
Washington University in St. Louis Washington University in St. Louis 

Washington University Open Scholarship Washington University Open Scholarship 

All Computer Science and Engineering 
Research Computer Science and Engineering 

Report Number: WUCSE-2006-55 

2006-01-01 

Flexible Maximum Urgency First Scheduling for Distributed Real-Flexible Maximum Urgency First Scheduling for Distributed Real-

Time Systems Time Systems 

Yingming Chen and Chenyang Lu 

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research 

 Part of the Computer Engineering Commons, and the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Chen, Yingming and Lu, Chenyang, "Flexible Maximum Urgency First Scheduling for Distributed Real-Time 
Systems" Report Number: WUCSE-2006-55 (2006). All Computer Science and Engineering Research. 
https://openscholarship.wustl.edu/cse_research/206 

Department of Computer Science & Engineering - Washington University in St. Louis 
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160. 

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F206&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F206&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F206&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F206&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F206&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F206&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F206&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/206?utm_source=openscholarship.wustl.edu%2Fcse_research%2F206&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx


Department of Computer Science & Engineering

2006-55

Flexible Maximum Urgency First Scheduling for Distributed Real-Time
Systems

Authors: Yingming Chen, Chenyang Lu

Type of Report: Other

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160



2 Flexible Maximum Urgency First Scheduling

In the rest of this report, we first describe the design of the FMUF scheduling
strategy. Then, we present simulation results to demonstrate that FMUF can
provide performance isolation for mission-critical tasks.

2 FMUF Scheduling

The following are some definitions for FMUF Scheduling strategy:
-Two types of tasks: mission-critical tasks and best effort tasks,categorized

by its importance specified by users.
-All real-time priorities are divided into two classes: a high priority class

and a low priority class. A task whose priority is in the high priority class is
in the high group. The other tasks are in the low group. That is, a task in the
high group always has a higher priority than any tasks in the low group. Inside
each group, all tasks are ordered by their end-to-end deadline, and end-to-end
Deadline Monotonic scheduling algorithm is applied to assign subpriorities.

The basic idea of FMUF is to utilize an adaptive mechanism to dynamically
adjust the priority of best effort tasks (i.e., move some best effort tasks into or
out of the high group) according to the current conditions at runtime. In the
rest of this section, we present two approaches to implement this strategy.

2.1 End-to-end Task Model

A system has m end-to-end periodic tasks {Ti|1 ≤ i ≤ m} executing on n
processors {Pi|1 ≤ i ≤ n}. Task Ti is composed of a chain of subtasks {Tij |1 ≤
j ≤ ni} that may be allocated to multiple processors.A subtask Tij(1 ≤ j ≤ ni)
cannot be released for execution until its predecessor Ti,j−1 is completed. a non-
greedy synchronization protocol (e.g., release guard [1]) is used to enforce the
precedence constraints between subsequent subtasks.Hence, each subtask Tij of
a periodic task Ti is also periodic and shares the same rate as Ti. Each task Ti

is subject to an end-to-end relative deadline related to its period.

2.2 FMUF based on deadline miss ratio

In this approach the priorities of some best effort tasks are adjusted based on
the history of deadline miss. We first introduce several notations:

– T0: the best effort task whose priority has just been adjusted in the latest
adaptation operation

– Ui,k: the total utilization of processor )Pi during the kth sampling period
– Si: the set of processors that host subtasks of Ti

The Logic of FMUF

1. At the start time of the system, place all mission-critical tasks into the high
group(by assigning high priority to them); and add all best effort tasks into
the low group(by assigning low priority to them); set T0 = null



Flexible Maximum Urgency First Scheduling 3

2. In the end of every sampling period, monitor the total utilizations {Ui,k|1 ≤
i ≤ n} of all processors and check the deadline miss of all tasks
(a) If there is deadline miss in the high group, move a best effort task Ts

from the high group to the low group(by decreasing its priority), and set
T0 = Ts

(b) If (i) there is no deadline miss in the high group for consecutive N
(N > 1) sampling periods and (ii) there are deadline misses in the low
group, choose one best effort task Ts from the low group according to
some selection policies(e.g., shortest end-to-end deadline first)
i. If Ts 6= T0, then move Ts to the high group (by increasing its

priority), and set T0 = Ts

ii. Else calculate ∆Ui = Ui,k−1−Ui,k for all processors in Ss; if min
Pi∈Ss

∆Ui ≥
threshold, then move Ts to the high group

In this appraoch, an adaptation operation can be triggered by several rea-
sons, such as the arrival and departure of mission-critical tasks, and significant
variation of execution times. The threshold is defined to avoid oscillation of the
system, i.e., one task has been moved into and out of the high group repeatedly.
The value of threshold need to be tuned.

Here is one simple example to demonstrate how FMUF works. In this ex-
ample, we set N = 5 and threshold = 5%. The workload includes 7 tasks:
three mission-critical tasks, T1 with end-to-end deadline D1 = 400, T2 with
D2 = 500, and T3 with D3 = 600; four best effort tasks, T4 with D4 = 350,
T5 with D5 = 300, T6 with D6 = 400, and T7 with D7 = 550. There are two
processors. Each task has one subtask on each processor. In the beginning of
the (k − 1)th sampling period, there is no deadline miss for all tasks. All three
mission-critical tasks are in the high group, whereas there are two best effort
tasks, T4 and T5, in the high group. Other two best effort tasks are in the low
group. During the (k− 1)th sampling period, execution time of T1 increases sig-
nificantly, which incurs T3 miss deadline. An adaptation operation is triggered
at the end of (k − 1)th sampling period. The best effort task with the longest
end-to-end deadline in the high group,T4 here, is moved to the low group. T0 is
set to T4. For the next 10 sampling periods, there is no deadline miss in the high
group while deadline miss occurs in the low group. Adaption operation is trig-
gered in the end of each sampling period. However, as Ts is always equal to T0

and the utilization deviations of two processors are both less than the threshold
5%, no task will be moved to the high group according to the algorithm. At the
end of (k + 10)th sampling period, T2 departs from the system. The utilization
of either T21 or T22 is greater than 5%. Then after the adaption operation, T4

will be moved back to the high group. In this example, we select the best effort
task to adjust priority according to the end-to-end deadline in order to decrease
the priority inversion. We can easily replace this with other selection policies.

2.3 FMUF based on AUB condition

In this algorithm, we try to adjust the priority of some best effort tasks based
on Aperiodic Utilization Bound(AUB) for end-to-end tasks [2]. We use AUB



4 Flexible Maximum Urgency First Scheduling

to guarantee all tasks in high group meet their deadlines. The schedulability
condition of Aperiodic Utilization Bound is computed by:

N∑

j=1

Uj(1− Uj/2)
1− Uj

≤ 1 (1)

N is the number of processors;Uj is the estimated utilization of subtasks in high
group on processor j, Uj =

∑
Ti∈Gj

Cij/Di. For simplicity, in the rest of this
section, we call inequation 1 AUB Condition.

Before we describe the logic of the algorithm ,we first introduce two notations:

– Bh: set of best effort tasks in the high group
– Bl: set of best effort tasks in the low group

The Logic of FMUF

1. At the start time of the system, place all mission-critical tasks into the high
group(by assigning high priority to them), and add all best effort tasks into
the low group(by assigning low priority to them);

2. in the end of every sampling period, check the AUB condition
(a) If AUB condition is satisfied: select one task T from Bl and check the

new AUB condition for the high group after including T ; if new AUB
condition is not violated, move T into the high group; select another task
from Bl and repeat this test until all tasks in Bl have been tested

(b) Else AUB condition is violated: move one task T ′ from Bh to the low
group and check the new AUB condition for the high group after ex-
cluding T ′; if new AUB condition is not satisfied yet, select another task
from Bh and repeat this process until the new AUB condition is satisfied
or Bh is empty

3 Simulation Results

In this section, we evaluate the performance of the first approach presented int
Section 2.2. The simulation runs on the EUCON simulator with a medium-sized
workload that comprises of 11 end-to-end tasks. The task set includes 4 mission-
critical tasks and 7 best-effort ones. Each task has 6 subtasks, which are deployed
on 6 different processors(for simplicity, subtask i on processor i, 1 ≤ i ≤ 6 ). The
workload parameters are shown in Table 1. ET1-ET6 are corresponding to the
execution times of subtask1-subtask6. There are only 6 different execution times:
35,40,55,65,70, and 90. Criticality = 1 means miss-critical task; criticality = 0
is corresponding to best-effort task. The time unit of execution time and period
is millisecond. We assume each task’s end-to-end deadline is equal to its period.
In the beginning, only first 10 tasks run. Task 11 will arrive later. The control
period Ts = 100s. Other two parameters for FMUF are chosen like this: N = 5,
threshold = 5%.



Flexible Maximum Urgency First Scheduling 5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 2000 4000 6000 8000 10000

Thousands

time (ms)

m
is

s 
ra

ti
o

miss ratio of critical tasks miss ratio of best effort tasks

(a) FMUF:deadline miss

0

2

4

6

8

10

12

0 2000 4000 6000 8000 10000

Thousands

time (ms)

ta
sk

 n
u

m
b

er
 i

n
 h

ig
h

 g
ro

u
p

(b) FMUF:task number in high group

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 2000 4000 6000 8000 10000

Thousands

time (ms)

u
ti

li
za

ti
o

n

(c) FMUF:utilization of P1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 2000 4000 6000 8000 10000

Thousands

time (ms)

m
is

s 
ra

ti
o

miss ratio of critical tasks miss ratio of best effort tasks

(d) MUF:deadline miss

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 2000 4000 6000 8000 10000

Thousands

time (ms)

m
is

s 
ra

ti
o

miss ratio of critical tasks miss ratio of best effort tasks

(e) DMS:deadline miss

Fig. 1. Experimental results: FMUF, MUF, and DMS

In the experiment, the system runs for 10000 seconds. We create three sce-
narios to evaluation the performance of FMUF: 1) at 2500 seconds, execution
times of all subtasks are decreased by 10%; 2) at 5000 seconds, task 11 arrives; 3)
at 7500 seconds, execution times of all subtasks are increased by 10%. In order
to evaluate the performance of FMUF, we compare it with two baselines: MUF
and DMS. We plot the results in Figure 1. The FMUF control operation is trig-



6 Flexible Maximum Urgency First Scheduling

Table 1. workload parameters(ms)

Tasks ET1 ET2 ET3 ET4 ET5 ET6 period criticality

1 55 40 65 55 40 65 700 1

2 90 65 70 90 65 70 1000 1

3 65 70 65 70 55 65 900 1

4 35 40 40 35 35 40 500 0

5 70 65 65 55 65 70 800 0

6 70 65 90 70 90 70 1200 0

7 40 55 35 40 40 35 600 0

8 65 55 55 70 40 55 700 0

9 70 65 65 90 70 65 900 0

10 35 40 35 35 40 35 400 0

11 65 55 65 70 65 70 700 1

gered four times: in the initial stage, three best-effort tasks are moved into high
group; after scenario 1, two more best-effort tasks are moved into high group;
after scenario 2, two best-effort tasks are move back to low group; after scenario
3, another two best-effort tasks are degraded into low group.The results shows
that FMUF can provide performance isolation for mission-critical tasks.

References

1. Jun Sun, Jane W.-S. Liu, I.: Synchronization Protocols in Distributed Real-Time
Systems. ICDCS(1996)

2. Tarek F. Abdelzaher, Gautam H. Thaker, Patrick J. Lardieri, I.: A Feasible Region
for Meeting Aperiodic End-to-End Deadlines in Resource Pipelines. ICDCS (2004)
436-445


	Flexible Maximum Urgency First Scheduling for Distributed Real-Time Systems
	Recommended Citation

	tmp.1418149444.pdf.ihCQU

