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Abstract

This paper proposes the minimum power configuration
(MPC) approach to energy conservation in wireless sensor
networks. In sharp contrast to earlier research that treats
topology control, power-aware routing, and sleep management
in isolation, MPC integrates them as a joint optimization prob-
lem in which the power configuration of a network consists of a
set of active nodes and the transmission powers of the nodes.
We show through analysis that the minimum power configu-
ration of a network is inherently dependent on the data rates
of sources. We propose several approximation algorithms with
provable performance bounds compared to the optimal solu-
tion, and a practical Minimum Power Configuration Protocol
(MPCP) that can dynamically (re)configure a network to mini-
mize the energy consumption based on current data rates. Sim-
ulations based on realistic radio models of the Mica2 motes
show that MPCP can conserve significantly more energy than
existing minimum power routing and topology control proto-
cols.

1. Introduction

Many wireless sensor networks (WSNs) must aggressively
conserve energy in order to operate for extensive periods with-
out wired power sources. Since wireless communication often
dominates the energy dissipation in a WSN, several promis-
ing approaches have been proposed to achieve power-efficient
multi-hop communication in ad hoc networks. Topology con-
trol [1, 2, 3, 4, 5, 6, 7] aims to reduce the transmission power
by adjusting nodal radio transmission ranges while preserv-
ing necessary network properties (e.g., connectivity). Power-
aware routing protocols [8, 9, 10, 11, 12] choose appropri-
ate transmission ranges and routes to conserve energy used
for multi-hop packet transmission. Both topology control and

power-aware routing focus on reducing the power consump-
tion when the radio interface is actively transmitting/receiving
packets. However, such approaches alone are often insufficient
because radio interfaces (e.g., Mica2 motes [13] and WLAN
cards [14]) also consume non-negligible power even when
idle. Sleep management [15, 14, 16, 17] has been proposed
to reduce the energy wasted in an idle state. A sleep manage-
ment protocol turns off redundant nodes while only keeping a
small number of active nodes as relays for multi-hop transmis-
sion.

Clearly, a WSN needs to reduce the energy consumed in
each of the radio’s power states (i.e., transmission, recep-
tion, and idle) in order to minimize its energy consumption.
This requires a WSN to effectively apply all the above ap-
proaches. However, as we will show in this paper, the corre-
lations between different approaches are dependent on the net-
work workload and hence cannot be combined in a straight-
forward fashion. For example, when network workload is low,
the power consumption of a WSN is dominated by the idle
state. In such a case, scheduling nodes to sleep saves the most
power. Hence, it is more power-efficient for active nodes to
use long communication ranges since it will require fewer
nodes to remain awake to relay packets. Conversely, short ra-
dio ranges may be preferable when the network workload is
high as the radio spends more time in the transmission and re-
ception. In this paper, we propose a novel approach called min-
imum power configuration (MPC), that minimizes the aggre-
gate energy consumption in all power states. In sharp contrast
to earlier research that treated topology control, power-aware
routing, and sleep management in isolation, MPC provides a
unified approach that integrates them as a joint optimization
problem in which the power configuration of a network con-
sists of a set of active nodes and the transmission powers of
the nodes.

This paper makes the following key contributions. First, we
show through an example that the MPC of a network is in-
herently dependent on the data rates of sources in the network



(Section 3). Second, we provide a new problem formulation
that models the energy conservation in a WSN as a joint opti-
mization problem that considers the power consumption in all
power states according to the network workload (Section 4).
Third, we show that the minimum power configuration prob-
lem is NP-hard, and then propose several approximation algo-
rithms with provable performance bounds compared to the op-
timal solution (Section 5). Fourth, we present a practical dis-
tributed Minimum Power Configuration Protocol (MPCP) that
can dynamically (re)configure a network based on data rates
(Section 6). Finally, we provide simulation results that showed
that MPCP can save significantly more energy than minimum
power routing protocols. Our simulations are based on realistic
radio models (e.g., asymmetric and probabilistic radio links) of
the Mica2 motes.

2. Related Work

Numerous solutions have been proposed for conserving en-
ergy in wireless ad hoc (sensor) networks in literature. They
can be roughly classified into three approaches, namely topol-
ogy control, power aware routing and sleep management. We
summarize the limitations of them after providing a brief
overview of the existing works of each approach.

Topology control: Topology control preserves desirable
properties of a wireless network ( e.g., K-connectivity) through
reduced transmission powers. A comprehensive survey on ex-
isting topology control schemes can be found in [18]. We re-
view several representative works here. In the scheme pro-
posed in [1], a node chooses to relay through other nodes only
when less power is used. The network is shown to be strongly
connected if every node only keeps the links with the nodes
in its “enclosure” defined by the relay regions. Ramanathan
proposed two centralized algorithms to minimize the maximal
power used per node while maintaining the (bi)connectivity
of the network [2]. Two distributed heuristics were also pro-
posed for mobile networks in [2], although they may not nec-
essarily preserve the network connectivity. Two algorithms are
proposed in [4, 3] to maintain network connectivity using the
minimal transmission power. CBTC [5] preserves the network
connectivity using the minimum power that can reach some
node in every cone of smaller than 5π/6. A local topology
called Localized Delaunay Triangulation is shown to have a
constant stretch factor with respect to the original network
[6]. Li et al. proposed a MST-based topology control scheme
which preserves the network connectivity and has bounded
node degrees [7]. The problem of maximizing network life-
time under topology control is studied in [19].

Power aware routing: Singh et al. proposed five power-
aware routing metrics to reduce energy consumption and ex-
tend system lifetime [8]. The implementation of a minimum
energy routing protocol based on DSR was discussed in [9,
10]. An online power-aware routing scheme is proposed to
optimize system lifetime in [20]. Chang and Tassiulas stud-
ied the problem of maximizing the lifetime of a network with

known data rates [11]. Chang et al. formulated the problem of
choosing routes and transmission power of each node to maxi-
mize the system lifetime as a linear programming problem and
discussed two centralized algorithms [11]. Sankar et al. for-
mulated maximum lifetime routing as a maximum concurrent
flow problem and proposed a distributed algorithm [12].

Sleep management: Recent studies showed that signifi-
cant energy savings can be achieved by turning wireless ra-
dios off when not in use. In this approach, only a small num-
ber of nodes remain active to maintain continuous service of a
network and all other nodes are scheduled to sleep. ASCENT
[15], SPAN [14], AFECA [16] and GAF [17] maintain net-
work connectivity while CCP [21] maintains both network
connectivity and sensing coverage. More recently, a sleep
schedule algorithm is proposed in [22] to maximize the life-
time of network clustering.

None of the three above approaches optimizes the energy
consumption of all radio states. Topology control and power
aware routing reduce the transmission power of wireless nodes
and do not consider the idle power. Sleep management can re-
duce the idle power by scheduling idle nodes to sleep, but does
not optimize the transmission power. We show in this paper
that significant energy reduction can be achieved by jointly op-
timizing the transmission power and sleep time of nodes based
on the network workload.

3. An Illustrating Example

In this section, we illustrate the basic idea of our approach
with a simple example. We focus on the power consumption of
radios since they often are the major source of power dissipa-
tion in wireless networks. We will show that when the power
consumption of different working modes of a radio is consid-
ered, the minimum power configuration depends on the data
rate of the network. A wireless radio can work in one of the fol-
lowing modes: transmitting, receiving, idle and sleeping. The
corresponding power consumptions are represented by P tx(d),
Prx, Pid and Ps, where d is the Euclidean distance of the trans-
mission.

a

b

c

Figure 1: Two communication paths from a to c: a → c or
a → b → c.

As shown in Fig. 1, a, b and c are three nodes located in 2D
space. a needs to send data to c at the rate of R bps. The band-
width of all nodes is B bps. There are two network configu-
rations to accomplish the communication between a and c: 1)
a communicates with c directly using transmission range |ac|
while b remains sleeping or 2) a communicates with b using
transmission range |ab| and b relays the data from a to c us-



ing transmission range |bc|. The total power consumption of
the three nodes under the two configurations, P1 and P2, can
be computed as follows:

P1 =
R

B
· Ptx(|ac|) +

R

B
· Prx + 2(1 − R

B
) · Pid + Ps

P2 =
R

B
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2R

B
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B
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Figure 2: Total power consumption vs. data rate
The total power consumption under each configuration is com-
puted as the sum of the power consumed by three radios in
all working modes. For example, P2 includes the transmission
power of node a and b, R

B · (Ptx(|ab|) + Ptx(|bc|)), reception
power of b and c, 2R

B · Prx and idle power of the three nodes,
(3 − 4R

B ) · Pid. For the given radio parameters and node lo-
cations, all terms except R are constant in the expressions of
P1 and P2. We plot P1 and P2 in Fig. 2 under a possible set-
ting of radio parameters and node locations. We can see that
P1 > P2 when the data rate exceeds a threshold R0 given by:

R0 =
Pid − Ps

Ptx(|ac|) − Ptx(|bc|) − Ptx(|ab|) + 2Pid − Prx
(1)

To get a concrete estimation on R0, we now apply the ra-
dio parameters of Mica2 motes [13] to (1). For a 433MHz
Mica2 radio, the bandwidth is 38.4 Kbps. There are a total of
30 transmission power levels, each of which leads to different
transmission range1. Suppose Ptx(|ac|) is equal to the max-
imum transmission power 80.1 mW. Ptx(|ab|) and Ptx(|bc|)
are equal to the medium transmission power 24.6 mW. P id,
Prx and Ps are 24 mW, 24 mW and 6 µW, respectively. It can
be calculated that relaying through node b is more power effi-
cient when the data rate is above 16.8 Kbps.

This example leads to the following observations on
the power-efficient network configuration: 1) When net-
work workload is low, power consumption of a network is
dominated by idle state of radios. In such a case, schedul-
ing nodes to sleep saves the most power. Hence, it is wise
to use long radio ranges for communication since more idle
nodes in the network can sleep. 2) When network work-
load is high, the transmission power dominates the total power
consumption of a network. As the transmission power in-
creases quickly with distance, communicating with short radio
ranges saves more power.

1 The actual transmission range of a radio also depends on environment and
antenna.

4. Problem Definition

We define our problem formally in this section. We first de-
fine several simple concepts. A node can either be active or
sleeping. For any given time instance, an active node works in
one of the following modes: transmitting, receiving and idle.
The power consumption of an active node is equal to the sum
of the power consumption in all working modes. The sleep-
ing power consumption is orders of magnitude lower than ac-
tive power consumption [13, 14]. In this paper, we only con-
sider the total active power consumption in a network. We de-
fine the following notation.

1. The maximal and minimal transmission power of
each node is denoted by P max

tx and P min
tx , respec-

tively. Ptx(u, v) is the minimum power needed for
successful transmission from node u to node v,
Pmin

tx ≤ Ptx(u, v) ≤ Pmax
tx .

2. G(V, E) represents a wireless network. V in-
cludes all nodes in the network and E is defined as
E = {(u, v)|(u, v ∈ V ) ∧ (Ptx(u, v) ≤ Pmax

tx )}.

3. Prx and Pid represent the power consumption of a node
in receiving and idle mode, respectively.

4. S = {si} and T = {tj} represent a set of source and sink
nodes, respectively. I = {(si, tj , ri,j) | si ∈ S, tj ∈ T }
represents a set of traffic demands where source s i sends
data to sink tj at rate ri,j .

In many sensor network applications, e.g., periodic data col-
lection, a source is aware of its data rate. Alternatively, a
source may estimate its average data rate online. We assume
that the total traffic demands are smaller than the bandwidth
of any node, i.e.,

∑
ri,j ≤ 1 where ri,j represents the data

rate between source si and sink j normalized by the effective
node bandwidth 2. This assumption is applicable to many sen-
sor network applications with low data rates.

The Minimum Power Configuration (MPC) problem can be
stated as follows. Given a network and a set of traffic demands,
find a subnet that satisfies the traffic demands with minimum
power consumption. Before we present the formal definition
of MPC problem, we first consider the power consumption of
a node assuming the data path f(si, tj) from source si to sink
tj is known. To simplify the formulation, we introduce a vir-
tual source node s∗ and virtual sink node t∗ to the network.
s∗ sends data to each source si at the rate of ri,j . Each sink tj

sends data to t∗ at a rate of ri,j . Note that the additional power
consumption due to the introduction of s∗ and t∗ is constant
for a given set of traffic demands. Now the power consump-
tion of any active node u (excluding s∗ and t∗), P (u), can be
computed as the sum of power consumed by transmitting, re-
ceiving and idle state at node u:

2 We assume
∑

ri,j ≤ 1/2 when the communication is multi-hop since
the bandwidth of intermediate nodes is consumed by both data transmis-
sion and reception.



P (u) =


1 − 2

∑
(u,v)∈f(si,tj)

ri,j


 · Pid

+
∑

(u,v)∈f(si,tj)

ri,j · (Ptx(u, v) + Prx)

= Pid +
∑

(u,v)∈f(si,tj)

ri,j · (Ptx(u, v) + Prx − 2Pid)

where (u, v) ∈ f(si, tj) represents that there exists a node
v such that edge (u, v) is on the path f(si, tj). Based on the
power consumption of a node defined by the above equation,
MPC problem can be defined as follows.

Definition 1 (MPC problem). Given a network G(V, E) and
a set of traffic demands I , find a subgraph G ′(V ′, E′) (V ′ ⊆
V, E′ ⊆ E) and a path f(si, tj) within G′ for each traffic de-
mand (si, tj , ri,j) ∈ I , such that the total power cost P (G′) is
minimal, where

P (G′) =
∑

u∈V ′
P (u)

= |V ′|z +
∑

u∈V ′

∑
(u,v)∈f(si,tj)

ri,j · Cu,v (2)

and Cu,v and z are defined as follows:

Cu,v = Ptx(u, v) + Prx − 2Pid (3)
z = Pid (4)

From the above formulation, we can see that an edge (u, v)
has a cost Cu,v for each unit of the data flowing through it,
and each node has a fixed cost z that is independent of data.
We assume that all the data in the same flow takes the same
path, i.e., a flow is not splittable. Under such a consumption,
one can show that network path f(si, tj) is the shortest path
in graph G′ with edge weight Cu,v. (2) can be reformulated as
follows:

P (G′) = |V ′|z +
∑

(si,tj ,ri,j)∈I

ri,j · P (si, tj) (5)

where P (si, tj) represents the shortest path in G′(V ′, E′) with
edge weight Cu,v. According to (5), the total power cost is
equal to the sum of the cost along the shortest path of each
traffic demand and the total nodal costs.

When ∀(u, v) ∈ E, Ptx(u, v)+Prx = 2Pid, the cost func-
tion of the MPC problem becomes |V ′|z. When there is only
one sink t in the network, the problem is equivalent to find-
ing the minimum weight steiner tree in G(V, E) with uniform
edge weight z to connect the nodes in S ∪ {t}. This special
case of minimum weight steiner tree problem is NP-hard [23].
As a result, a natural reduction from this problem can show
that MPC problem is also NP-hard.

Although polynomial solutions for the general MPC prob-
lem are unlikely to exist, the following non-trivial special cases

of the MPC problem can be solved optimally in polynomial
time.

1. When S ∪ T = V , i.e., every node in the network is ei-
ther source or sink and hence needs to remain active. Thus
the first term in (2) becomes |V |z which is constant for a
given network. In such a case, the solution is equivalent to
finding the shortest paths with edge weight ri,j ·Ci,j con-
necting all sources to their sinks and hence can be solved
in polynomial time.

2. When Pid = 0, similar to the first case, the MPC problem
can be solved optimally by shortest-path algorithms.

In our problem definition, the power consumption of packet
retransmissions on lossy communication links is ignored. Re-
cent empirical studies show that lossy communication links
are common in real sensor networks [24, 25]. In such a case,
the communication quality between two nodes can be quanti-
fied by packet reception ratio (PRR) [26]. In this paper, we as-
sume an automatic repeat request (ARQ) mechanism is used
to deal with lossy links. A node with ARQ keeps retransmit-
ting a packet until the packet is successfully acknowledged
by the receiver or the preset maximum number of retransmis-
sions is reached. To reflect the additional power cost caused
by retransmissions, the cost function defined in (2) can be
revised as follows. Let PRR(u, v, Ptx) represent the PRR
when u communicates with v using transmission power Ptx.
Note that PRR(u, v, Ptx) depends on the quality of both for-
ward and reverse links between u and v when an ARQ is
used3. The expected transmission power cost when u commu-
nicates with v with Ptx on the lossy links can be estimated
as Ptx/PRR(u, v, Ptx). Hence the most efficient transmission
power that should be used by u to communicate with v is de-
termined as follows:

Ptx(u, v) = arg min
Ptx

PRR(u, v, Ptx)
, P min

tx ≤ Ptx ≤ P max
tx

(6)
We redefine Ptx(u, v) in our problem formulation (3) accord-
ing to (6) when the communication links are lossy.

5. Centralized Approximation Algorithms

We investigate approximate algorithms for the general
MPC problem in the this section. We first focus on the sce-
nario where there is only one sink in the network in this sec-
tion. Each source si (si ∈ S) sends data to sink t at a
data rate of ri. We discuss the extension of some of our re-
sults to the scenario of multiple sinks in Section 5.3.

5.1. Matching based Algorithm

When there is only one sink and data flows are not split-
table, MPC problem has the same formulation as the cost-

3 In our design, an acknowledgment is always transmitted at a relatively
high power level to reduce the number of retransmissions.



distance network design problem [27]. Meyerson et. al pro-
posed a randomized approximation scheme [27] that has the
best known approximation ratio O(lg k), where k is the num-
ber of sources . We briefly review the algorithm and propose
an optimization that considerably improves the practical per-
formance of the algorithm.

The Meyerson algorithm takes a graph G(V, E) and out-
puts an subgraph G′(V ′, E′) that contains the paths from all
sources to the sink.

Input: G(V, E), set W = S ∪ {t} and traffic demands I
Output: G

′
(V ′, E′)

1. Create a complete graph M containing all nodes in
W as follows. Each edge between two nodes in M
is the shortest path between the two nodes in G un-
der the edge cost D. For two sources si and sj ,
Du,v = z + 2rirj

ri+rj
Cu,v, (u, v) ∈ E. For a source

si and sink t, Du,v = z + riCu,v, (u, v) ∈ E.

2. Find a matching of graph M that has at most half
the cost of the minimum perfect matching, and has
at most half of the number of total nodes.

3. The nodes and edges of G defining each matched
edge of M are added into G′. For each matched
edge (si, sj) in M , choose si to be the center with
probability ri/(ri + rj), otherwise sj will be the
center. Change the data rate of the center as ri +rj .

4. Each non-center node in a matched edge of M is
removed from W . Stop if S contains only the sink.
Otherwise go to step 1 with the updated W .

Figure 3: Matching based algorithm (MBA) for MPC problem

The time complexity of the above algorithm is O(k 2(m +
n lg n)) (where k, m and n represent the number of sources,
total number of edges and nodes in G respectively). As shown
in [27], the algorithm terminates after at most O(lg k) itera-
tions and the expected cost introduced by the new added edges
in each iteration has a constant ratio to the cost of the opti-
mal solution. Hence the approximation ratio of the algorithm
is O(lg k). We refer to this algorithm as matching based ap-
proximation (MBA) in the rest of the paper.

We note that an edge of G can lie on the matched edges of
M in different iterations at step 3 of MBA. However, the fixed
cost of each edge z is only counted once in the total cost of
the solution (see (2)). This observation can lead to the follow-
ing optimization to MBA. After the matching of M is found
in step 2, we redefine the cost of each matched edge of G as
Du,v = 2rirj

ri+rj
Cu,v . That is, the fixed cost of each edge z is re-

moved if the edge is matched. The intuition behind this consid-
eration is that the matchings in following iterations will tend to
reuse the edges of G that have been previously matched due to
the cost reduction on these edges. Consequently, the total cost
of the solution may be reduced by more path sharing. We re-

fer to the MBA with this optimization as MBA-opt. Although
MBA-opt does not improve the approximation ratio of MBA,
we show in section 5.5 that it can result in considerable im-
provement on the practical performance.

In general, efficient distributed implementation of MBA
and MBA-opt is difficult in large-scale sensor networks. In or-
der to find the matching of the network (step 2 of MBA)
in a distributed environment, complex coordinations be-
tween nodes are needed [28]. Furthermore, MBA and
MBA-opt are only applicable to the scenario with one
sink node. We next seek more general approximation al-
gorithms that are more suitable to distributed implementa-
tions.

5.2. Shortest-path Tree Heuristic (STH)

In this section, we discuss an approximation algorithm
called shortest-path tree heuristic (STH). The idea is to bal-
ance the flow dependent cost (ri,j · Cu,v) and the fixed nodal
cost (z) using a combined cost metric. For convenience, we de-
fine a set of weight functions for edge (u, v):

gi(u, v) = ri · Cu,v + z (7)

Each weight function gi(u, v) defines a cost for edge (u, v)
when the data flow from si travels through the edge.

Input: G(V, E), source set S, sink t and traffic demands I

Output: G
′
(V ′, E′)

1. Initialize G
′
(V ′, E′) to be empty.

2. foreach si

3. Assign edge weights for G(V, E) according to g i.
4. Find the shortest path connecting si to t.
5. Add the shortest path found to G

′
.

6. end

Figure 4: Shortest-path Tree Heuristic (STH)

Fig. 5 shows an example of STH algorithm. Fig. 5(a) shows
an initial network without any flows. Fig. 5 (b) and (c) show
two iterations of STH. In each iteration, G(V, E) is weighted
according to gi and the shortest path from si to t is found. The
output of STH is the graph composed of all the shortest paths
found. According to (2), the total power cost (excluding the
cost of the sink) can be calculated to be 9.4.

Step 4 of STH algorithm can be implemented using Di-
jkstra’s shortest-path algorithm. The complexity of STH is
O(|S||E| lg |V |). It can be seen that STH outputs the optimal
solution for the two polynomial-time special cases of MPC
problem discussed in Section 4.

Before we investigate the performance bound of STH for
the general MPC problem, we define the following notation.
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Figure 5: (a) Initial network with edge weight Cu,v and node
weight z = 2 (shown on each node). (b) edge weights are
defined by r1 · Cu,v + z. (c) edge weights are defined by
r2 · Cu,v + z. The shortest paths from s1, s2 to t are high-
lighted in black.

We define a set of weight functions wi for edge (u, v) as fol-
lows:

wi(u, v) = ri · Cu,v (8)

wi(u, v) represents the cost of edge (u, v) when the data flow
from si travels through (u, v). Let P x

G(u, v) represent the cost
of the shortest path between node u and v in graph G under the
weight function x. Then (2) can be reformulated as follows:

P (G
′
) =

∑
i

Pwi

G′ (si, t) + |V ′ |z (9)

We have the following theorem regarding the performance
of STH.

Theorem 1. The approximation ratio of STH is no greater
than |S|.

Proof. Let P (G
′
) and P (G

′
min) represent the total cost of G

′

found by STH and the optimal solution, respectively. The total
cost of the shortest paths found by STH in G

′
with weight gi

is greater than P (G
′
) because the idle power z of each node in

G
′

might be counted multiple times. We have:

P (G
′
) ≤

∑
i

P gi

G
′ (si, t) (10)

Since STH finds the shortest paths in G with weight gi and
G

′
min ⊂ G, we have:

∑
i

P gi

G
′ (si, t) ≤

∑
i

P gi

G
′
min

(si, t) (11)

Consider the total cost of the shortest paths from si to t in
G

′
min with weight gi. This cost is greater than the optimal

solution P (G
′
min) since weight z might be counted multiple

times for each node in G
′
min. It can be seen that z is counted

at most |S| times for each node (which occurs when a node lies
on the paths from all the sources to the sink). Thus we have:

∑
i

P gi

G
′
min

(si, t) ≤
∑

i

P wi

G
′
min

(si, t) + |S|(|V ′ |)z

≤ |S|
(∑

i

P wi

G
′
min

(si, t) + (|V ′ |)z
)

= |S|P (G
′
min) (12)

From (10) to (12), we have:

P (G
′
) ≤ |S|P (G

′
min)

5.3. Incremental Shortest-path Tree Heuristic
(ISTH)

In STH, the function used to weight the network is different
for each source. Consequently, the shortest path from a source
to the sink is not affected by whether there are already short-
est paths established for other sources. Intuitively, this is not
efficient since sharing an existing path can lead to lower nodal
costs. Suppose we are finding the shortest path from s i to t and
all the shortest paths from sj(0 < j < i) to t have been found.
If any edge on the existing paths is reused by the new path,
the additional cost is ri · Cu,v that does not include the nodal
cost z since it has been counted by the existing paths. That is,
the edge weights on the existing paths should not include the
nodal cost z. Based on this observation, we propose the fol-
lowing algorithm called incremental shortest-path tree heuris-
tic (ISTH) that finds the minimal incremental cost for each new
path. Similar to STH, in each iteration, ISTH finds a shortest
path for a new source. We define the states of the nodes on ex-
isting paths to be active. We define the following set of weight
functions for convenience:

hi(u, v) =

{
ri · Cu,v u is active

ri · Cu,v + z otherwise
(13)

Input: G(V, E), source set S, sink t and traffic demands I

Output: G
′
(V ′, E′)

1. Initialize G
′
(V ′, E′) to be empty.

2. Label all nodes as asleep.
3. W = S.
4. while W 	= Φ
5. Choose a random si from W and find the shortest path

from si to t with edge weight hi(u, v) in G(V, E).
6. Add the shortest path found to G

′
.

7. Label all nodes on the path as active.
8. W = W − si.
9. end

Figure 6: Incremental Shortest-path Tree Heuristic (ISTH)



Fig. 7 shows the second iteration of an example of ISTH
in which the shortest path from s1 to t has been found. The
first iteration of the example is the same as that of STH shown
in Fig. 5(b). The total weights on the shortest path from s1 to
t in Fig. 7 are smaller than those in Fig. 5(c) since the nodal
cost z is not included. Consequently, different from the case
of STH where two paths are disjoint as shown in Fig. 5(c),
the shortest path from s2 to t shares a edge with the existing
path. Hence the total number of nodes used become smaller re-
sulting less idle power consumption. According to (2), the to-
tal power cost (excluding the cost of the sink) can be calcu-
lated to be 7.6 which is smaller than the solution of STH. It
can be easily seen that this solution is optimal for this exam-
ple.
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Figure 7: The shortest path from s2 to t shares a edge with the
existing shortest path from s1 to t.

We now prove that the approximation ratio of ISTH is at
least was good as that of STH.

Theorem 2. The approximation ratio of ISTH is no greater
than |S|.
Proof. Let P (G

′
) and P (G

′
min) represent the total cost of G

′

found by ISTH and the optimal solution, respectively. P (G
′
)

equals the sum of the costs of all shortest paths found by ISTH.
We have:

P (G
′
) =

∑
i

P hi

G
′ (si, t)

According to (13) and (7), h i ≤ gi. Hence the incremental cost
found by ISTH at each iteration must be no greater than that
found by STH. We have:

∑
i

P hi

G
′ (si, t) ≤

∑
i

P gi

G
′ (si, t) (14)

According to (14), (11) and (12), we have:

P (G
′
) ≤ |S|P (G

′
min)

As we mentioned earlier, when ∀(u, v) ∈ E, Cu,v = 0, the
MPC problem is equivalent to finding the minimum weight
Steiner tree connecting all the sources and the sink in G with
uniform edge weight z. In ISTH, once a shortest path is found,

the weights on the path become zero. Hence finding a sub-
sequent shortest path from a source to the sink is equivalent
to finding the shortest path to any node on the existing path. In
such a case, ISTH follows exactly with a heuristic of minimum
weight Steiner tree with approximation ratio of 2 [29]. This re-
sult suggests that ISTH yields good performance when the idle
power dominates the total power consumption of a network,
which occurs when network workload is low or transmission
power is small. Similar to STH, ISTH finds the optimal solu-
tion for the two polynomial-time special cases of MPC prob-
lem.

We have been focusing on the scenario of single sink in this
section. As STH and ISTH are based on pairwise shortest-path
heuristics, they can be easily extended to the the scenario of
multiple sinks. It can be shown that the approximation ratio of
both algorithms still holds using similar proofs.

5.4. Constant-ratio Approximation Algorithm

Although the STH and ISTH algorithms described before
find the optimal solution for two polynomial-time special cases
of MPC problem, their known approximation ratio equals the
number of source nodes in the network for the general MPC
problem. Hence STH and ISTH may not scale well when the
number of sources is large. In this section, we seek the algo-
rithm with constant approximation ratio. We show in the fol-
lowing theorem that a minimum weight Steiner tree algorithm
will lead to a constant approximation ratio for MPC problem,
when the ratio of maximal transmission power to idle power is
bounded.

Theorem 3. Let H be the best approximate algorithm to min-
imum weight Steiner tree problem that has an approximation
ratio β. If ∀(u, v) ∈ E, Cu,v ≤ αz, the solution by execut-
ing H in G with the uniform edge weight z has an approxi-
mation ratio (1 + α)β to the optimal solution of MPC prob-
lem.

Proof. Suppose G
′
min(V

′
min, E

′
min) and G

′
(V

′
, E

′
) are the

optimal solution to the minimum weight Steiner tree problem
and the solution of algorithm H , respectively. Since H has an
approximation ratio of β and all edges have the same weight
z, we have:

|V ′ | − 1 = |E′ | < β|E′
min| = β(|V ′

min| − 1) (15)

Let P (G
′
) and P (G

′
min) represent the cost of G

′
and

P (G
′
min) in MPC problem. We ignore the constant sink node

weight z in both P (G
′
) and P (G

′
min), which does not af-

fect the quality of G
′

or the optimality of G
′
min. We have:

P (G
′
) =

∑
i

∑
(u,v)∈f(si,t)

ri · Cu,v + (|V ′ | − 1)z

≤
∑

(u,v)∈E
′

(
Cu,v ·

∑
i

ri

)
+ (|V ′ | − 1)z (16)



where f(si, t) represents the shortest path with edge weight
Cu,v from si to t. Based on the assumption

∑
i ri ≤ 1, we

have:

P (G
′
) ≤

∑
(u,v)∈E

′
Cu,v + (|V ′ | − 1)z

≤
∑

(u,v)∈E
′
αz + (|V ′ | − 1)z

= |E′ |αz + (|V ′ | − 1)z

= (|V ′ | − 1)(1 + α)z (17)

According to (15) and (17), we have:

P (G
′
) < β(|V ′

min| − 1)(1 + α)z

< (1 + α)β

(
(|V ′

min| − 1)z +
∑

i

P wi

G
′
min

(si, t)

)

= (1 + α)βP (G
′
min)

The best known approximation ratio to minimum weight
Steiner tree problem is about 1.5 [30]. According to the mea-
surements of Mica2 motes, α ≤ 2.3 [13]. Hence the perfor-
mance ratio of the approximation scheme discussed in this sec-
tion is about 5.

5.5. Performance Evaluation

In this subsection, we evaluate the practical performance
of MBA, MBA-opt and ISTH under realistic network settings.
The performance of the steiner tree based algorithm discussed
in Section 5.4 depends on the ratio of maximum transmission
power to the idle power, which varies with wireless network
platforms. As discussed in Section 5.3, STH is likely worse
than ISTH. Hence the steiner tree based algorithm and STH
are not evaluated in this section.

We implement MBA, MBA-opt and ISTH in a C++ based
network simulator. To evaluate the effectiveness of other
power conservation approaches to our problem, we also im-
plement two baseline algorithms called Transmission-power
Minimum Spanning Tree (TMST) and Transmission-power
Shortest Path Tree (TSPT). TMST finds the minimum span-
ning tree of the network where each edge is weighted by
the minimum transmission power of the edge. We choose
TMST as a baseline algorithm for performance compari-
son since distributed MST has been shown to be effective
in topology control [7]. Similarly, TSPT finds the short-
est path tree of the network weighted by transmission pow-
ers, which has been previously proposed as an efficient power
aware routing scheme [8].

We use the radio parameters of Mica2 Motes in the sim-
ulation. There is no packet loss in the simulation environ-
ment. The node bandwidth is 40 Kbps. In the simulation,
only the nodes that lie on the communication paths between

Tx Power Radio Current
(dBm) Range(m) Consumption (mA)
-20 5 8.6
-10 18 10.1
0 50 16.8
5 68 25.4

Table 1: Radio transmission parameters

sources and the sink remain active ( i.e., the working mode of
their radios is either transmitting, receiving or idle). All non-
communicating nodes run in sleeping state. The power con-
sumption of radio in receiving, idle and sleeping modes are
21 mw, 21 mw and 6 µw, respectively [13]. The actual ra-
dio range of Mica2 motes varies with environment and trans-
mitting power. We set the parameters of radio range and trans-
mitting powers according to the empirical measurements pre-
sented in [31], which is listed in Tab 1. When a node com-
municates with a neighbor, it always uses the minimum radio
range that can reach the neighbor. At the beginning of the sim-
ulation, a communication path from each source to the sink is
found. All the nodes on the communication paths remain ac-
tive and all other nodes are put to sleep. The simulation time
for each algorithm is 1000 seconds. 200 nodes are randomly
distributed in a 500m × 500m region. The results in this sec-
tion are the average of 10 different network topologies.

Fig. 8 shows the total energy consumption of the network
when the number of flows varies from 1 to 100. The data rate
of each flow is 0.2 Kbps. We can see that MBA-opt consumes
the least energy among all algorithms, which shows the ef-
fectiveness of our optimization to MBA discussed in Section
5.1. ISTH performs slightly worse than MBA-opt but better
than MBA, although its known approximation ratio is worse
than both MBA-opt and MBA. TSPT and MST lead to con-
siderably more energy consumption than the above algorithms
since they only consider transmission power and do not opti-
mize the idle power consumption. Simulations with different
node density and data rates show similar results. They are not
shown due to space limitation.
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Figure 8: Energy consumption vs. num of flows. The data rate
of each flow is 0.2 Kbps.

The results in this section show that the practical perfor-



mance of ISTH is similar to MBA and MBA-opt. As ISTH
is based on shortest-path algorithm, it has more efficient dis-
tributed implementation than matching-based MBA or MBA-
opt. We now turn our attention to the design of a distributed
protocol based on ISTH from the next section.

6. Distributed Protocol Design

In this section, we discuss the design of minimum power
configuration protocol (MPCP). MPCP can find the power-
efficient routes for communicating nodes in a sensor network
based on the distributed implementation of ISTH algorithm.
We focus on “many to one” routing scenario in our discussion
since it is the most common communication paradigm in sen-
sor networks. MPCP can be easily extended to support more
general routing scenarios. In our design, a node operates in ei-
ther active or power saving mode. A node in power saving
mode remains asleep in most of the time and only periodi-
cally wakes up. This simple sleep schedule is similar to sev-
eral existing power saving schemes such as SMAC [32]. Ini-
tially, all nodes operate in power saving mode. When a source
node starts sending data to the sink, a power-efficient routing
path from the source to the sink is found by distributed ISTH
algorithm. All nodes on the routing path are activated to re-
lay data from the source to the sink. All other nodes remain in
power saving mode to reduce power consumption.

Routing mechanisms based on shortest path have been ex-
tensively studied previously. We adopt Destination Sequenced
Distance Vector Routing (DSDV) protocol [33] as our imple-
mentation framework. DSDV is based on distributed imple-
mentation of Bellman-Ford shortest path algorithm. A node in
DSDV advertises its current routing cost to the sink by broad-
casting route update messages. A node sets the neighbor with
the minimum cost to the sink as its parent and rebroadcasts its
updated cost if necessary. DSDV can avoid the formation of
routing loops by using sink-based sequence numbers for route
updates. The routing cost of a node in DSDV is its hop count
to the sink. However, the routing cost of a node in MPCP de-
pends on the operational state (active or power saving) and the
data rates of the flows that travel through the node. We now
discuss in detail the core components of MPCP.

6.1. Routing Table

Each node in the network maintains a routing table that con-
tains the routing entries and status of neighbors. Since the rout-
ing cost to the sink varies with the data rate of the source, we
need to store an entry for each data rate in the network. Specif-
ically, an entry in the routing table of node u includes follow-
ing fields: < ri, next hop, cost, seq > where ri is the data
rate of source si, next hop is the neighbor node with the min-
imum cost to the sink, cost is the cost of node u to the sink
through next hop, seq is a sequence number originated by the
sink. Tab. 2 shows a routing table of an active node.

data rate next hop cost seq
packets/s
2.1 5 28.9 8
1 7 8.9 6
0.5 15 18.3 8
0.1 30 8.2 12

Table 2: A routing table

One simple method of obtaining source rates is to let each
source flood the network with its rate information before find-
ing a route to the sink. However, this approach incurs too much
overhead when there are many source nodes in a network. To
reduce the overhead, only the data rates with significant dif-
ference are kept in the routing table. When a new source node
starts sending data, it chooses the next hop node from a rout-
ing table entry that has the data rate closest to its own data rate.
The new data rate will be propagated to other nodes if it is sig-
nificantly different from the ones stored in the table, as de-
scribed in the next subsection.

6.2. Routing Cost Updates

A node advertises its current routing cost to the sink by
broadcasting a route update message to its neighbors. A route
update contains a list of data rates and the corresponding rout-
ing costs to the sink. After receiving an update from a neigh-
bor, a node calculates its current cost to the sink for each data
rate specified in the update, which is equal to the sum of the
link cost to the neighbor (defined by (13)) and the cost of the
neighbor included in the update. The node broadcasts a route
update if the maximum reduction of its costs is above a thresh-
old.

The process of routing cost updates can be triggered by the
following events: (1) the quality of a link drops significantly;
(2) the data rate of an existing flow changes; and (3) a data
flow is started or completed. A node detects (1) when multi-
ple transmissions fail. The process of route updates initiated by
(1) is similar to DSDV. We now discuss in detail the route up-
dates caused by (2) and (3).

When a source node changes its data rate to a value that dif-
fers significantly from the data rates stored in the routing ta-
ble, the source node notifies the sink by including the new rate
in its data packets. Once the sink sees the new rate, it broad-
casts a route update with a new sequence number to the net-
work. The routing tables of nodes are updated when the route
update is broadcast throughout the network. Consequently, the
source with the new data rate may choose a better route due to
updated routing information. To reduce the overhead of route
updates caused by case 1), the sink can include several de-
fault data rates in its initial route updates. Then only the data
rate significantly different from the default ones will cause a
round of route updates.

Route updates may also be triggered when a new data flow
appears. If the new flow has a data rate significantly differ-
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Figure 9: Node A is a new source. The junction node C will
initiate a round of route update

ent from the ones stored in the routing table, a round of route
updates is initiated as discussed earlier. In addition, the ap-
pearance of a new flow may activate a node previously run-
ning in power saving mode and reduce the cost of the node to
its neighbors (see (13)). As shown in Fig. 9, a new data flow
from source node A activates nodes A, B and C before it meets
the existing routing path at a junction node D (D may be the
sink node). Nodes A, B and C then see the reduction of rout-
ing costs. In such a case, to reduce the number of route up-
dates, only the node preceding the junction node initiates the
route update since it has the minimum cost to the sink among
all nodes on the new path. In Fig. 9, node C will broadcast a
route update with a new sequence number and reduced rout-
ing costs to initiate a round of route updates. Nodes B, A and
other nodes with reduced routing costs to the sink participate
in the route update process initiated by C. Note that the route
updates initiated in this way only involve a subset of nodes in
the network since many nodes ( e.g., those closer to the sink)
will not participate in the route update process due to no re-
duction on their routing costs.

Similar to the appearance of a new flow, the disappearance
of an existing flow may also cause route updates. In such a
case, the nodes on the existing routing path switch to the power
saving mode after a timeout, resulting in higher routing costs
(see (13)). Again, the node preceding the junction node initi-
ates the route update process by advertising the new routing
costs.

6.3. Link Estimation

In real wireless sensor networks, a routing protocol often
suffers from dynamic and lossy communication links. Empir-
ical study shows that the reliability of routing protocols can
be significantly improved by only keeping “good” neighbors,
e.g., those with high packet perception ratios (PRR), in neigh-
borhood tables [24]. A simple way of obtaining the PRR of a
link is profiling the link characteristics off-line. Alternatively,
the PRR can be obtained from on-line link estimators [24].
For example, nodes can broadcast periodic beacon messages
and the PRR of a link to a neighbor can be estimated by count-
ing the number of messages received from that neighbor. Fur-

ther discussion on this issue is beyond the scope of this pa-
per.

7. Experimentation

7.1. Simulation Environment

Low-power wireless radios used by real sensor network
platforms (e.g., Berkeley motes) are known to have highly
irregular communication range and probabilistic link charac-
terization [25]. The simplifying assumptions on wireless ra-
dio propagation made by a network simulator may cause sim-
ulation results to differ significantly from real-world experi-
mental results [34]. Accurate simulation to the characteriza-
tion of real wireless radios with different transmission pow-
ers is key for evaluating the realistic performance of MPCP.
For this purpose, we implement the link layer model from
USC [26] in the Prowler network simulator [35] with improved
routing support developed in the Rmase project [36]. Experi-
mental data showed that the USC model can simulate highly
unreliable links in the Mica2 motes [26]. In our simulations,
the packet reception ratio (PRR) of each link is governed by
the USC model according to the distance between the two
communicating nodes and the transmission power. The MAC
layer in Prowler employs a simple CSMA/CA scheme with-
out RTS/CTS, which is similar to the B-MAC protocol [37]
in TinyOS. To improve the communication reliability in the
lossy simulation environment, we implemented a ARQ (Au-
tomatic Repeat Request) scheme that retransmits a packet if
an acknowledgment is not received after a preset timeout. The
maximum number of retransmissions before dropping a packet
is 8. Prowler is a Matlab-based network simulator that employs
a layered event-driven structure similar to TinyOS, which al-
lows us to easily implement new network modules (such as the
link model from USC) and to port MPCP to Berkeley motes in
future.

7.2. Simulation Settings

For performance comparison, in addition to MPCP, we have
implemented two baseline protocols, minimum transmission
(MT) routing [24] and minimum transmission power (MTP)
routing. They have similar components with MPCP except the
cost metrics. MT is shown to be more reliable than hop count
based routing scheme in lossy networks [24]. A node in MT
chooses the next hop node with minimum expected number of
transmissions to the sink. All communication links in the orig-
inal MT protocol use the same transmission power. A link be-
tween node u and v in MT has a cost of 1

PRR(u,v) . To take ad-
vantage of variable transmission power, we modified the link
cost of MT to 1

PRR(u,v,Ptx(u,v)) , where Ptx(u, v) is defined
in (6). A node in MTP chooses the next hop node with mini-
mum total expected transmission power to the sink. The cost of
a link between u and v in MTP is equal to Ptx(u,v)

PRR(u,v,Ptx(u,v)) .



Besides the consideration for unreliable links, MTP is simi-
lar to the minimum power routing schemes studied in [9, 10].

In each simulation, 100 nodes are deployed in a 150m ×
150m region divided into 10 × 10 grids. A node is randomly
located within each grid. Source nodes are randomly chosen.
The sink is located at (150, 75) to improve the hop count from
sources. The node bandwidth is 40 Kbps. Power parameters of
the radio are set according to the empirical measurements of
Mica2 motes [38] as follows. Each node is capable of transmit-
ting data at 10 power levels ranging from -20 dBm to 10 dBm.
The corresponding current consumption ranges from 3.7 mA
to 21.5 mA. The receiving and idle current is 7 mA. Each sim-
ulation lasts for 300 seconds. There is a 60-second initializa-
tion phase at the beginning of each simulation, during which
all nodes remain active. Every source node starts sending data
at a random time instance during the initialization phase. Af-
ter the initialization phase, a node that does not lie on any
communication path will enter power saving mode automat-
ically, as discussed in Section 6. The power saving mode has
a period of 10 seconds and active window of one second. The
data packet size is 120 bytes. Each source sends a packet ev-
ery 10 ∼ 14 seconds and the number of sources varies from 5
to 30, which results in a total data rate of 0.3 to 3 Kbps at the
sink. Real-world experiments show that the maximum effec-
tive bandwidth of Mica2 motes can barely reach 6 Kbps due
to channel contention and lossy wireless links [39], which con-
forms to our observation in simulations. The results in this sec-
tion are the average of 5 different network topologies.
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Figure 10: Total network energy cost

7.3. Results

The most important metric for our performance evaluation
is energy consumption. For each protocol, we measure the dif-
ference between the total energy cost of the communicating
network and that of an idle network where there is no commu-
nication activity and all nodes run in the power saving mode.
This metric indicates the net energy consumed by a proto-
col due to the communication activities of the network. As
shown in Fig. 10, MPCP consumes the least energy among all
protocols. As the number of sources increases, routing paths
from different sources share more nodes under MPCP, result-
ing in more energy reduction in idle state and better energy
efficiency. The overall energy reduction of MPCP can be as

high as 33%. Interestingly, although MTP optimizes the trans-
mission energy, it has the similar total energy cost to MT that
makes simpler routing decisions based on the number of trans-
missions. As transmission power grows quickly with transmis-
sion distance, the routing paths found by MTP likely consist
of more hops. Consequently, more nodes have to remain ac-
tive on the routing paths, resulting in more energy waste due
to idle listening. On the other hand, although MT does not opti-
mize transmission power, its routings paths contain fewer hops
and hence more nodes can run in power saving mode. In con-
trast to MTP or MT that only reduces the radio energy costs
under partial working modes, MPCP effectively minimizes the
total energy cost of radios based on data rates.
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Figure 11: Total energy cost of the communication activities
excluding the idle listening of source nodes

We observe that, when the number of source nodes is large,
most of the energy consumption is due to the idle listening of
the sources. This phenomenon reduces the difference in total
energy consumption between different protocols. To focus our
analysis on the energy consumption of non-source nodes, we
measure the difference between the total energy consumption
of the network and that of a network where there is no com-
munication activity, all non-source nodes remain in the power
saving mode but all source nodes remain in the idle state. This
metric indicates the net energy consumption of the communi-
cation activities excluding the idle listening of source nodes.
Fig. 11 shows that MPCP consumes 50% ∼ 90% less en-
ergy than MT or MTP. This result shows that different sources
can effectively share intermediate communicating nodes under
MPCP. Another interesting result in Fig. 11 is that MPCP may
not consume more energy on intermediate nodes as the num-
ber of sources increases. This is because MPCP tends to route
the data from a source through other sources since they must
remain active and have lower costs to the sink. Hence more in-
termediate nodes may run in the power saving mode as the
number of sources increases. We note that although the energy
reduction by routing through other active sources is generally
viable in the “many to one” communication pattern, it may be
affected by the spatial distribution of sources in other scenar-
ios.

Fig. 12 shows the data delivery ratio at the sink under differ-
ent protocols. We can see that the delivery ratio of all protocols
decrease slowly when there are more sources in the network.
MPCP delivers slightly less data than the other protocols when
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Figure 12: Data delivery ratio at the sink
the number of sources is 30. This is because, when the network
workload is high, MPCP causes slightly higher network con-
tention due to path sharing between different sources. How-
ever, MPCP can still successfully deliver more than 90% data
in all settings.
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Figure 13: End-to-end data delay

We plot the average end-to-end delay of data packets in Fig.
13. Not surprisingly, MT yields the shortest latency since it
finds the routing paths with fewer retransmissions. MPCP per-
forms similarly with MTP when network workload is low but
yields higher latency when network workload becomes higher
due to network contention caused by path sharing between dif-
ferent sources.

Finally, Fig. 14 shows the number of route update messages
of different protocols. The number of route updates of MT and
MTP is similar and remains roughly constant as more sources
appear. MPCP yields more route updates than the other proto-
cols because the appearance of a new source node changes the
node states and routing costs (see (13)), which triggers new
route updates. However, consistent to the discussion in Sec-
tion 6, most route updates are triggered by first several sources
and hence the total number of updates remains roughly the
same as the number of sources increases. This behavior allows
MPCP to scale well to large-scale networks. Despite the addi-
tional overhead packets compared with MT and MTP, MPCP
still achieves significantly less energy consumption, as shown
in Fig. 10 and Fig. 11.

The overall simulation results in this section show that
MPCP can achieve significant energy reduction and compa-
rable data delivery ratio and latency with MT and MTP. Al-
though MPCP yields more route updates than other protocols,
the overhead caused by a new source that joins the network af-
ter several initial sources is low.
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Figure 14: Num of route update messages
8. Discussion

In this section, we discuss several limitations of this paper
and potential future work.

In our problem formulation, every node in the network op-
erates in a constant state (active or sleeping) during commu-
nication. The simulation results in Fig. 10 and Fig. 11 show
that further energy savings can be achieved by reducing the
idle time of active nodes ( e.g., through sleep management).
Moreover, MPC problem would be solved optimally if there
exists an ideal sleep management scheme that schedules an
active node to sleep whenever it becomes idle and wakes
up an node whenever data arrives. However, the data arrival
times can be highly unpredictable in a multi-hop communi-
cation environment even with periodic data sources. Hence
scheduling actively communicating nodes to sleep may re-
sult in high communication delays or even data loss. We note
that sleep scheduling schemes (e.g., ESSAT [40], on-demand
power management [41], T-MAC [42]) that are adaptive to the
network traffic are suitable to work with MPCP to further re-
duce the idle energy consumption of active nodes.

While our approach mainly focuses on minimizing the to-
tal energy consumption of a network, it may not lead to max-
imal system lifetime. Nodes on shared routing paths found by
MPCP deplete energy faster than other nodes, which may re-
sult in network partitions. We will extend MPCP to incorpo-
rate appropriate routing metrics ( e.g., those based on node
residual energy) to achieve more balanced energy dissipation
and prolong network lifetime [8, 20]. Finally, while we focus
on “many-to-one” workloads, MPCP can be extended to more
general workload models with multiple sinks.

9. Conclusion

In this paper we propose the minimum power configuration
approach to minimize the total power consumption of WSNs.
We first formulate the energy conservation problem as a joint
optimization problem in which the power configuration of a
network consists of a set of active nodes and the transmission
ranges of the nodes. We have presented a set of approximation
algorithms with provable performance bounds, and the prac-
tical MPCP protocol that dynamically (re)configures a net-
work based on current data rates. Simulations based on real-
istic radio models of the Mica2 motes show that our protocols



can conserve significantly more energy than existing minimum
power routing and topology control protocols.
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