number of intra-cluster edges in z .
Fig. 1 shows

Ë
as a function of � BÆ � , for � : $ equals to 0.6

and 0.3, representing dense and sparse communities, respec-
tively. As shown for both cases, using

T
alone results in

significantly better clustering than using
8

for � 4Æ � �_Ð�ÑÓÒ� ,
where the  value drops to below 0.3, as shown in Fig. 1(b)
and (d), indicating weak community structures. This suggests
that

T
is indeed able to remove many of the inter-community

edges that are unlikely to be in any triangles.On the other hand,
for sparse communities, using

T
is worse than using

8
for

small �U4Æ � , since a significant portion of the intra-community
edges may be removed in this case. A community may also
be broken into several components and the clustering of those
components becomes random. This problem can be addres-
sed by combining

T
and

8
. As shown in Fig. 1, the clustering

accuracy using
8 v T is always better than using

8
and only

slightly worse than using
T

for dense communities. On the
other hand, using

J
alone is not better than using

8
in general,

and in some cases may be worse. However, if
J

is combined
with

8
, or
8

and
T

, it always produces good results.
Next, we generated a set of weighted complete graphs

of 100 nodes with four equal-size communities. The intra-
and inter-community edges have weights randomly drawn
from the positive half of normal distributions Í°-AÔ ~ 1�Õ ~ 5 andÍ]-tÔ � 1�Õ � 5 , respectively. We fixed Ô � at 0 and Õ ~ �RÕ � �e� ,
while varied Ô ~ from 0.3 to 1. We used these graphs to demon-
strate that the

T
matrix can be generalized to weighted graphs,

and our method for estimating �� values can be used to
identify the correct number of clusters.

As shown in Fig. 2(a), for a given number of clusters � ,usingT
often results in higher

Ë
values than using

8
. On the other

hand, the combination of
8 v J v T works no better thanT

alone, although still better than
8

. When � is not given,
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Fig. 1. Clustering accuracy on un-weighted networks with g-cuts.
(a),(c): Wallace Indices between true and predicted clusters. (b),(d):Ö

values for the true and predicted clusters.

both  � and  can often give good estimations of � , with�� being slightly better for smaller Ô . In contrast, the scaled
cost function [3] is not able to recover � even in the simplest
cases where  and ª� make no mistake. An advantage of ��
over  is that ª� is more meaningful than  in representing
cluster qualities. As shown in Fig. 2(c), the �� values for these
networks range from 0.4 to 0.1, representing networks with
strong to weak communities. Indeed, for the networks with � �(�j� � , our method makes very few mistakes in recovering
the original structures, a phenomenon similar to un-weighted
graphs. In contrast, the  values tend to be much smaller and
do not quantify very well cluster strengths.

3.2 Real-world networks with known structures
We now analyze our methods on two real-world networks with
known community structures. The first real-world network is
from one of the classical social network studies; we obtained
the network data from [12]. In this study, Zachary observed
over two years the social interactions among 34 members of
a karate club. In this period, the club was split into two smal-
ler ones, due to a dispute between the club’s instructor and
administrator. Fig. 3(a) shows the network and the actual split
of the club (nodes in different colors) observed by Zachary.
Applying the g-cuts algorithm to the network, the best result
was obtained with matrix

8 v J v T and
8 v J , where we per-

fectly predicted the division of the members. The  value for
the division is 0.372, indicating a strong community structure.
In comparison, The White-Smyth method [22] disagreed with
the actual division on node 3, and had slightly lower  value
(0.36). Interestingly, with our method, the maximal  value
(0.42) occurs when the network is split into four clusters, as

indicated by the different node types in Fig. 3(a). These splits
seem to be reasonable: the five nodes on the lower right form
a connected sub-community that has no path to the commu-
nity led by the instructor (node 33), other than through the
administrator (node 1); the 10 nodes on the upper left of the
network are more tightly connected to nodes 33 and 34 than
the 6 nodes on the bottom left. In contrast, the  values are
small for the White-Smyth method to split the network into�×��d clusters, indicating that the divisions are much poorer.

The second real-world example we examined is the net-
work of 115 NCAA Division I-A college football games in
2000, where a node is a team and an edge represents two
teams played against each other. The community structures
are known, corresponding to 11 conferences. Due to the lack
of space, the actual network is not shown here. Indeed, as
shown in Fig. 3(c), the maximal  value for our g-cuts algo-
rithm corresponds to 11 clusters, which is the exact number of
conferences. Furthermore, with these clusters, each team was
correctly assigned to its own conference, except for 8 teams
that do not belong to any of the conferences. The clustering
by the White-Smyth method with �%���Ä� is the same as ours.
On the other hand, with ��\���Ä� , our method often identified
better community structures than theirs. Since the clustering
coefficient is relatively high for this network (0.412), the com-
bination of

8 v J v T performs slightly worse than
8 v T

or
T

alone. In comparison, the clustering coefficient for the
karate club network is 0.298, and as a result the combination
of
8 v J v T is better than

T
alone.

3.3 A protein-protein interaction network
We obtained a protein-protein interaction (PPI) network for
yeast S. cerevisiae from the Database of Interacting Prote-
ins (DIP, January 2006 release) [16], which contains curated
interactions from both large- and small-scale experimental
studies. This dataset consists of 17186 physical interactions
involving 4928 yeast proteins. With this dataset, we construc-
ted an un-weighted network, where nodes are proteins and
edges are interactions. The largest connected component in
this network contains 4873 nodes and 17158 edges.

Because of the size of the network, we only applied the
k-cuts algorithm. It took about two minutes on a personal
computer (Celeron 2.53G Hz, 512MB RAM) to reach a local
maximum of  . We run the algorithm several times with dif-
ferent choices of s , x and � . The maximum ��e��� ��� was
achieved at s*�N��� ��� , x*�e� and �»��� . The choices of s
and x are rather interesting. It means that the

T
term, which

counts the number of triangles that pass along an edge, is
the most important for clustering the PPI network. This phe-
nomenon indicates that the PPI network has a high rate of
false-positive edges [2], which can be effectively suppressed
by giving higher weights to the edges that belong to more
triangles. We also found that using �u�Rd always resulted in
worse  values than using larger � values, which supports our
choice of a multi-way partitioning in the k-cuts algorithm. The
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values for clustering the American college football network with different matrices using g-cuts.

results using �%�X� or 10 differ only slightly. In comparison, it
took the g-cuts algorithm more than one hour to search for the
best partitioning on the sparse matrix

8
with the maximum

number of clusters � set to 50.
In the final clustering returned by k-cuts, the network was

partitioned into 42 communities. The sizes of the communi-
ties range from 2 to 520, with median value 24. To assess
the biological significance of the detected communities, we
evaluated the consistency of the protein classifications within
each individual cluster using a variety of external biologi-
cal information. For each protein in a cluster, we obtain its
functional categories, protein classes, and sub-cellular locati-
ons from the MIPS database [9], and pathway classifications
from the KEGG database [7]. In addition, we also compa-
red the community structures with the experimentally curated
protein complexes in the MIPS database [9] to see how many
known complexes are recovered by the algorithm. These dif-
ferent classification schemes should represent different types
of biological relevance and serve well to assess the biological
significance of the detected communities.

For each cluster, we tested the enrichment of each level-one
category in the five classification schemes. The significance
of the enrichment was estimated with a cumulative hyper-
geometric test [1]. The raw � -values were adjusted by Bon-
ferroni corrections for multiple tests [1]. We then counted the
total number of enriched categories below a � -value threshold
(corrected � -value � 0.05). For comparison, we randomly

shuffled the clusters by fixing the size of each cluster and ran-
domly assigning genes to clusters, and performed the same
enrichment analysis as for true clusters. Table 1 shows the
statistics for the true clusters and the randomly shuffled clu-
sters. As can be seen, the communities found by our algorithm
are strongly functionally correlated compared to the random
shuffling case. The total number of enriched categories in
these communities in any of the five classification scheme is
much higher than would be expected by random. In addition,
the total number of communities with at least one enriched
category is also considerably higher than random.

Fig. 4 shows a condensed community structure for the PPI
network, where communities are drawn as circles, with sizes
varying roughly with the logarithm of the number of nodes
in the communities. The lines between communities indicate
inter-community interactions, with the thickness of the lines
varying in proportion to the total number of edges connec-
ting the two communities, minus the number of edges that
would be expected by random. The nodes in the network were
further annotated with three types of information. The diffe-
rent shapes and colors of nodes represent the most significant
MIPS function and subcellular location categories enriched in
each community. A grey or triangle node means no significant
function or subcellular location categories found for the com-
munity. Each node was also labeled with names of complexes
that overlapped most significantly with the cluster members.
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Fig. 4. Clusters of the PPI network. Nodes are color and shape coded.
See main text. Better viewed on the supplementary website.

As shown in Fig. 4, most communities (30 out of 42) are
annotated by at least one of the three classification schemes.
In comparison, only 4.5 Ù 1.9 communities in the random clu-
sters contain at least one significant categories. Many of the
detected clusters represent previously characterized protein
complexes, e.g. the transcription complexes, translation com-
plexes, RNA processing complexes, replication complexes,
intracellular transport complexes, signal transduction com-
plex, etc. Overall, the MIPS database contains 65 protein
complex families. Among them, 42 had at least three members
in the PPI network, and 31 (74%) of them were significantly
enriched in the communities detected by our method.

Some complexes were split into multiple communities.
With a closer examination, however, we found that such
splits correspond very well to lower-level categorization
of functional modules. For example, the two transcription
complex communities correspond to RNA polymerases and
transcription factors, respectively. The four communities of
intercellular transport complexes comprise of the Clathrin-
associated protein complexes, Coat complexes, SNAP Recep-
tors, and transport protein particle complexes, respectively.
The two cytoskeleton communities contain microtubes and
actin filaments respectively. One of the translocon communi-
ties consists of primarily ER protein-translocation complex
and Oligosaccharyltransferase, while the other translocon
community contains almost exclusively signal peptidases.

On the other hand, some communities are large and contain
multiple categories under a given classification scheme. By
inspecting the categories that are enriched in the same com-
munity, we found that the genes in these categories are often
closely related to some common functions or frequently coor-
dinated in certain biological process. For example, one of
the communities is enriched with Histone acetyltransferase
complexes (� -value �Ú��� k ~ � ) and Transcription comple-
xes/Transcriptosome (� -value �Û��� k ~OÜ ). It is known that
Histone acetylation is an important mechanism for gene tran-
scriptional regulation [15]. The other example is a community

Table 1. Functional enrichment within communities

Funcat Protcat Location KEGG Complex
Number of enriched categories

Community 50 17 77 23 44
Random 3.0 Ý 1.8 0.58 Ý .75 1.5 Ý 1.3 0.52 Ý 0.86 0.48 Ý 0.61
Z-score 26.1 21.9 58.1 26.1 71.3

Number of communities with enriched categories
Community 22 14 22 12 24
Random 2.6 Ý 1.2 0 1.7 Ý 1.3 0 0.57 Ý 0.74
Z-score 16.2 inf 15.6 inf 31.7

Random: nodes are randomly assigned to communities; Funcat: MIPS functional
categories; Protcat: MIPS proteinc classes; KEGG: KEGG pathway classifications.
Complex: MIPS curated complexes.

enriched with Spindle pole body complexes (���y��� k ~OÜ ) and
Cytoskeletons (�D����� k ~qÜ ) [18]. Similar phenomena were
observed for other classification schemes as well. For exam-
ple, the categories of transcription and RNA processing were
simultaneously enriched in several communities.

3.4 A gene co-expression network
In contrast to traditional methods to treat gene expression
profiles as points in the metric space, here we treat cluste-
ring gene expression data as a problem of network clustering.
We constructed a completely connected network for 800 cell-
cycle related genes in yeast S. cerevisiae. The gene expression
levels of these genes at 77 time points within cell cycles were
obtained from [19]. The network was constructed as a weigh-
ted complete graph, where each node represents a gene, and
the weight of an edge is the Pearson correlation coefficient
between the expression patterns of a pair of genes, scaled to
within £ ��1��Þ¥ . The graph was then transformed by Equation 3
and fed into the g-cuts algorithm to find 2 to 10 clusters. As
shown in Fig. 5(a), g-cuts on

T
achieved the best result based

on the ª� measurement, while
8 v J v T also gave slightly

better results than
8

. The maximal  � value, 0.36, was rea-
ched at �]��ß clusters. The high ª� value indicates strong
community structures among the genes. Importantly, it turns
out that the 4 clusters obtained correspond very well to the
four phases, i.e., G1, S, G2, and M phases, in a cell cycle.
As shown in Fig. 5(b), the average expression pattern of the
genes in each cluster shows good periodicity, and the shift
from one phase to another is evident. In comparison, the ori-
ginal  function failed to predict the number of clusters for
this case (see Fig. 5(b)).

We also tested the idea to iteratively improve �� (see Sec-
tion 2.2). The method converged very quickly in 2-3 iterations,
and improved the ª� value to 0.38. Next, we deliberately
altered the initial clustering so that it contained more than 4
clusters (from 5 to 9),and applied the iterative method to refine
the clusters. Surprisingly, the algorithm improved the original
clustering and converged to 4 clusters in less than 10 steps.
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values resulted from clustering the 800 cell-
cycle genes. C-iterative: the iterative method was used to optimizeÖ)Ø

. (b) The average gene expression profile with 
 = 4. Only a subset
of the time points corresonding to CDC15 are shown here.

Although further studies are needed, it seems that this itera-
tive procedure works well in practice to reach a local maximal
of �� . Another interesting results we observed is that, after
the iterative procedure converged, the 6� value for having
5 clusters was significantly improved. The additional cluster
appeared in this case corresponds well to the early G1 phase
genes, which is consistent with the result reported by [19].

3.5 A collaboration network of bioinformaticians
We also applied our methods to a network of co-authorships
among bioinformatics researchers who published in three
major bioinformatics conferences: ISMB, RECOMB and
PSB. We downloaded the complete paper lists from their
websites respectively. The raw data contains 2790 authors
and 1494 papers, from which we constructed a weighted
network where nodes represent authors and edges represent
co-authorship of the given pair of authors. We manually
curated the dataset to ensure that distinct names represent dif-
ferent authors (e.g. Gene Myers, E. W. Myers and Eugene
Myers are the same person), and vice versa (e.g. Yin Xu and
Ying Xu may both appear as Y Xu). We also eliminated co-
authorships introduced by co-chairing conference sessions.
The edge weight between two authors [ and ^ are calculated
as following: à :`< �DG*áW }´~ �âip-t W P���5 , where 7 is the total
number of papers that [ and ^ published together, and  W is the
number of co-authors for paper � [22]. The network contains
many disconnected components, so we used only the largest
component. Furthermore, to focus on community structures,
we selected authors (nodes) who have published at least two
papers in these three conferences, which reduced the network
to 526 nodes and 1348 edges.

We run the g-cuts algorithm with �ã����� and the k-cuts
algorithm with �»�N� on the smaller network. The network
has very strong community structures, in that the best  value,
0.862, was achieved with the g-cuts algorithm on the matrix8 v J v T at ���E�Ä� . The k-cuts algorithm tracked the
performance of g-cuts very well, achieved a  value of 0.859
at �×�ydbä on the same matrix. On the other hand, the best 

Fig. 6. Clusters of a collobration network of bioinformaticians.

obtained on
8

is only 0.81, indicating that the combination of
local structure information is also effective on this application.

The clustering of the network corresponding to the best 
value had 35 clusters, with cluster size ranging from 3 to 41
and median size at 12. To better visualize the network, we
condensed it to show only the groups. We drew each cluster
as a circle, with size varying roughly with the number of indi-
viduals in the group. The color intensity of a node represents
roughly the total number of papers published by the authors
within the group. The lines between groups indicate colla-
borations between group members, with the thickness of the
lines varying in proportion to the total weights of the edges
connecting the two clusters. We also labeled each group with
a single author who published the largest number of papers
in these three conferences. As shown in Fig. 6, the network
is centered around several large groups in the middle, each of
which is dominated by a well-known scientist.

After a further examination of the authors within each
cluster, we found that many communities were grouped
according to geographical proximity. For example, we found
clusters of authors primarily at Max Planck Institute (Vin-
gron), EBI (Bucher), ORNL (Xu), UCSD (Pevzner), Univer-
sity of Wisconsin (Shavlik), French (Rechenmann) or Japan
(Miyano). There are also several communities whose mem-
bers share common research interests. For example, majority
of the authors in the Sankoff cluster (e.g.Tompa M, Blanchette
M, Buhler J, Siggia ED, Li H, Bussemaker JH and Sinha S)
have worked on motif finding; the group dominated by Brut-
lag consists of researchers who developed the Gibbs Sampler
motif finder (e.g., Lawrence CE and Liu JS); many people in
the cluster of Baldi are involved in machine learning and Hid-
den Markov Models (e.g. Krogh A, Durbin R, Holmes I). The
algorithm also clustered together several researchers conduc-
ting protein 3D structure studies (Glasgow JI, Lathrop RH,
Fortier S and Rost B). These sub-areas (motif finding, HMM,
protein structures) are relatively “old-fashioned” and well-
defined in bioinformatics research, therefore the annotation
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of these groups was relative easy. On the other hand, several
communities closer to the center cannot be annotated easily
(e.g, the communities dominated by Hunter, Haussler, and
Shamir). The reason may be that bioinformatics is a rather new
field. Many sub-areas emerge just recently and are not well-
defined. Since we collected data from a relatively long period
(the first ISMB was held in 1993), a number of researchers
within these communities have actually been involved in many
sub-areas of bioinformatics and they frequently collaborate
with scientists in other communities.

4 CONCLUSIONS AND DISCUSSION
We have proposed a method for identifying weak commu-
nity structures in large networks. We introduced two local
structure properties, the number of triangles and the number
of paths of length two, and exploited them using two local
operations (in matrices

J
and

T
in the paper) to discover

weak communities in large networks. We empirically studied
the strength of these operations and their combinations using
many known and unknown network structures. Among many
other things, the most important conclusion is that the com-
bination of these operations, along with the original graph, is
very effective in revealing weak community structures in both
sparse and dense networks. Combining these local operations
with a spectral clustering algorithm, our method was able to
optimize the modularity measure and automatically determine
the right number of clusters in many applications. In order to
handle large networks, we further introduced an approxima-
tion version of the method to greedily optimize the modularity
measure. The approximation algorithm discovers near opti-
mal community structures and runs significantly faster than
the optimal method.

Furthermore, we have also proposed a method that extends
the work by Newman and Girvan for quantifying the strength
of community structures to weighted and dense graphs. We
demonstrated on both computer-generatedand real-world net-
works that the generalization allows us to unbiasedly evaluate
clustering quality and determine the best number of clusters
without prior knowledge of network structures.

In addition to these novel methods for network clustering,
we also produced useful community structures on a yeast PPI
network, a co-expression network of yeast cell-cycle genes
and a network of co-authorship among researchers in bioin-
formatics. Without any prior knowledge, our results showed
that proteins indeed form interacting communities to provide
complex biological functions,cell-cycle related genes are syn-
chronized into different cell-cycle phases, and researchers in
the fast growing bioinformatics field form communities based
on their interests and geographical locations as well as ethnic
background. These results also illustrated the effectiveness
and performance of our methods on large experimental data.
For further work, it will be interesting to combine different
networks from diverse experimental data to further gain deep

insight into complex biological systems. For example, it will
be interesting to integrate the yeast PPI networks with the gene
co-expression networks.
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