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Abstract— Fair Queuing (FQ) algorithms provide isola-
tion between packet flows, allowing max-min fair sharing
of a link even when flows misbehave. However, fairness
comes at the expense of per-flow state. To keep the memory
requirement independent of the flow count, the router can
isolate aggregates of flows, rather than individual flows.
We investigate the feasibility of protecting individual flows
under such aggregate isolation in the context of Multiple
Queue Fair Queuing (MQFQ), where the router maintains
a fixed number of queues and associates multiple queues
with each flow. MQFQ places packets in the shortest queue
associated with their flow. The redundancy of multiple
queues allows a flow to transmit at a fair rate even when
one of its queues is congested. However, a misbehaving flow
is able to acquire a larger than fair share of the bottleneck
link capacity. We also discuss important implementation
issues such as avoidance of packet reordering.

I. I NTRODUCTION

Fair Queuing (FQ) algorithms [1]–[7] dedicate a sep-
arate queue to each flow and schedule packets for trans-
mission over a congested link so that every flow receives
an average service rate that approximates its max-min
fair share of the link capacity [8]. In comparison to
the traditional First-In First-Out (FIFO) scheduling of
packets, FQ provides a significant degree of isolation be-
tween flows. In particular, FQ algorithms reduce queuing
delays for flows that consume less than the maximum fair
share of the link capacity. Fair queuing exhibits superior
resilience against misbehaving flows: if the rate of a User
Datagram Protocol (UDP) [9] flow is unfairly high, the
excessive transmission does not disrupt well-behaving
flows; instead, FQ penalizes the aggressive flow through
the accumulation and eventual discard of its packets
at the router. Fair queuing also improves the fairness
properties of end-to-end congestion control protocols:
while the throughput of Transmission Control Protocol
(TCP) [10], [11] flows in a network of FIFO routers is
inversely proportional to their round trip times [12], [13]
and hence not max-min fair, using FQ with sufficient
buffers at bottleneck links enables TCP to transmit at
max-min fair rates. Unfortunately, the fairness benefits

of FQ come at the high price of maintaining per-flow
state at the router.

We consider a simpler framework in which memory
requirements are constant. This framework encompasses
most methods that use a constant number of queues
such as Stochastic Fair Queuing (SFQ) [14], Stochastic
Fair Blue (SFB) [15], Random Early Detection with
Preferential Dropping (RED-PD) [16], and other designs
that require only a fixed amount of memory. When the
number of flows becomes large, these schemes generally
treat multiple flows as a single aggregate; for example,
under SFQ multiple flows share one of a fixed number
of queues. Although this isolates flow aggregates with
similar assurances as provided by FQ to all flows, it
offers no such isolation to individual flows within an ag-
gregate. In particular, the throughput of TCP flows within
an aggregate depends on the round trip time (RTT) of
the flows. More importantly, flows within an aggregate
have common queuing delay and loss characteristics. If
well-behaving flows are in the same aggregate with a
misbehaving flow, the latter can capture most of the link
capacity allocated to its aggregate and thereby starve the
well-behaving flows.

In this paper, we explore the feasibility of protecting
individual flows while only using a constant number
of queues. We investigate a technique where the router
maintains a fixed number of queues and uses more than
one of these queues for each flow. An incoming packet
is enqueued in the shortest of the queues associated with
its flow. The rationale for allowing a flow to use multiple
queues rests on assigning different sets of queues to
different flows: if a misbehaving flow fills up its set
of queues, each flow that shares a queue with it can
still utilize another queue unavailable to the misbehaving
flow. We realize this technique in Multiple Queue Fair
Queuing (MQFQ) which provides each flow with access
to two queues. We also examine variations with more
than two queues per flow but find such designs less
beneficial because they allow a misbehaving flow access
to a larger portion of the link capacity. We evaluate
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MQFQ in comparison with SFQ and SFB, demonstrating
the benefits of MQFQ. We also consider situations that
can lead to packet reordering and present methods for
avoiding them.

The rest of the paper is organized as follows. Section II
discusses related work on FQ algorithms. Section III
presents MQFQ in detail. Section IV discusses methods
for avoiding packet reordering in MQFQ. Section V con-
tains a comparative experimental evaluation of MQFQ,
SFQ, and SFB. Finally, Section VI concludes the paper
with a summary of our findings.

II. RELATED WORK

A wide variety of queuing algorithms have been
studied. A class of practical queuing disciplines serve
all flows from a single queue. In the most common case,
all flows are aggregated into a single FIFO queue with
droptail, where arriving packets are discarded whenever
the link buffer is full. Other dropping methods include
Random Early Detection (RED) [17] and its numerous
extensions.

A more complicated approach involves per-flow state.
The Fair Queuing (FQ) [1] paradigm uses an independent
queue for each flow. FQ guarantees a fair share of the
link capacity for each flow but is costly to implement.
Also, if the order of serving the queues is chosen
carefully, FQ is able to offer low delay guarantees to
responsive flows. WDRR [4] is the simplest FQ instance
that serves queues in a fixed round-robin order but
provides no delay guarantees. Stratified Round Robin [5]
addresses this drawback of WDRR. Self-Clocked Fair
Queuing (SCFQ) [6] and Worst-case Fair Weighted Fair
Queuing (WF2Q) [7] support even tighter delay guaran-
tees at the price of more computation.

There are also a number of hybrid designs which
balance quality of service against resource usage. We
consider two hybrid schemes, Stochastic Fair Queuing
(SFQ) [14] and Stochastic Fair Blue (SFB) [15].

SFQ reduces memory requirements by using a small
fixed number of queues. Each flow is mapped to one
of the queues and shares it with other flows. Since
the aggregation of flows into queues negates per-flow
delay guarantees, SFQ serves the queues using round-
robin order. SFQ strives to provide statistical fairness and
some protection against misbehaving flows. Ideally, each
queue hosts the same number of flows. A misbehaving
flow has an impact only on flows in its own queue.
Furthermore, if allk queues are backlogged, a single
flow is capped at1/k of the link capacity.

SFB extends Blue [18], which itself is an enhancement
of RED. Blue maintains a single queue with controlled
probability of packet discard. The discard probability
increases upon queue overflows and decreases when the
queue empties. If all flows are responsive, Blue provides

early feedback adjusted for the current traffic pattern.
SFB extends Blue by adding a Bloom filter to take over
calculation of the discard probability. Hence, SFB is a
hybrid approach that adds a fixed amount of state to
improve fairness among flows. The Bloom filter uses
multiple hash functions to assign each packet to several
independent bins. Every bin has a fixed size and variable
discard probability. An arriving packet is added to all its
bins. If a bin overflows, SFB discards the packet and
increases the discard probability of the bin. If a bin
empties, its discard probability decreases. When SFB
places a packet into the output queue, SFB sets the
discard probability of the packet to the minimum among
the discard probabilities of the packet’s bins. The Bloom
filter distinguishes between different flows and supports
the discard probability computation, which follows the
same algorithm as in Blue. A variation of SFB uses two
Bloom filters and a separate queue to detect and rate-
limit misbehaving flows.

The idea to identify and rate-limit large flows has
been further explored in other designs. When the link
is congested, CHOKe (CHOose and Keep/Kill) [19]
compares an arriving packet with a packet chosen ran-
domly from the single output queue. CHOKe drops
both packets if they belong to the same flow. Approx-
imate Fair Dropping (AFD) [20] maintains a history
for recent packets to compute drop probabilities for
incoming packets. Other proposals rely on sampling or
mechanisms similar to Bloom filters [21]. The identify-
and-limit approach is effective in blocking large greedy
flows, which are easily identifiable. Furthermore, since
flow sizes in most traffic patterns follow a heavy-
tailed distribution, it is feasible to identify large flows
with limited extra space and computation. However, the
identify-and-limit approach suffers from the following
drawbacks: (1) its effectiveness depends on the traffic
pattern: e.g., during coordinated attacks, the number
of misbehaving flows that need to be identified and
rate-limited might exceed the maximum supported by
the algorithm; (2) since identification takes time, rate-
limiting kicks in only after some delay; (3) this approach
ignores fairness among smaller flows, including milder
cheaters that inflate transmission modestly enough to
avoid detection. To ameliorate these problems, identify-
and-limit schemes can adopt techniques proposed in this
paper. In particular, one can identify and rate-limit large
flows first and then apply our multiple-queue proposal.

III. A GGREGATEDQUEUING

Serving aggregated flows from a fixed number of
queues offers effective balance between resource con-
sumption and performance. It improves performance
above that experienced with a single queue but fails
to isolate flows completely. While perfect isolation is
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sacrificed for reduced state, our paper explores a pos-
sibility of outperforming SFQ using the same amount
of memory. We propose Multiple Queue Fair Queuing
(MQFQ), an SFQ enhancement that allows flows to
utilize several queues. Instead of a single hash function
as in SFQ, MQFQ uses multiple hash functions to
determine a set of queues for a flow. When a packet
arrives, MQFQ applies all hash functions to the source
and destination IP addresses and port numbers from
the packet header to compute potential queues. MQFQ
enqueues the packet into the queue with the soonest
service. If the currently used queue grows large, the
flow switches to another of its queues. The rationale for
making multiple queues available to a flow is an expected
decrease in the number of flows that a misbehaving flow
can starve completely. A side effect of this design choice
is the ability of a misbehaving flow to flood multiple
queues and thereby acquire an unfairly high throughput.
Hence, there exists a trade-off between the degree of
extra capacity surrendered to a misbehaving flow and
the number of flows starved by the misbehaving flow.
As we show later, two queues per flow constitute the
best resolution of the trade-off. Unless explicitly stated
otherwise, our subsequent references to MQFQ denote
its instance with two hash functions.

As in SFQ, MQFQ serves all queues using round-
robin order. We implemented MQFQ based on the SFQ
default in ns-2. However, we improved the hash function
implementation because the default hashed consecutive
numbers into adjacent queues. In the process, we learned
that design and implementation of a simple independent
hash function is deceptively difficult but nevertheless
crucial because the hashing affects performance signif-
icantly. We chose a cyclic redundancy check (CRC)
checksum on a mix of data bits and bits from a randomly
generated reproducible stream. To generate independent
hash functions, we intersperse the data and random bits
in varying ratios. As in the ns-2 default, our SFQ shares
memory among all queues but allows a queue to grow
beyond its fair memory share only if free buffer space
is at least the queue size plus two more packets.

The MQFQ queues used by a flow can be thought of
as a single virtual queue. In comparison to SFQ where
two flows either interfere or not, MQFQ virtual queues
reduce the likelihood of complete interference but create
a new possibility of less damaging partial interference. In
SFQ withk queues, probabilityPSFQ that flowx interferes
with flow y is the same as the probability of hashing into
the same queue, i.e.,

PSFQ =
1

k

with a good hash function. In MQFQ, complete in-
terference occurs when flowy shares all its queues
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Fig. 1. Probabilities of flow interference in MQFQ and SFQ.

with flow x, i.e., either the two hash functions ofy
collide and map into a queue ofx, or x hashes into
both separate queues ofy. Then, probabilityP comp

MQFQ of
complete interference in MQFQ is equal to:

P comp
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(
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Partial interference occurs when flowy shares at least
one of its queues with flowx, i.e., either the two hash
functions of y collide and map into a queue ofx, or
x hashes into at least one of two separate queues ofy.
ProbabilityP part

MQFQ of partial interference in MQFQ equals:

P part
MQFQ =

1

k2

(

2 −
1

k

)

+
4

k

(

1 −
1

k

)2

=
4

k
−

6

k2
+
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Figure 1 depictsPSFQ, P comp
MQFQ , and P part

MQFQ. As expected
all three probabilities decrease when the number of
queues grows. While SFQ interference and MQFQ par-
tial interference diminish similarly asO( 1

k
), complete

interference in MQFQ decreases much faster asO( 1

k2 ).

IV. REORDERING

Since not all packets are placed in the same queue,
the possibility of packet reordering within the same TCP
flow must be carefully considered. A packet reordering in
TCP will trigger duplicate acknowledgments. After three
consecutive duplicate acknowledgments TCP assumes
that congestion has caused a loss and scales back its
transmission rate. This negatively impacts performance
and should be avoided.

By always picking the shortest available queue we
ensure that later packets cannot pass earlier packets
from the same flow, hence reordering can be avoided.
However, edge cases in implementation makes it tricky
to precisely define the shortest queue. We assume a
WDRR [4] implementation in which queues are serviced
in round robin order. When each queue is serviced,
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a deficit representing how many bytes the queue is
allowed to transmit is incremented by a weight parameter
which signifies the priority of the queue. The queue is
then allowed to transmit as many bytes as are in the
deficit, and the deficit is decremented appropriately. The
next queue is then serviced. The original queue will
not be serviced again until all other queues have been
serviced, we call this a round. The weight parameter is
not particularly relevant to MQFQ; however, its inclusion
in this discussion does not present any fundamental com-
plications. Like WDRR, we require the weight parameter
for every queue to be larger than the maximum packet
size, so that at least one packet is sent every time a non-
empty queue is serviced.

When determining which queue is the shortest, the
deficit and weight of the queue must be taken into
account. The number of rounds that elapse before a
packet placed into a particular queue is serviced, which
we call Rounds Before Service (RBS), is calculated by
the following equation.

RBS = max

(⌈

q + p − d − w

w

⌉

, 0

)

(1)

We defineq as the length of the queue,p the length
of the packet,d the deficit of the queue andw the
weight of the queue. The first part represents the exact
number of rounds needed before a packet is serviced
when placed in this queue. To understand this, consider
that whenever a queue is serviced, exactlyw is added to
its deficit and that the deficit is decreased in proportion
with the amount of data sent,b. This means that the
RBS decreases by exactly one every time a queue is
serviced, unless it already has a value of zero (q becomes
q − b andd becomesd + w − b). There is no advantage
from negative numbers since they will all be serviced
in the first round, therefore we allow only non-negative
numbers.

If packets are of a consistent length and they are
placed in the queue with the smallest RBS, ties being
broken by whichever queue will be serviced sooner, then
reordering cannot occur. To prove this we consider all
cases of what can happen between two arrivals from
the same flow. A packet from another flow can arrive,
causing the queue length of some queue to increase
and possibly increasing that queue’s RBS. This does not
effect the relative ordering of packets which are already
enqueued. Alternately, a queue,q1, can be serviced,
which decreases the RBS of that queue by one and place
the service pointer after it. We examine what effects
this decrease in RBS has. Defineq2 as the alternative
queue for a particular flow. If the RBS ofq1 and q2

were equal, thenq1 would have won the tie breaker and
been chosen, it would also have been serviced soonest.
After the decrease, the RBS ofq1 is smaller and hence

Servicing

Weight = 1500

Weight = 2000

Deficit = 1500

Deficit = 0

1500

1000

Flow hashes to

two queues

1000

Fig. 2. Example of packet reordering: two 1000-byte packets follow
a 1500-byte packet.

the packet goes intoq1 and is serviced in the correct
order. If the RBS ofq1 is greater than that ofq2 then
an incoming packet would have been placed inq2 and
after q1 is serviced it will still be placed there, possibly
with the help of a tie breaker. In the last case when
the RBS ofq1 is less than that ofq2 then an incoming
packet would have been placed inq1 and will certainly
be placed there afterq1 is serviced, since the discrepancy
will be even greater. This shows that the changes in RBS
are exactly consistent with how packets are actually sent
out; therefore, these changes do not effect the order of
packets that are already enqueued. Finally, an incoming
packet will always be placed after all packets from its
flow, since the previous packet would otherwise have
been placed in a shorter queue. This last point is where
we make use of the assumption that all packets are of the
same size. When this does not hold a small packet might
be sent out from a queue which did not have room for
the larger, earlier packet. We have proved that reordering
cannot occur when packets are of a consistent length.

When packets are allowed to be of different lengths
then the last link in the proof is no longer true. We look
at a specific example where reordering occurs. Consider
figure 2, if two packets of length 1000 arrive, then the
first is enqueued in queue 3 and the second in queue 1,
which is the same order in which they are sent. However,
if a packet of length 1500 is followed by one of length
1000 then the first is enqueued in queue 1 and the second
in queue 3 and they are sent out in the reverse order. A
naive attempt to remove this scenario by only enqueuing
a packet in a queue if it has room for a maximum
length packet, replacingp with the maximum length in
equation 1, does not solve the problem. In the earlier
example, the second packet is placed in queue 3 with
the expectation that it will be sent out after waiting a
round, instead it is sent out immediately.

Because of how reordering is triggered, it should
not cause significant problems for TCP. In most situ-
ations TCP packets are of a consistent length and will
not be reordered. In TCP the most common situations
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which cause large packets to be followed by small
ones are lulls in the transmission. However, for three
reorderings to occur, the transmission must continue
to use small packets for a time. Even in this unlikely
scenario, having a loss event erroneously inferred should
not cause substantial performance degradation, since the
flow is most likely transmitting at a slower than allowed
rate. Despite this fact, an implementation should deal
with reordering explicitly to prevent fringe cases from
affecting performance.

We explore two practical methods for ensuring that
reordering does not occur in an implementation even
when packets are not of a constant size. First, a small
buffer can be inserted at the output port. We calculate
an upper bound for how much reordering can occur.
Observe that for two packetspa andpb in the same flow,
the second packetpb had the option of being placed in
the same queue aspa with at least as good a position. If
pa is larger thanpb, then it might have been delayed by
a round if placed in the position ofpb. Whereverpa was
queued, it must have been sent out earlier than it would
have been inpb’s position; therefore, it cannot be delayed
by more than a round afterpb is sent. This reasoning
shows that one round is the most that a packet can be
reordered by; therefore, we can create a small buffer at
the output port which waits one round before sending
a packet and resequences packets as necessary to avoid
reordering. This completely eliminates reordering, even
in the case where packets are of differing lengths.

Another option to avoid reordering packets makes
use of the fact that many routers split packets into
consistently sized cells before transmitting them over
the switching fabric. This can be used to completely
eliminate reordering. At the time when a packet is broken
into cells, each cell should be treated independently
and placed in the appropriate queue. The packet is
reassembled as usual at the output port, since no cells
are reordered, likewise no packets are reordered.

V. EVALUATION

We evaluate MQFQ with respect to SFQ and SFB.
All simulations are done with version 2.29 of network
simulator ns-2 [22]. We use the default SFQ implementa-
tion in ns-2 with the improved hash function discussed
earlier. We further modify this code to create MQFQ.
SFB was downloaded from the Los Alamos National
Laboratory [23] and adapted to version 2.29 of ns-2. All
of the modifications and supporting scripts developed for
this paper are available online [24]. Each experiment is
run over a simple dumbbell topology. The bottleneck
link capacity is 5 Mbps, and all access links run at
100 Mbps. The round trip propagation delay for constant
bit rate (CBR) flows is fixed at 60 ms, since it has no
effect on performance, while the delay for TCP flows
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Fig. 3. 50 CBR flows at 0.15 Mbps each.

is uniformly distributed between 60 and 80 ms. The
packet size is always 1000 bytes. The forward bottleneck
queue uses one of the schemes we investigate while
all other queues are FIFO droptail. For all but one
experiment, SFQ and MQFQ use 16 physical queues and
SFB always uses 2 levels with 23 bins each. However,
all three schemes use the same buffer size of 100
packets unless otherwise specified. A 100 packet buffer
is twice the bandwidth-delay product, chosen so as to
observe the queuing behavior for many flows. All other
parameters are specific to each experiment. For each set
of parameters we repeat the same experiment 10 times
with different random seeds. The flows are sorted by
throughput, and the standard deviation of each rank is
plotted. To make the results more visible and to avoid
overlap of the error bars, we offset the data points
along the x-axis for MQFQ and SFB by 0.2 and 0.4,
respectively.

The following subsections show a series of experi-
ments to compare MQFQ, SFQ, and SFB. We start by
experimenting with CBR traffic to exclude any transient
TCP behavior. Then we repeat these experiments with
TCP instead of CBR flows to determine how each
scheme handles responsive flows. Finally we evaluate the
performance of aggregated queuing schemes with more
than two hash functions.

A. Performance with constant bit rate flows

In the following experiments we evaluate the perfor-
mance in terms of fairness under CBR traffic. We do this
to separate TCP dynamics from queuing behavior. In the
first experiment we use 50 CBR flows, each sending at
0.15 Mbps, which overloads the bottleneck link by 50
percent. In a sense, this experiment represents the case in
which all flows are misbehaving, since they all transmit
faster than they should. We are interested in how fairly
each scheme can force unresponsive flows to distribute
the available bandwidth in such an aggressive environ-
ment. The results are depicted in figure 3. Ideally, each
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Fig. 4. 49 CBR flows at 0.1 Mbps each and 1 CBR flow at 2.5 Mbps.

flow should have a throughput of 100 kbps. We see that
SFB fails to provide fairness because of the inability of
its Bloom filter to single out and rate-limit a single flow.
Instead SFB selects a certain number of flows to rate-
limit by assigning a high discard probability. All other
flows share the now available bandwidth and therefore
avoid detection. However, because of excessively high
discard probabilities, SFB is unable to utilize the link
fully. In the figure, SFB flows with small error bars are
rate-limited in all 10 experiments while all other flows
are either rate-limited or not in each experiment, causing
a bi-modal distribution which is not well represented by
the large error bars.

When we compare SFQ and MQFQ experiments we
see that the throughput range for MQFQ (78-141.5 kbps)
is smaller and included within the range of SFQ (57.6-
157.6 kbps). Since the range for MQFQ is included in the
range of SFQ we conclude that MQFQ provides greater
fairness in this setup.

In the following experiment we observe how a mis-
behaving flow affects the fairness under each scheme. A
misbehaving flow is a flow that sends at a rate greater
than its fair share and is not responsive to congestion
signals. For the experiment in figure 4 considers 50
CBR flows, 49 of which are sending at their fair rate
of 100 kbps and the last sends at 2.5 Mbps. We notice
that many flows are unaffected by the misbehaving flow
in all three scheme. SFB restricts the misbehaving flow
to about 207 kbps which is much better than SFQ at
484 kbps or MQFQ at 620.8 kbps. SFQ suffers from a
similar problem to SFB in that queues may not remain
filled at all times. Queue underruns in some queues mean
that the fair share of the other queues increases, causing
the misbehaving flow to obtain a rate larger than the fair
rate of a single queue, which would be 312.5 kbps in
this case. Because MQFQ allows flows to occupy two
queues, the queues will typically never underrun and be
fully utilized. Therefore, as expected, the misbehaving
flow is able to obtain the rate corresponding to the fair
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Fig. 5. 45 CBR flows at 0.1 Mbps each and 5 CBR flow at 1.5 Mbps.

share of two queues.
On the left side of the figure 4 we see some flows

suffering from the presence of the misbehaving flow.
MQFQ improves the performance for these flows. SFB
flows suffer the most from the misbehaving flow, this is
because, as before, the Bloom filter becomes polluted
due to unresponsive traffic and assigns high discard
probabilities to packets despite queue underruns. Even
when flows send at their fair rate SFB is unable to
provide good performance due to its assumption that all
flows are responsive.

In the last CBR experiment we increase the number of
misbehaving flows to 5, each sending at 1.5 Mbps. Re-
sults are given in figure 5, as expected more flows send
at reduced rates. In this extreme case MQFQ is unable to
avoid limiting flows to nearly zero throughput. Moreover
MQFQ allocates a substantial amount of bandwidth to
the misbehaving flows, reducing the performance of all
other flows. In this case, it appears that SFQ is better
suited to confining misbehavior because it allocates less
bandwidth to each misbehaving flow. SFB manages to re-
strict all misbehaving flows to their fair share. However,
it still suffers from the same problem of low throughput
due to polluted Bloom filters and only transmits at about
60% of the link capacity.

We have seen that MQFQ provides benefits when
there is little misbehavior. And that when the number of
misbehaving flows increases the performance of MQFQ
decreases and becomes worse than that of SFQ. In the
next section we study the performance of the schemes
with responsive traffic.

B. Performance with responsive flows

We setup experiments in the same way as in the
previous section except that we replace CBR with TCP
traffic. These experiments correspond to normal network
behavior and to that seen when misbehaving flows
are rate-limited using a large flow detecting algorithm.
To avoid capturing any transient behavior of TCP we
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Fig. 6. 50 TCP flows, 100-packet buffer.
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Fig. 7. 50 TCP flows, 200-packet buffer.

increased the experiment duration to 100 seconds and
discard the first 10 seconds. Figures 6 and 7 show the
result for a buffer size of 100 and 200, respectively.
In both experiments MQFQ provides the best minimum
throughput to flows. The performance for most flows is
very similar for all three schemes. On the right side of
the graph, where all the high throughput flows are, we
note that SFQ performs worse than the other schemes,
allocating a disproportionately high share to a single
flow. comparing the two figures we see that increasing
the buffer size improves fairness a little for the lowest
throughput flows.

We are interested in how well the schemes react to the
presence of an unresponsive flow sending at an unfair
rate. Figure 8 shows the throughput for 49 TCP flows
and one CBR flow sending at 2.5 Mbps. The CBR flow
is always labeled as flow number 50. We see that none of
the schemes can prevent some TCP flows from having a
near zero throughput. SFB restricts a single misbehaving
flow to a rate comparable to other flows. In SFQ the
CBR flow forces all TCP flows that are in the same
queue to back off and uses a single queue by itself
achieving approximately the fair share rate of the queue,
312.5 kbps. Note that a queue’s throughput is1/k where
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Fig. 8. 49 TCP flows and 1 CBR flow at 2.5 Mbps.
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Fig. 9. 50 TCP flows sorted by increasing round trip time.

k is the number of queues. In our case it is 312.5 kbps.
We also note that in each experiment approximately two
or three flows also dominate a queue and send at this
rate. Those flows are either lucky enough to hash into a
private queue, or other TCP flows backed off after losing
several early packets. In MQFQ none of the TCP flows
acquire their own queue because flows hash to multiple
queues and interact with each other. The CBR flow sends
at the rate of two queues since it forces all TCP flows
in those queues to use other queues.

As commonly known, TCP throughput is inversely
proportional to RTT. We study the impact of round trip
times on fairness by modifying our analysis slightly. We
create 50 TCP flows with round trip times ranging from
60 ms to 550 ms distributed at 10 ms intervals. When
plotting the results in figure 9 we sort flows by RTT
instead of by throughput as in the other experiments.
The clear decreasing trend in all schemes shows that
none of them provide particularly good fairness to flows
experiencing different RTT.

Next we look at how performance changes for MQFQ
when we vary the ratio of TCP flows to queues. To be
able to compare different numbers of flows we plot the
cumulative percentage of flows in each experiment on
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Fig. 11. 50 TCP flows.

the x-axis and the rate of the flow normalized so that
1 always corresponds to a fair rate on the y-axis. We
vary the number of flows from 10 to 100 in steps of
30. Figure 10 shows the average of 3 experiment runs.
As flows are added there is little difference in fairness.
Clearly, the number of flows can be much greater than
the number of queues, without adverse effects.

C. Performance of MQFQ with more than two queues

As discussed earlier we can vary the number of queues
to which we hash flows. Using more queues minimizes
the chance that a flow suffers from a misbehaving
flow, but it also increases the amount of bandwidth a
misbehaving flow can acquire. We denote the number of
hash functions used by appending a number to MQFQ.
For example, MQFQ3 uses 3 hash functions. For this
experiment we use 32 queues instead of the usual 16.
Figure 11 shows the performance for 50 TCP flows while
figure 12 depicts 49 TCP flows and one misbehaving
CBR flow at 2.5 Mbps. In figure 11, we see that the use
of two queues improves performance, but that further
performance benefits are small when using more than
two queues. However, when one flow misbehaves then
using more hash functions gives more throughput to the
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Fig. 12. 49 TCP flows and one CBR flow.

misbehaving flow. Although behaving flows have up to 6
queues to choose from, we still see flows with very low
throughput. Using more than two hash functions does
not provide any benefit. Figure 12 shows an important
effect of MQFQ with many hash functions: although the
misbehaving flow is able to acquire an increasingly large
share of the bandwidth as more hash functions are used,
this bandwidth is mainly taken from the fastest flows.
The number of slow flows is not greatly affected. That
being said, since slow flows remain consistent, there is
little incentive to use more than two hash functions.

VI. CONCLUSION

In this paper, we explored how to protect individual
flows from a misbehaving greedy flow in routers that
provide isolation only between flow aggregates. We
investigated MQFQ, a queuing discipline that does not
require per-flow state in the router. MQFQ employs
a number of independent hash functions to assign a
set of different queues to each flow. When a packet
arrives to the router, the router places the packet into
the queue that will service the packet the quickest
among all queues associated with the packet’s flow. We
explored the use of multiple hash functions and found
that two is the optimal number of queues per flow. The
paper analyzed performance of MQFQ in relation to
two existing schemes SFQ and SFB. Under unresponsive
CBR traffic, MQFQ provided better normal-case behav-
ior and provided more protection from a misbehaving
flow. SFB did not perform well in this case because
it was not designed for handling purely unresponsive
traffic. When the traffic mix included responsive TCP
flows, MQFQ was again able to perform better in the
normal case and provided protection to the weakest
flows in the presence of misbehavior. The possibility
of packet reordering by MQFQ was carefully examined
since such reordering might severely undermine TCP
performance. We developed simple techniques which
prevent all packet reordering.
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