
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2003-24

2003-04-24

Multiflow TCP, UDP, IP, and ATM Traffic Generation Module Multiflow TCP, UDP, IP, and ATM Traffic Generation Module

Eliot I. Sinclair and John W. Lockwood

Networking devices must be capable of processing traffic flows from multiple sources. In order

to verify that such devices operates properly, a network testbench can be used to inject traffic

into the device. The specification of the traffic flows can be difficult. At the low level, there are

header fields, data checksums, and packet length fields that all must be formatted correctly.

Further, there can be multiple flows of traffic that will arrive simultaneously. It is desirable to

specify traffic at a high level of abstraction. A software program can then be written to parse the

specification and generate... Read complete abstract on page 2. Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Sinclair, Eliot I. and Lockwood, John W., "Multiflow TCP, UDP, IP, and ATM Traffic Generation Module"
Report Number: WUCSE-2003-24 (2003). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/1071

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Washington University St. Louis: Open Scholarship

https://core.ac.uk/display/233233945?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1071&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1071&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1071&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1071&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1071&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1071&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1071&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1071?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1071&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/1071

Multiflow TCP, UDP, IP, and ATM Traffic Generation Module Multiflow TCP, UDP, IP, and ATM Traffic Generation Module

Eliot I. Sinclair and John W. Lockwood

Complete Abstract: Complete Abstract:

Networking devices must be capable of processing traffic flows from multiple sources. In order to verify
that such devices operates properly, a network testbench can be used to inject traffic into the device. The
specification of the traffic flows can be difficult. At the low level, there are header fields, data checksums,
and packet length fields that all must be formatted correctly. Further, there can be multiple flows of traffic
that will arrive simultaneously. It is desirable to specify traffic at a high level of abstraction. A software
program can then be written to parse the specification and generate the low-level data that is actually
processed by the networking hardware. For this project, a traffic generation program was built that
accepts high-level traffic flow specifications. The program generates a cell-by-cell representation of the
combined traffic flows. These flows can then be read by a testbench and fed into a simulation. With a
hardware module capable of sending traffic created from the above program, a hardware test can be
conducted using traffic generated with this program.

https://openscholarship.wustl.edu/cse_research/1071?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1071&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/1071?utm_source=openscholarship.wustl.edu%2Fcse_research%2F1071&utm_medium=PDF&utm_campaign=PDFCoverPages

Multiflow TCP, UDP, IP, and ATM Traffic Generation Module

WUCSE-2003-24

Eliot I. Sinclair
John W. Lockwood

Department of Computer Science
Applied Research Lab
Washington University

1 Brookings Drive, Box 1045
Saint Louis, MO 63130

http://www.arl.wustl.edu/arl/projects/fpx

April 24, 2003

Abstract

Networking devices must be capable of processing traffic flows from multiple sources. In order
to verify that such devices operates properly, a network testbench can be used to inject traffic into the
device. The specification of the traffic flows can be difficult. At the low level, there are header fields, data
checksums, and packet length fields that all must be formatted correctly. Further, there can be multiple
flows of traffic that will arrive simultaneously.

It is desirable to specify traffic at a high level of abstraction. A software program can then be written
to parse the specification and generate the low-level data that is actually processed by the networking
hardware.

For this project, a traffic generation program was built that accepts high-level traffic flow specifica-
tions. The program generates a cell-by-cell representation of the combined traffic flows. These flows
can then be read by a testbench and fed into a simulation. With a hardware module capable of sending
traffic created from the above program, a hardware test can be conducted using traffic generated with
this program.

1

Contents

1 Introduction 4

2 Packet Generator Usage 5
2.1 Basic Flow Specification . 5
2.2 Temporal Flow Specification . 7
2.3 Payload Specification . 9
2.4 Miscellaneous Flow Options . 9

3 Graphical User Interface 10

4 Software Organization 15
4.1 Data Structures . 15
4.2 Parser (parser.c) . 15
4.3 Filters . 16
4.4 Output Formatters . 18

2

List of Figures

1 File format for input file with timing specifications. The first line contains the clock rate,
other lines contain flow specifications with timing options specified 8

2 Input the number of flows desired. 10
3 Select whether to mix the flows, the clock rate of simulation/hardware, flow type, additional

header options, shims, and the traffic pattern (timing or bursty). 11
4 All header options available are displayed with their default values. On the right are the

payload specifications, timing options (if requested mixing), and the option to split packets
based on the Maximum Traffic Unit size (MTU). 12

5 Input file is displayed and the choice of output formats is displayed. 13
6 Completely formatted cells are displayed. 14
7 Structural block diagram of the packet generator. 15
8 Each filter adds header or trailer information to the packet. Here, a TCP header was prepended

to the payload. 16

3

1 Introduction

A traffic flow specification rule should identify both the type of data and the time when the data should
arrive. The content of the data should be specified by a user.

The format of the data must conform to standard Internet packet formats. To simplify the generation
of properly-formatted Internet datagrams, a packet generator was written as a part of the Layered Prototol
Wrappers [1] [2]. While the previous packet generator was useful, it was also very limited. Many header
options were unspecifiable and payload specification was limited to 32-bit words.

The current packet generator can build formatted TCP, UDP, Control Cells, IPv4, IPv6, AAL5 frames,
and ATM cells. Every header value in each type of packet is specifiable with the exception of checksums
and the AAL5 cyclical redundancy checking (CRC). As with the previous version, several different output
formats are available for the different methods of testing (ModelSim testbench, vhdl, raw cells, and 64-bit
hex-formatted data).

The packet generator also has the capability to accept temporal specifications. By specifying the clock
rate, what kind of traffic model the flow should have (continuous or bursty), and traffic timing parameters,
the packet generator will mix any number of different flows with appropriate inter-cell delays. This is a
very important feature because it allows the testing of modules with traffic appearing to come from multiple
sources.

4

2 Packet Generator Usage

The packet generator is a powerful tool for creating streams of network traffic for testing hardware mod-
ules on the FPX see FPX. The following sections describe how to use the program, from the basic flow
specifications, to temporal specifications, and finally miscellaneous other options available.

2.1 Basic Flow Specification

Each flow specification must be declared with a ‘!’ and a flow type: TCP, UDP, CTRLCELL, IPv4, IPv6,
FRAME, and CELL. Following the flow type are a number of options to specify header contents and payload
contents. Important one of the limitations to the packet generator is that all options must be specified on
the same line as the flow type (no end of line characters or return characters).

It is also important to remember that network protocols encapsulate other network protocols. For ex-
ample, a TCP packet is encapsulated in an IPv4 packet, then a AAL5 frame, and finally ATM cells. This is
important because even though a flow is of one type, header options for other flow types may apply.

The options are below with their associated values. The “%d” indicated that the option takes a value
specified by a decimal value where “%08X” indicates an eight character hexadecimal number.

5

Description Flag Number type Example
TCP

Source Port srcport %d -srcport 1172
Destination Port destport %d -destport 80

Sequence Number seqnum %08X -seqnum FF235ABC
Acknowledgement Number ack %08X -ack ADE23533

Code code %d -code 2
Window window %d -window 400

Urgent Pointer urg %d -urg 2
UPD

Source Port srcport %d -srcport 1172
Destination Port destport %d -destport 80

IPv4
Type of Service tos %d -tos 9
Identification id %d -id 43

IPv4 Flags flags %d -flags 3
Framgent Offset fragoffset %d -fragoffset 5002

Time to Live ttl %d -ttl 80
Protocol proto %d -proto 9

Source IP srcip %d.%d.%d.%d -srcip 128.252.0.0
Destination IP destip %d.%d.%d.%d -destip 128.252.0.1

Intraport Shim -intraportshim
Shim Flags -shimflags %d -shimflags 8
Input VIN inputvin %d -inputvin 9

Output VIN outputvin %d -outputvin 12
PPN ppn %d -ppn 2
QID qid %d -qid 1

TTL Chunks ttlchunks %d -ttlchunks 23
Queue Length queuelength %d -queuelength 4
Packet Pointer packetpointer %d -packetpointer 89

Second Chunk Pointer secondchunkpointer %d -secondchunkpointer 98
Interport Shim -interportshim

Shim Flags -shimflags %d -shimflags 8
Input VIN inputvin %d -inputvin 9

Output VIN outputvin %d -outputvin 12
PPN ppn %d -ppn 2

ATM
Virtual Path Identifier vpi %d -vpi 5

Virtual Channel Identifier vci %d -vci 23
Payload Type Identifier pti %d -pti 2

6

2.2 Temporal Flow Specification

In order to define temporal values for the flows, the clock rate must be defined and each flow must have its
own timing specifications. The clock rate is defined on the very first line of the input file by & mhertz
100 where 100 is the clock rate in Megahertz. The flow specifications are in the same format as before but
with some extra timing options.

There are two available timing patterns: bursty traffic and continuous traffic. The bursty pattern sends
a burst of data at the maximum specified bitrate, then pauses for a relatively long period of time so not
to exceed the average bitrate specified. The continuous traffic pattern simply sends a packet on a regular
interval as close as possible to the bitrate specified. It is important to note that the bitrate specified is the
total bit-count of the packet including header and trailer. Bitrate specified is the bitrate that the switch will
see, not the rate of payload transmission. Figure 1 illustrates the input file with timing specifications. All
timing options are specified below.

Bursty
Bursty pattern bursty -bursty

Average Bitrate avgbitrate %d -avgbitrate 10
Maximum Bitrate maxbitrate %d -maxbitrate 20

Initial delay inidelay %d -inidelay 200
Repeat N times repeat %d -repeat 20

Continuous
Continuous pattern continuous -continuous

Bitrate bitrate %d -bitrate 5
Initial delay inidelay %d -inidelay 20

Repeat N times repeat %d -repeat 5

7

& mhertz 100

!TCP –srcip 128.252.0.1 –bursty –avgbitrate 4 …

!IPv4 –srcip 128.252.0.2 –continuous –bitrate 4 …

MHz line must be first in the file

All flow types start with a !
When using timing, each flow MUST

have a traffic type specified.

Figure 1: File format for input file with timing specifications. The first line contains the clock rate, other
lines contain flow specifications with timing options specified

8

2.3 Payload Specification

There are four different payload options: specify a file containing hexadecimal payload, ask for a payload
that increments, ask for a pseudo-random payload, or specify the payload in the input file. Specifying the
payload to come from a file simply needs the -sfile fileName option specified in the same area as the
header options. The software is currently limited to not overlook line break, space, or return characters, so
do not put any in the file. It should be one long string of hexadecimal characters.

Specifying an incremental payload is done with -incpayload %d where the number following is the
number of bytes to be payload. The payload is a 32-bit word beginning at x“11111111” and incrementing
on each word. If the number of bytes is not a multiple of four, the word is simply truncated, lower bits are
dropped.

Specifying a pseudo-random payload is similar to the incremental payload. The flag -autopayload
%d will create a pseudo-random payload of length %d bytes. It is pseudo-random because the random
number generator is always seeded with the same value prior to spinning off “random” numbers. Note that
this will produce the same results on the same machine and operating system, but if it is run on two different
operating systems, it may produce different numbers.

Specifying payload in the input file requires a line break after the last flow specification followed by
hexadecimal numbers. The parser will treat anything that is not a new flow specification as payload. It
should be specified in 32-bit hexadecimal numbers, each followed by a line break. The last word may be
less than 32-bits, but will be read in on the byte boundary. If there is an extra hexadecimal value (an extra
half-byte or nibble) it will be truncated.

2.4 Miscellaneous Flow Options

With TCP and IPv4, there are additional header options that may be specified. The headers are expandable
to allow for application specific information to be contained in the header instead of the payload. To include
additional header options, use -ipv4options %d %08X %08X... where the first number is a decimal
number specifying how many 32-bit header words are following. The remaining numbers are the header
words specified in hexadecimal.

Two additional options for the TCP flow are the -synfin and -tcpack options. The -synfin
option is to begin the flow with a Synchronize packet and end with a Finish packet. The -tcpack option
inserts acknowledgement packets in between every TCP packet of the flow.

9

Figure 2: Input the number of flows desired.

3 Graphical User Interface

To simplify the user interface to the tool, a Graphical User Interface (GUI) was written for NCHARGE [3].
From a web site, a user can click on the packet type and cut and paste the content.

The flow creation process begins with step one, shown in figure Figure 2. In step one, the user must
specify how many different flows are desired. The flows themselves will not necessarily be different, but
they will be treated as separate flows when processed and mixed.

In step two, see Figure 3, the user must select whether to mix the flows, the clock rate of the simula-
tion/hardware, flow type, number of additional TCP and IPv4 header options, whether to include shims, and
the type of traffic pattern.

In step three, see Figure 4, the header options for each layer of encapsulation are displayed on the left.
On the right are the payload specifications, the option to split cells on a Maximum Traffic Unit size (MTU),
and timing options (if mixing was requested).

Step four, see Figure 5, displays the input file used by the traffic generator. At the bottom is the option
to pick which program to run the input file through. Each program uses the same parser and filters, but the
output formatter is different.

10

Figure 3: Select whether to mix the flows, the clock rate of simulation/hardware, flow type, additional header
options, shims, and the traffic pattern (timing or bursty).

11

Figure 4: All header options available are displayed with their default values. On the right are the payload
specifications, timing options (if requested mixing), and the option to split packets based on the Maximum
Traffic Unit size (MTU).

12

Figure 5: Input file is displayed and the choice of output formats is displayed.

Finally, step five displays the network traffic stream created from the input file, see Figure 6.

13

Figure 6: Completely formatted cells are displayed.

14

File Containing

Flow Specifications

Parser- Reads input

file and calculates

MTU.

Filters – Processes

header options

and mixes flows.

Output Formatter

AAL5 Flow

Figure 7: Structural block diagram of the packet generator.

4 Software Organization

The structure of the packet generator is composed of five major blocks: flow specifications, parser, filters,
output formatter, and the output. The parser reads the flow specification file, interprets the file and sends
payload data, header information, and temporal specifications to the filters. The filters build the headers
and mix the flows according to the specifications from the parser. Finally, the completed flow is passed to
an output formatter which produces the output file in the correct format to be used for a particular testing
situation.

4.1 Data Structures

There are two major data structures in the packet generator: the DataBlock, and the StreamBlock. The
DataBlock consists of an array of characters, a value holding the number of entries, and the size of the
character array. The character array (data) holds the packet as it forms, first as only payload, then passing
through filters to become a fully formatted network packet.

The StreamBlock holds the options specified for the particular flow, what kind of packet the stream will
be (TCP, UDP, etc.), the DataBlock associated with the flow, and a pointer to the next StreamBlock.

4.2 Parser (parser.c)

Reading the input file, determining options, and formatting data for the filters is the responsibility of the
parser. The Parser begins by opening the input file, looking for timing options see temporal, flow
commands see basic flow, and the packet’s payload payload.

The parser begins by entering a loop, reading a single line out of the input file and acting on it. Each
line may have one of four purposes: temporal specification (if first line), flow specification, comment, or

15

payload. If the line is a temporal specification (marked with a ‘&’ as the firsst character of the line), the
Megahertz value is stored and all StreamBlocks are marked mixable. If the line is a comment (marked with
a ‘#’ symbol as the first character of the line), the parser simply goes on to the next line. If the line is a flow
specification (marked with a ‘!’ as the first character of the line), a StreamBlock and a DataBlock are created.
Options are then extracted from the line including flow type, header options, and temporal specifications. If
the line is payload, the line is added to the DataBlock of the last StreamBlock processed.

StreamBlocks are then passed to the filters, where they are manipulated to create a fully formatted
network packet.

4.3 Filters

There are nine filters which process a StreamBlock: TCP, UDP, IPv4, IPv6, Shim, Frame, Control Cell,
Cell, and Mix filters. A StreamBlock, when fully processed, will pass through each filter in the order above.
Filters look at the options (contained in the StreamBlock) and modify the DataBlock by adding header or
trailer lines. As shown in Figure 8 , filters modify the DataBlock according to the options expressed in the

Figure 8: Each filter adds header or trailer information to the packet. Here, a TCP header was prepended to
the payload.

input file.

16

The only filter that does not manipulate the DataBlock in the above described manner is the Mix filter.
The mix filter does not do anything to the DataBlock, instead it manipulates the entire list of StreamBlocks.
By reading the timing options in the StreamBlock, the mix filter creates a new list of StreamBlocks, orga-
nized according to the timing options. Because there is no ‘end of stream’ marker for a multi-packet flow,
the end of a flow is marked by a StreamBlock of type NONE.

When the filters have processed every StreamBlock, the result is a linked list of StreamBlocks, ready to
be written to a file.

17

4.4 Output Formatters

There are four output formats: FAKE, RAW, SIM, and HW. The FAKE format is used in ModelSim simu-
lations, read by testbench.vhd, a vhdl component with embedded c for reading files into the simulation. The
RAW format is used by NCHARGE to inject the traffic into the FPX switch. The SIM format is also used
in ModelSim simulation, but as a DO file. The HW format is for the hardware module worked on by Dave
Lim.

The FAKE, SIM, and HW formatters will output timing specifications as well as the stream itself. In
between each cell may be a WAIT command in order to let time pass in the simulation. This is done to
achieve the desired flow pattern (as opposed to sending back-to-back cells for an extended period of time).

FAKE RAW SIM HW
new_cell !RAW force soc_mod_in 1 00000000
wait_100 00000320 "force d_mod_in X""00000320""" 00000000
00000902 8A000000 run 10 00000320
E6000000 45000080 force soc_mod_in 0 8A000000
45000028 00000000 "force d_mod_in X""8a000000""" 45000080
00000000 40067B77 run 10 00000000
FF11541A FFFF0000 "force d_mod_in X""45000080""" 40067B77
7F000001 FF000001 run 10 FFFF0000
C0A82801 FA000007 "force d_mod_in X""00000000""" FF000001
138C138C 0269306E run 10 FA000007
00140000 20043180 "force d_mod_in X""40067b77""" 0269306E
00000001 50181000 run 10 20043180
48656C6C 4A270000 "force d_mod_in X""ffff0000""" 50181000
6F000000 C67E816B run 10 4A270000
00000028 4BFBE2FB "force d_mod_in X""ff000001""" C67E816B
E28337C6 wait 690 run 10 4BFBE2FB

"force d_mod_in X""fa000007"""
run 10
"force d_mod_in X""0269306e"""
run 10
"force d_mod_in X""20043180"""
run 10
"force d_mod_in X""50181000"""
run 10
"force d_mod_in X""4a270000"""
run 10
"force d_mod_in X""c67e816b"""
run 10

18

"force d_mod_in X""4bfbe2fb"""
run 10
"force d_mod_in X""00000000"""
run 690

19

References

[1] F. Braun, J. W. Lockwood, and M. Waldvogel, “Layered protocol wrappers for Internet packet process-
ing in reconfigurable hardware,” in Proceedings of the Symposium on High Performance Interconnects
(HotI-9), (Stanford University, CA, USA), p. 4.3, Aug. 2001.

[2] F. Braun, J. W. Lockwood, and M. Waldvogel, “Layered protocol wrappers for Internet packet pro-
cessing in reconfigurable hardware,” Tech. Rep. WU-CS-01-10, Washington University in Saint Louis,
Department of Computer Science, June 2001.

[3] D. E. T. Todd Sproull, John W. Lockwood, “Control and configuration software for a reconfigurable
networking hardware platform,” in IEEE Symposium on Field-Programmable Custom Computing Ma-
chines, (FCCM), (Napa, CA), Apr. 2002.

20

	Multiflow TCP, UDP, IP, and ATM Traffic Generation Module
	Recommended Citation
	Multiflow TCP, UDP, IP, and ATM Traffic Generation Module

	tmp.1471023011.pdf.kZfiP

	Abstract: Abstract: Networking devices must be capable of processing traffic flows from multiple sources. In order to verify that such devices operates properly, a network testbench can be used to inject traffic into the device. The specification of the traffic flows can be difficult. At the low level, there are header fields, data checksums, and packet length fields that all must be formatted correctly. Further, there can be multiple flows of traffic that will arrive simultaneously.

It is desirable to specify traffic at a high level of abstraction. A software program can then be written to parse the specification and generate the low-level data that is actually processed by the networking hardware.

For this project, a traffic generation program was built that accepts high-level traffic flow specifications. The program generates a cell-by-cell representation of the combined traffic flows. These flows can then be read by a testbench and fed into a simulation. With a hardware module capable of sending traffic created from the above program, a hardware test can be conducted using traffic generated with this program.

	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160
	Footer1: Department of Computer Science & Engineering - Washington University in St. Louis
	Notes:
	Email:
	Date: April 24, 2003
	Author: Authors: Sinclair, Eliot I.; Lockwood, John W.
	Title: Multiflow TCP, UDP, IP, and ATM Traffic Generation Module
	ReportNumber: 2003-24
	DepartmentName: Department of Computer Science & Engineering

