
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2007-15

2007

Optimal Discrete Rate Adaptation for Distributed Real-Time Optimal Discrete Rate Adaptation for Distributed Real-Time

Systems with End-to-End Tasks Systems with End-to-End Tasks

Yingming Chen, Chenyang Lu, and Xenofon Koutsoukos

Many distributed real-time systems face the challenge of dynamically maximizing system utility

in response to fluctuations in system workload. We present the MultiParametric Rate

Adaptation (MPRA) algorithm for discrete rate adaptation in distributed real-time systems with

end-to-end tasks. The key novelty and advantage of MPRA is that it can efficiently produce

optimal solutions in response to workload changes such as dynamic task arrivals. Through oline

preprocessing MPRA transforms a NP-hard utility optimization problem to a set of simple linear

functions in different regions expressed in term of CPU utilization changes caused by workload

variations. At run time MPRA produces... Read complete abstract on page 2. Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Chen, Yingming; Lu, Chenyang; and Koutsoukos, Xenofon, "Optimal Discrete Rate Adaptation for
Distributed Real-Time Systems with End-to-End Tasks" Report Number: WUCSE-2007-15 (2007). All
Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/120

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F120&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F120&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F120&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F120&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F120&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F120&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F120&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/120?utm_source=openscholarship.wustl.edu%2Fcse_research%2F120&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/120

Optimal Discrete Rate Adaptation for Distributed Real-Time Systems with End-to-Optimal Discrete Rate Adaptation for Distributed Real-Time Systems with End-to-
End Tasks End Tasks

Yingming Chen, Chenyang Lu, and Xenofon Koutsoukos

Complete Abstract: Complete Abstract:

Many distributed real-time systems face the challenge of dynamically maximizing system utility in
response to fluctuations in system workload. We present the MultiParametric Rate Adaptation (MPRA)
algorithm for discrete rate adaptation in distributed real-time systems with end-to-end tasks. The key
novelty and advantage of MPRA is that it can efficiently produce optimal solutions in response to
workload changes such as dynamic task arrivals. Through oline preprocessing MPRA transforms a NP-
hard utility optimization problem to a set of simple linear functions in different regions expressed in term
of CPU utilization changes caused by workload variations. At run time MPRA produces optimal solutions
by evaluating the linear function for the current region. Analysis and simulation results show that MPRA
maximizes system utility in the presence of varying workloads, while reducing the online computation
complexity to polynomial time.

https://openscholarship.wustl.edu/cse_research/120?utm_source=openscholarship.wustl.edu%2Fcse_research%2F120&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/120?utm_source=openscholarship.wustl.edu%2Fcse_research%2F120&utm_medium=PDF&utm_campaign=PDFCoverPages

Department of Computer Science & Engineering

2007-15

Optimal Discrete Rate Adaptation for Distributed Real-Time Systems with
End-to-End Tasks

Authors: Yingming Chen, Chenyang Lu, and Xenofon Koutsoukos

Corresponding Author: yingming@cse.wustl.edu

Abstract: Many distributed real-time systems face the challenge of dynamically maximizing system utility in
response to fluctuations in system workload. We present the MultiParametric Rate Adaptation (MPRA) algorithm
for discrete rate adaptation in distributed real-time systems with end-to-end tasks. The key novelty and
advantage of MPRA is that it can efficiently produce optimal solutions in response to workload changes such as
dynamic task arrivals. Through oline preprocessing MPRA transforms a NP-hard utility optimization problem to a
set of simple linear functions in different regions expressed in term of CPU utilization changes caused by
workload variations. At run time MPRA produces optimal solutions by evaluating the linear function for the
current region. Analysis and simulation results show that MPRA maximizes system utility in the presence of
varying workloads, while reducing the online computation complexity to polynomial time.

Type of Report: Other

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160

Optimal Discrete Rate Adaptation for Distributed Real-Time
Systems with End-to-End Tasks

Yingming Chen Chenyang Lu Xenofon Koutsoukos
Department of Computer Science and Engineering Department of Electrical Engineering

Washington University in St. Louis and Computer Science
St. Louis, MO 63130 Vanderbilt University

{yingming, lu}@cse.wustl.edu Nashville, TN 37235
xenofon.koutsoukos@vanderbilt.edu

Abstract
Many distributed real-time systems face the chal-

lenge of dynamically maximizing system utility
in response to fluctuations in system workload.
We present the MultiParametric Rate Adaptation
(MPRA) algorithm for discrete rate adaptation in
distributed real-time systems with end-to-end tasks.
The key novelty and advantage of MPRA is that it
can efficiently produce optimal solutions in response
to workload changes such as dynamic task arrivals.
Through offline preprocessing MPRA transforms a
NP-hard utility optimization problem to a set of sim-
ple linear functions in different regions expressed in
term of CPU utilization changes caused by workload
variations. At run time MPRA produces optimal so-
lutions by evaluating the linear function for the cur-
rent region. Analysis and simulation results show
that MPRA maximizes system utility in the presence
of varying workloads, while reducing the online com-
putation complexity to polynomial time.

1 Introduction

An increasing number of distributed real-time sys-
tems operate in dynamic environments where system
workload may change at run time. For instance, the
Supervisory Control and Data Acquisition(SCADA)
system of a power grid may experience dramatic load
increase during cascading power failures and cyber at-
tacks. System overload may cause unacceptable de-
lays in important monitoring applications, often at
critical times when it is most needed. Such systems
must therefore quickly adapt to workload changes.
However online adaptation introduces several impor-
tant challenges. First, online adaptation should max-
imize system utility subject to multiple resource con-
straints. For example, many distributed real-time
systems must enforce certain CPU utilization bounds
on multiple processors in order to prevent system
crash due to CPU saturation [18] and meet end-to-
end deadlines [19]. Second, many common adaptation
strategies only support discrete options. For exam-

ple, an admission controller must make binary deci-
sion (admission/rejection) on a task. While task rate
adaptation can allow a system to adapt at a finer
granularity [4][6][17][19][8][23], many real-time appli-
cations (e.g., avionics [1] and multi-bit video) can
only run at a discrete set of predefined rates. Unfor-
tunately, utility optimization problems with discrete
options are typically NP-hard [11], especially in the
presence of multiple resource constraints. Further-
more, despite the difficulty of such problems, a real-
time system must adapt to workload changes quickly,
which requires optimization algorithms to be highly
efficient at run time.

Existing approaches to utility optimization in real-
time systems can be divided into two categories: op-
timal solutions and efficient heuristics. Approaches
based on integer programming or dynamic program-
ming have been proposed to optimize utility [11][10].
While these approaches produce optimal solutions,
they are computationally expensive and cannot be
used online. On the other hand, a number of efficient
heuristics have been proposed for online adaptation
[22][11][1][13]. However, these algorithms cannot pro-
duce optimal solutions that do not maximize utility.

To overcome the limitations of existing ap-
proaches, we present the MultiParametric Rate
Adaptation(MPRA) algorithm for discrete rate adap-
tation. The key novelty and advantage of our ap-
proach is that it can efficiently produce optimal solu-
tions online in face of workload changes. The MPRA
algorithm is based on multiparametric mixed-integer
linear programming (mp-MILP) [2]. Through offline
preprocessing MPRA transforms a NP-hard utility
optimization problem to a set of simple linear func-
tions in different regions expressed in term of changes
to CPU utilization due to workload changes. At run
time MPRA produces optimal solutions by evaluating
the linear function for the current region. Specifically,
the primary contributions of this paper are three-fold:

• We present MPRA, a novel algorithm for discrete
rate adaptation in distributed real-time systems

1

with end-to-end tasks;

• We provide analysis that proves that our algo-
rithm reduces the online computation complexity
of optimal rate adaptation to polynomial time,
while maximizing system utility in face of work-
load changes;

• We present simulation results that demonstrate
that our algorithm maximize system utility in
the presence of dynamic task arrivals, with online
execution times two orders of magnitude lower
than a standard optimization solver.

The rest of the paper is organized as follows. Section
2 discusses related work. Section 3 formalizes the
optimization problem addressed in this paper. Sec-
tion 4 presents the design and complexity analysis of
our algorithm. Section 5 provides simulation results
to demonstrate the optimality and efficiency of the
MPRA algorithm. Finally, Section 6 concludes this
paper.

2 Related Work

Several projects investigated the problem of maxi-
mizing system utility in real-time systems. Rajkumar
et al. proposed the QoS-based Resource Allocation
Model (Q-RAM) [21] for utility optimization in real-
time systems. Lee et al. proposed several optimal ap-
proaches to the Q-RAM model based on integer pro-
gramming or dynamic programming [11][10]. These
approaches are computationally expensive and un-
suitable for online adaptation in distributed real-time
systems. To improve the efficiency of the solutions,
the authors proposed several efficient heuristic algo-
rithms that can only produce sub-optimal solutions
[22][11][10]. While the heuristic proposed in [10] can
generate solutions with a bounded distance from op-
timal solutions for the single resource case [12], there
does not exist an analytical bound for the heuristic
algorithms for the multiple resource case, which are
common in distributed real-time systems. Abdelza-
her et al. also developed a QoS-negotiation model
called RTPOOL and a heuristic algorithm to improve
system utility [1]. Recently, Lee et al. introduced a
method called service class configuration to address
the online adaptation problem with dynamic arrival
and departure of tasks [13]. This method avoids run-
ning optimization procedures at run time by design-
ing a set of service classes offline, which will be used
adaptively depending on the system state. While ser-
vice classes can effectively improve the efficiency of
online adaptation, it cannot produce optimal solu-
tions. In contrast, MPRA can produce optimal solu-
tions with efficient online execution.

Several task rate adaptation techniques have been
proposed to enforce real-time performance in real-

time systems. For example, several feedback con-
trol scheduling algorithms [6][4][17][23] were designed
to control the performance of a single processor
by adjusting task rates, while several other control-
theoretic approaches were designed for scheduling in
distributed real-time systems [19][26]. All the above
solutions assume that task rates can be adjusted in
a continuous range. While this assumption holds for
certain classes of systems, there are many systems,
such as avionics and total-ship computing environ-
ments that only support a finite a priori set of dis-
crete task rates. In contrast, our work focuses on dis-
tributed real-time systems with discrete task rates.
HySUCON [8] is a heuristic algorithm for schedul-
ing real-time systems that support discrete task rates.
However, it is only applied to single processor systems
and cannot produce optimal solutions. There are sev-
eral important differences between our work and ear-
lier work on rate adaptation. First, our work deals
with distributed real-time systems with discrete task
rates, while earlier work (except HySUCON) cannot
handle discrete rates in distributed real-time systems.
Second, none of the aforementioned projects is de-
signed to maximize system utility in distributed real-
time systems. In addition, we assume the CPU uti-
lization changes are known to the system when work-
load variations occur. For example, the system knows
the requested utilization of a new task at its arrival
time. As a result, the system does not need feedback
control. We note that our approach may be combined
with event-driven feedback control to deal with un-
certainties in system workload. The extension is part
of our future work.

3 Problem Formulation

We now formulate the discrete rate adaptation
problem in distributed real-time systems.

3.1 End-to-End Task Model
The system is comprised of m periodic tasks

{Ti|1 ≤ i ≤ m} executing on n processors {Pi|1 ≤
i ≤ n}. Task Ti is composed of a graph of subtasks
{Tij |1 ≤ j ≤ mi} that may be located on different
processors. We denote the set of subtasks of Ti that
are allocated on Pj as Sji. Due to the dependencies
among subtasks each subtask Tij of a periodic task Ti

is also periodic and shares the same rate as Ti. Each
subtask Tij has an execution time cij .

We assume each task only supports a set of discrete
task rates for online adaptation. A task running at a
higher rate contributes a higher utility to the system
at the cost of higher utilization. We denote the set of
discrete rate choices of task Ti as Ri = [r(0)

i , ..., r
(ki)
i]

in increasing order. The set of utility options for task
Ti is denoted by Qi = [q(0)

i , ..., q
(ki)
i] where q

(j)
i is

defined to be the utility value contributed by Ti when

2

it is configured with r
(j)
i . We assume each task can be

evicted, i.e., r
(0)
i = 0, 1 ≤ i ≤ m. Note that admission

control is a special case of discrete rate adaptation,
in which each task only have two rate choices: zero
when the task is evicted and a fixed non-zero rate
when task is admitted.

3.2 Discrete Rate Adaption Problem
Before formulating the discrete rate adaptation

problem, we first introduce several notations:

• R: R = [r1, ..., rm] is the task rate vector where
ri is the current invocation rate of task Ti.
Therefore we have ri ∈ Ri, 1 ≤ i ≤ m.

• D: D = [d1, ..., dn] is the workload change vector
where di is the change to the utilization of the
ith processor caused by workload variations. D
may be caused by a variety of sources such as
arrivals and departures of critical tasks that must
be executed at fixed rate.

• U : U = [u1, ..., un] is the CPU utilization vec-
tor where ui represents the utilization of the
ith processor in the system. The relationship
between ui and di is given by ui = di +∑

1≤j≤m

∑
Tjl∈Sij

cjlrj .

• B: B = [b1, ..., bn] is the utilization bound vector
where bi is the utilization bound of the ith pro-
cessor specified by user. The utilization bounds
are used to enforce the resource constraints in
distributed real-time systems via setting U ≤ B.
The utilization bound may be set to the appro-
priate schedulable utilization bound to meet end-
to-end deadlines1 or a threshold for overload pro-
tection.

• Qs: Qs is the system utility, which is defined to
be the sum of the task utilities, i.e., Qs =

∑m
i=1 qi

where qi is the current task utility of Ti and qi ∈
Qi. This can be easily extended to other linear
functions.

The discrete rate adaptation problem can be for-
mulated as a constrained optimization problem. The
goal is to maximize the system utility via rate adap-
tation in response to workload changes, i.e.

max
R

m∑

i=1

qi (1)

subject to two sets of constraints

U ≤ B (2)
1In the end-to-end scheduling approach [24], the deadline of

an end-to-end task is divided into subdeadlines of its subtasks.
A well-known approach for meeting the subdeadlines on a pro-
cessor is by enforcing an appropriate schedulable utilization
bound [15][14].

ri ∈ Ri, 1 ≤ i ≤ m (3)

The utilization constraint (2) ensures that no proces-
sor exceeds its utilization bound. The constraints (3)
indicate that each task can only be configured with
predefined rates.

The discrete rate adaptation problem can be eas-
ily reduced to the 0-1 Knapsack Problem, which is
know to be NP-hard [20]. This indicates that the dis-
crete rate adaptation problem is also NP-hard. It is
therefore impractical to apply standard optimization
approaches to discrete rate adaptation in distributed
real-time systems.

4 MultiParametric Rate Adaptation
(MPRA) Algorithm

In this section, we present the design and analysis
of MPRA for discrete rate adaptation in distributed
real-time systems. We first give a brief overview
of the general theories of multiparametric program-
ming. Next, we transform the discrete rate adapta-
tion problem to a mp-MILP problem, which allows
us to design MPRA that instantiates the multipara-
metric programming approach to efficiently produce
optimal rates in response to workload variations in
distributed real-time systems. Finally, we present the
complexity analysis of our algorithm.

4.1 Overview of Multiparametric Program-
ming

Multiparametric programming is an approach for
solving mathematical programming problems with
constraints that depend on varying parameters [7].
The multiparametric programming approach includes
an offline and an online component. The offline com-
ponent partitions the space of varying parameters
into critical regions. For each critical region, the ob-
jective and optimization variables are expressed as
linear functions of the parameters. For a given value
of the varying parameter, the online component com-
putes the solution by evaluating the explicit function
for the critical region which includes the parameter
value.

The multiparametric approach has been extended
for multiparametric mixed-integer linear program-
ming problems (mp-MILP) [2]. The algorithm pre-
sented in [2] uses a Branch and Bound strategy to
solve multi-parametric 0-1 mixed-integer linear pro-
gramming problems of the following form:

min
x

z(θ) = cx (4)

subject to
Ax ≤ b + Fθ (5)

Gθ ≤ g (6)

θ ∈ <s (7)

3

where the elements of the optimization vector x can
be either continuous or binary variables, and the vec-
tor θ is a vector of parameters varying in Ξ = {θ|Gθ ≤
g; θ ∈ <s}. The optimal solution to this problem is
a piecewise affine (PWA) function with a polyhedral
partition of the following form

x(θ) = Piθ + qi, if Hiθ ≤ ki, i = 1, ..., Nr (8)

where Θi
4
= {θ ∈ Ξ : Hiθ ≤ ki},i = 1, ..., Nr are a par-

tition of the space of varying parameters. Nr is the
number of critical regions generated by the mp-MILP
algorithm. For each θ, an unique region i which in-
cludes θ can be located and the optimization vector
x can be computed by evaluating x = Piθ + qi.

We observe that mp-MILP approaches are suitable
for distributed real-time systems that must handle
workload changes by switching among discrete task
rates. The key advantage of the multiparametric pro-
gramming is that, while the offline component may
have a high time complexity, the online step can gen-
erate optimal solutions efficiently. As a result, the op-
timal solution can be computed quickly in response to
workload changes. This characteristic makes it very
suitable for the discrete rate adaptation problem.

4.2 Problem Transformation
In this subsection, we show how to transform the

discrete rate adaptation problem presented in Section
3.2 to an mp-MILP problem. We start with the end-
to-end admission control problem, which is a special
case of discrete rate adaptation.

4.2.1 End-to-end Admission Control

In this special case, each task Ti only has two rate
choices: r

(0)
i (r(0)

i = 0, i.e., Ti is evicted) and r
(1)
i

(r(1)
i > 0, i.e., Ti is admitted). We introduce an ad-

mission vector X with m elements to represent rate
choices for all tasks such that

xi =

{
1 if Ti is admitted
0 if Ti is evicted

(9)

We introduce a n × m matrix F , where fij =∑
Tjl∈Sij

r
(1)
j cjl, and fij = 0 if no subtask of Tj is

allocated on processor Pi. The relationship between
U , D and X can be described by the following equa-
tion:

U = D + FX (10)

We assume that the task utility contributed by Ti

is zero when it is evicted, i.e., q
(0)
i = 0. So the task

utility of Ti can be obtained by q
(1)
i xi where q

(1)
i is

the task utility contributed by Ti when it is admitted.
The system utility will be Qs =

∑
1≤i≤m q

(1)
i xi. By

denoting DN = B −D, we transform this admission

control problem to the following mp-MILP problem
with DN as the varying parameter:

min
X

∑

1≤i≤m

−q
(1)
i xi (11)

subject to
FX ≤ DN (12)

xi ∈ {0, 1}, 1 ≤ i ≤ m (13)

4.2.2 Discrete Rate Adaption

We first introduce a rate adaptation vector X with∑
1≤i≤m ki elements to represent the rate configura-

tion of the system such that

xl =

{
1 if Ti is configured with r

(j)
i

0 otherwise
(14)

where 1 ≤ i ≤ m, 1 ≤ j ≤ ki, and l =
∑

1≤t<i kt + j.
The task rate vector R can be obtained by R = WX,
where W is a m× (

∑
1≤i≤m ki) matrix such that

wil =

{
r
(j)
i if

∑
1≤t<i kt < l ≤ ∑

1≤t≤i kt

0 otherwise
(15)

where 1 ≤ i ≤ m, 1 ≤ l ≤ ∑
1≤t≤m kt, and j =

l −∑
1≤t<i kt.

We then introduce a n × m matrix H, where
hij =

∑
Tjl∈Sij

cjl and hij = 0 if no subtask of Tj

is allocated on processor Pi. The model that char-
acterizes the relationship between U and X is given
by

U = D + HWX (16)

To describe the relationship between Qs and X,
we introduce a vector Q̄ such that q̄l = q

(j)
i where

1 ≤ i ≤ m, 1 ≤ j ≤ ki, and l =
∑

1≤t<i kt + j.
Thus, the system utility can be computed using the
following equation Qs = Q̄X. By denoting DN =
B − D and G = HW , we re-formulate the discrete
rate adaptation problem as following:

min
X
−Q̄X (17)

subject to
GX ≤ DN (18)

xi ∈ {0, 1}, 1 ≤ i ≤
∑

1≤j≤m

kj (19)

∑
P

1≤t<i kt<j≤P1≤t≤i kt

xj ≤ 1, 1 ≤ i ≤ m (20)

Considering DN as the varying parameter vector
and X as the optimization vector, we have trans-
formed the discrete rate adaptation problem to an
mp-MILP formulation.

4

Figure 1. General Overview of MPRA Algo-
rithm

4.3 Design of MPRA
After transforming the discrete rate adaptation

problem to an mp-MILP problem, we present the
MPRA algorithm to solve it. Based on mp-MILP
approaches, our algorithm can produce optimal rate
adaptation solutions online in response to workload
changes. As shown in Figure 1, MPRA has both of-
fline part and online part. The offline part consists
of an mp-MILP Solver and a Search Tree Generator.
The online part is composed of a Trigger, a Search
Routine, an Evaluator, and multiple Actuators.

The offline part only executes once before the sys-
tem starts running. It first invokes the mp-MILP
Solver to divide the n-dimensional space of DN into
multiple regions and generate the explicit linear func-
tion which expresses X as a linear function of DN for
each region. It then calls the Search Tree Generator
to build a binary tree for the representation of those
regions. This binary tree will be used by the online
part of MPRA .

The online part is invoked when workload changes
occur at run time. It works as follows: (1) the Trigger
sends the current value of D to the Search Routine;
(2) the Search Routine goes through the binary tree
and finds the region which the current value of DN

belongs to; (3) the Evaluator computes the new value
of X and sends it to Actuators; finally, (4) Actuators
change task rates according to the new value of X.

In the following, we present the functionality of

each component in detail.

4.3.1 Offline Components

The offline part of MPRA includes following two com-
ponents:

• mp-MILP Solver: It generates the explicit op-
timal solution, which is a PWA function with a
polyhedral partition of the space of DN , for a
given mp-MILP problem. Our implementation
of MPRA uses an mp-MILP solver provided by
the MultiParametric Toolbox (MPT) [9], which
implements the mp-MILP algorithm presented in
[2].

• Search Tree Generator: It generates a bi-
nary tree data structure for the representation of
the explicit solution generated by the mp-MILP
Solver. Based on the binary tree, the time of the
online rate adaptation operation becomes loga-
rithmic in the number of regions. MPRA uses
the binary search tree generator provided by the
MPT toolbox [9], which implements the algo-
rithm presented in [25].

4.3.2 Online Components

The online part of MPRA comprises the following
components:

• Trigger: Rate adaptation is only triggered by
workload variations, such as new task arrivals
and task departures. When workload changes
occur, the Trigger starts an adaptation operation
and sends the current value of D to the Search
Routine. For example, when a critical task ar-
rives at run time, the Trigger passes the CPU
utilization of the new task to the Search Routine
to start rate adaptation.

• Search Routine: After receiving D from the
Trigger, the Search Routine traverses the binary
tree to locate the region that the current value
of DN belongs to, and then passes the region
number to the Evaluator.

• Evaluator: The Evaluator computes the new
value of X by evaluating the explicit linear func-
tion of the region located by the Search Routine.
It then sends the new value of X to Actuators.

• Actuator: the Actuators change the task rates
based on the new value of X. If the new task
rate of Ti is zero, Ti will be evicted.

4.4 Complexity Analysis
In this section we analyze the complexity of the

online computation of MPRA when applied to the

5

discrete rate adaptation problem. Our analysis fo-
cuses on the online search routine and the evaluation
of the explicit solution, which dominate the online
rate adaptation algorithm.

The complexity of the online search routine de-
pends on Nr, the number of critical regions gener-
ated by the mp-MILP Solver. We first analyze the
mp-MILP algorithm to calculate Nr. The mp-MILP
Solver implements the Branch and Bound algorithm
presented in [2]. It recursively fixes the elements in X
and builds an enumeration tree. There will be 2m̄−1

leaf nodes in the tree, where m̄ =
∑

1≤i≤m ki. Let
k = max{k1, ..., km}. Then m̄ ≤ km. For each leaf
node, m̄ − 1 elements in X have been fixed and the
problem is relaxed to a multiparametric linear pro-
gramming problem (mpLP) by considering the m̄th

element as a continuous variable in [0,1]. Based on
the results in [3], the upper bound to the number of
critical regions for one leaf node can be obtained by
nr ≤ n + 1, where n is the number of processors.

The solution of the mpLP problem for each leaf
node is feasible but it may not be optimal to the
original problem, because the critical regions for dif-
ferent leaf nodes can be overlapping with each other.
The optimal solution of the original problem can be
obtained by removing the overlap among these re-
gions. One such region can be divided into at most
2m̄ non-overlapping regions because it can be asso-
ciated with at most 2m̄ solutions. After eliminating
the intersection among different regions, we will get
Nr non-overlapping regions. Nr is bounded by

Nr ≤ 2m̄−1 × 2m̄ × nr = (n + 1)22m̄−1 (21)

All Nr non-overlapping regions together represent a
partition of the entire space of DN . The explicit solu-
tion of each non-overlapping region is optimal to the
original problem. Then we can obtain a PWA func-
tion with this partition, which represents the optimal
solution for the original problem.

The binary tree generated by the Search Tree Gen-
erator is helpful for reducing the complexity of online
region search. The Generator constructs a tree such
that for a given DN we only evaluate one linear in-
equality at each level. For one linear inequality eval-
uation we do n multiplications, n additions and 1
comparison. Traversing the tree from the root to the
bottom, we will end up with a leaf node that gives us
the optimal solution. Then we need 2m̄n arithmetic
operations for the explicit solution evaluation. Ac-
cording to the result in [25], the depth of the binary
tree, d, is given by

d = d ln Nr

ln 1/α
e ≤ d (2m̄− 1) ln 2 + ln (n + 1)

ln 1/α
e (22)

where 0.5 ≤ α < 1. The constant α is related to
how inbalance the binary tree is. A conservative es-
timate of α is 2/3 based on the result in [25]. So the

worst-case number of arithmetic operations required
for online search and evaluation is (2n + 1)d + 2m̄n,
i.e., MPRA has time complexity O(mn).

Therefore the online complexity of MPRA is poly-
nomial in the number of tasks and the number of
processors for the discrete rate adaptation problem.

5 Evaluation

In this section, we present simulation results for
both end-to-end admission control and discrete rate
adaptation. Our simulation environment is com-
posed of an event-driven simulator implemented in
C++ and the online part of MPRA. The offline pre-
processing of MPRA is done in MATLAB.

In our simulation, the subtasks on each proces-
sor are scheduled by the Rate Monotonic scheduling
(RMS) algorithm [16]. We assume that each task’s
end-to-end deadline di = mi/ri(k), where mi is the
number of subtasks of task Ti. We then evenly divide
the deadline into subdeadlines for its subtasks. The
resultant subdeadline of each subtask Tij equals to its
period, 1/ri(k). Hence we choose the schedulable uti-
lization bound of RMS [16] as the utilization bound
on each processor: bi = ni(21/ni − 1), 1 ≤ i ≤ n,
where ni is the number of subtasks on Pi. In our ex-
periments, online adaptation operations are triggered
by new task arrivals.

5.1 Baselines
In order to evaluate the optimality and efficiency of

MPRA, we compare it with two existing algorithms:
bintprog and amrmd1. bintprog is a binary
integer linear programming solver provided by the
commercial Optimization Toolbox from MATLAB 7.
bintprog is a representative optimization solver that
can produce optimal solutions, which is used to ver-
ify the optimality of MPRA. On the other hand, am-
rmd1, which stands for Approximate Multi-Resource
Multi-Dimensional Algorithm, is a representative ef-
ficient heuristic algorithm that can only produce sub-
optimal solutions [11]. These two algorithms can
be easily applied for discrete rate adaptation in dis-
tributed real-time systems.

5.2 End-to-end Admission Control
We use a workload that comprises 8 end-to-end

tasks (with a total of 21 subtasks) executing on 4
processors. In the following, we present three sets of
simulations to evaluate the performance of the three
algorithms in the presence of new task arrivals. Such
new tasks are viewed as mission critical tasks that
must be executed at the cost of other tasks. We em-
ulate them using a highest-priority periodic task to
compete with the tasks in our workload for CPU re-
source on each processor. In experiment I, four new
tasks arrive simultaneously. In experiment II, four

6

0

0.2

0.4

0.6

0.8

1

0 25 50 75 100 125

Time(10000 time units)

C
P

U
 u

til
iz

at
io

n

P1 P2

P3 P4

(a) CPU Utilization(MPRA and bintprog)

0

0.2

0.4

0.6

0.8

1

0 25 50 75 100 125
Time(10000 time units)

C
P

U
 u

til
iz

at
io

n

P1 P2

P3 P4

(b) CPU Utilization(armrmd1)

1

1.3

1.6

1.9

2.2

2.5

0 25 50 75 100 125

Time(10000 time units)

S
ys

te
m

 u
til

ity

MPRA and bintprog

amrmd1

(c) Utility

Figure 2. Admission control: system perfor-
mance under simultaneous task arrivals

new tasks are activated sequentially. In experiment
III, we compare the three algorithms under different
sizes of new tasks.

Experiment I: Simultaneous Task Arrivals
We now evaluate the three approaches in response
to simultaneous task arrivals. In this experiment,
each new arrival task invokes a function with an ex-
ecution time of 60 time units, every 200 time units.
Four new tasks are activated after 250000 time units
on four processors simultaneously. Consequently, on-
line admission control is triggered to guarantee the
execution of new tasks while maintaining resource
constraints and maximizing system utility. Figure 2
shows that all three approaches respond to this event
by evicting tasks. With the help of online admission
control, all CPU utilizations remain less than their
utilization bounds in face of new task arrivals. We
note that MPRA and bintprog produce the same
optimal solutions and hence achieve the same sys-
tem utility in all the experiments presented in this
paper. This confirms that the solutions generated by
MPRA are optimal. Thus, we always show the perfor-

0

0.2

0.4

0.6

0.8

1

0 25 50 75 100 125
Time(10000 time units)

C
P

U
 u

til
iz

at
io

n

P1 P2

P3 P4

(a) CPU Utilization(MPRA and bintprog)

0

0.2

0.4

0.6

0.8

1

0 25 50 75 100 125
Time(10000 time units)

C
P

U
 u

til
iz

at
io

n

P1 P2

P3 P4

(b) CPU Utilization(armrmd1)

1

1.3

1.6

1.9

2.2

2.5

0 25 50 75 100 125

Time(10000 time units)

S
ys

te
m

 u
til

ity

MPRA and bintprog

amrmd1

(c) Utility

Figure 3. Admission control: system perfor-
mance under separate task arrivals

mance results of these two approaches together. An-
other important observation is that MPRA achieves
15% improvement in system utility when compared to
amrmd1 after admission control as shown in Figure
2(c).

Experiment II: Separated Task Arrivals In
this experiment, four new tasks are activated sequen-
tially on four processors after 250000, 500000, 750000,
and 1000000 time units, which sequentially trigger the
online admission control four times. Figure 3 shows
that all three approaches handle these four task ar-
rivals immediately. After four new tasks arrive, the
system utilities achieved by MPRA and amrmd1
are 1.53 and 1.34, respectively, which shows MPRA
achieves higher system utility than amrmd1 does.

Experiment III: Varying Utilization of New
Arrival Tasks To further compare the perfor-
mance of the three algorithms, we run a set of ex-
periments by varying the CPU utilization of the new
arrival task from 0.2 to 0.45. We plot the system

7

0.8

1

1.2

1.4

1.6

1.8

2

2.2

20 25 30 35 40 45
Utilization of New Tasks(%)

S
ys

te
m

 U
til

ity

MPRA
amrmd1

Figure 4. Admission control: system perfor-
mance under varying utilization of new ar-
rival tasks

utilities achieved by MPRA and amrmd1 against
different utilizations of new tasks in Figure 4. Ev-
ery data point is based on the system utility achieved
after the online admission control operations. MPRA
consistently achieves higher system utility than am-
rmd1 does under different degrees of utilizations of
new tasks.

5.3 Discrete Rate Adaptation
We use a workload that includes 6 end-to-end tasks

(with a total of 17 subtasks) executing on 4 proces-
sors. All tasks can be dynamically evicted. Each task
has two non-zero rate options. We use the same sets
of experiments presented in the previous section to
investigate the performance of the three algorithms
when applied to the discrete rate adaptation prob-
lem.

Experiment I: Simultaneous Task Arrivals In
this experiment, we use a new arrival task on each
processor that invokes a function with a fixed execu-
tion time of 45 time units, every 100 time units. Four
identical new tasks arrive after 250000 time units si-
multaneously. When new tasks arrive, rate adapta-
tion is triggered to maintain the required real-time
performance and maximize system utility. The re-
sults in Figure 5 demonstrate that MPRA and bint-
prog perform 25% better than amrmd1 does with
respect to system utility after rate adaptation.

Experiment II: Separated Task Arrivals In
this experiment, four new tasks arrive sequentially
on four processors after 250000, 500000, 750000, and
1000000 time units. The CPU utilization of each new
task is 0.3. As shown in Figure 6, while all algorithms
maintain acceptable utilizations on all processors in
face of new task arrivals at run time, MPRA generates
optimal solutions and produces higher system utilities
in response to each new task arrival than amrmd1

0

0.2

0.4

0.6

0.8

1

0 25 50 75 100 125

Time(10000 time units)

C
P

U
 u

til
iz

at
io

n

P1 P2

P3 P4

(a) CPU Utilization(MPRA and bintprog)

0

0.2

0.4

0.6

0.8

1

0 25 50 75 100 125
Time(10000 time units)

C
P

U
 u

til
iz

at
io

n

P1 P2

P3 P4

(b) CPU Utilization(armrmd1)

0.8

1.2

1.6

2

2.4

2.8

0 25 50 75 100 125

Time(10000 time units)

S
ys

te
m

 u
til

ity

MPRA and bintprog

amrmd1

(c) Utility

Figure 5. Rate adaptation: system perfor-
mance under simultaneous task arrivals

does.

Experiment III: Varying Utilization of New
Arrival Tasks Figure 4 plots the system utilities
achieved by MPRA and amrmd1 against the CPU
utilization of the new task, which varies from 0.2 to
0.45. While amrmd1 achieves the same utility as
MPRA when the utilization of the new task is 0.4,
MPRA performs better than amrmd1 with respect
to system utility in all the other cases.

5.4 Run-Time Overhead
In this section we show the online execution times

of the three solutions to compare their run-time ef-
ficiency. We used a 2.52GHz Pentium 4 PC with 1
GB RAM for performance evaluation. To achieve fine
grained measurements, we adopt a nanosecond scale
time measuring function called gethrtime provided by
the ACE environment [5]. This function uses an OS-
specific high-resolution timer that returns the number
of clock cycles since the CPU was powered up or re-
set. The gethrtime function has a low overhead and
is based on a 64 bit clock cycle counter on Pentium

8

Experiment MPRA (ms) bintprog(ms) amrmd1(ms)
Admission Control I 0.41 148.98 0.041
Admission Control II 0.13 73.90 0.041
Rate Adaptation I 1.13 183.83 0.055
Rate Adaptation II 0.69 149.07 0.056

Table 1. Overhead

0

0.2

0.4

0.6

0.8

1

0 25 50 75 100 125
Time(10000 time units)

C
P

U
 u

til
iz

at
io

n

P1 P2

P3 P4

(a) CPU Utilization(MPRA and bintprog)

0

0.2

0.4

0.6

0.8

1

0 25 50 75 100 125
Time(sampling period)

C
P

U
 u

til
iz

at
io

n

P1 P2

P3 P4

(b) CPU Utilization(armrmd1)

1.2

1.6

2

2.4

2.8

0 25 50 75 100 125

Time(10000 time units)

S
ys

te
m

 u
til

ity

MPRA and bintprog

amrmd1

(c) Utility

Figure 6. Rate adaptation: system perfor-
mance under separate task arrivals

processors. With the clock counter number divided
by the CPU speed, we can get reasonably precise and
accurate time measurements. To estimate the average
computation overhead of an online adaptation oper-
ation, we run each online execution for 100 times as
a subroutine. The result is then divided by 100 to
get the execution time of a single execution. The
overhead of the three approaches are summarized in
Table 1. Both MPRA and amrmd1 are significantly
faster than bintprog. While MPRA incurs higher
overhead than amrmd1, we expect that its overhead
is acceptable in many distributed real-time systems.
The results show that MPRA can solve the discrete
rate adaptation problem with low online execution
times.

0.8

1

1.2

1.4

1.6

1.8

2

20 25 30 35 40 45
Utilization of New Tasks(%)

S
ys

te
m

 U
til

ity

MPRA
amrmd1

Figure 7. Rate adaptation: system perfor-
mance under varying utilization of new ar-
rival tasks

6 Conclusions

We have developed the MPRA algorithm for op-
timal and efficient discrete rate adaptation in dis-
tributed real-time systems. In this paper, we first
formulate the discrete rate adaptation problem as
an mp-MILP problem. We then present the design
and complexity analysis of MPRA which proves that
MPRA can reduce its online complexity to polyno-
mial time through offline preprocessing. Simulation
results demonstrate that MPRA maximizes the sys-
tem utility in face of workload variations, with online
execution times more than two orders of magnitude
lower than a standard optimization solver. MPRA
also achieves up to 25% improvement in system util-
ity when compared to the amrmd1 algorithm with
acceptable online overhead. Although we focus on
the discrete rate adaptation problem in this paper,
our methodology may be extended to other online re-
configuration problems with discrete options.

References

[1] T. F. Abdelzaher, E. M. Atkins, and K. G. Shin.
QoS Negotiation in Real-Time Systems and Its Ap-
plication to Automated Flight Control. IEEE Trans-
actions on Computers, 49(11):1170–1183, 2000.

[2] J. Acevedo and E. Pistikopoulos. An Algorithm for
Multiparametric Mixed-integer Linear Programming
Problems. Operations Research Letters, 24:139–
148(10), 1999.

[3] A. Bemporad, F. Borrelli, and M. Morari. Model
Predictive Control Based on Linear Programming -

9

The Explicit Solution. IEEE Transactions on Auto-
matic Control, 47(12):1974–1985, Dec. 2002.

[4] G. C. Buttazzo, G. Lipari, M. Caccamo, and
L. Abeni. Elastic Scheduling for Flexible Workload
Management. IEEE Trans. Comput., 51(3):289–302,
2002.

[5] Center for Distributed Object Computing. The
ADAPTIVE Communication Environment (ACE).
www.cs.wustl.edu/∼schmidt/ACE.html, Washing-
ton University.

[6] A. Cervin, J. Eker, B. Bernhardsson, and K.-E.
Årzén. Feedback-Feedforward Scheduling of Control
Tasks. Real-Time Systems, 23(1-2):25–53, 2002.

[7] T. Gal and J. Nedoma. Multiparametric Linear Pro-
gramming. Management Science, 18:406–442, 1972.

[8] X. Koutsoukos, R. Tekumalla, B. Natarajan, and
C. Lu. Hybrid Supervisory Utilization Control of
Real-Time Systems. In IEEE RTAS, 2005.

[9] M. Kvasnica, P. Grieder, and M. Baotić. Multi-
Parametric Toolbox (MPT), 2004.

[10] C. Lee, J. Lehoczky, R. Rajkumar, and D. P.
Siewiorek. On Quality of Service Optimization with
Discrete QoS Options. In IEEE Real Time Technol-
ogy and Applications Symposium, pages 276–, 1999.

[11] C. Lee, J. P. Lehoczky, D. P. Siewiorek, R. Rajku-
mar, and J. P. Hansen. A Scalable Solution to the
Multi-Resource QoS Problem. In IEEE Real-Time
Systems Symposium, pages 315–326, 1999.

[12] C. Lee and D. Siewiorek. An Approach for Quality
of Service Management. Technical Report CMU-CS-
98-165, Computer Science Department, CMU, 1998.

[13] C.-G. Lee, C.-S. Shih, and L. Sha. Online QoS Opti-
mization Using Service Classes in Surveillance Radar
Systems. Real-Time Systems, 28(1):5–37, 2004.

[14] J. P. Lehoczky. Fixed Priority Scheduling of Periodic
Task Sets with Arbitrary Deadlines. In IEEE Real-
Time Systems Symposium, pages 201–213, 1990.

[15] C. Liu and J. Layland. Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environ-
ment. JACM, 20(1):46–61, 1973.

[16] C. Liu and J. Layland. Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environ-
ment. Journal of ACM, Vol. 20, No.1, pp. 46-61,
Jan. 1973.

[17] C. Lu, J. Stankovic, G. Tao, and S. Son. Feed-
back Control Real-Time Scheduling: Framework,
Modeling, and Algorithms. Real-Time Systems,
23(1/2):85–126, July 2002.

[18] C. Lu, X. Wang, and C. Gill. Feedback Control
Real-Time Scheduling in ORB Middleware. IEEE
Real-Time and Embedded Technology and Applica-
tions Symposium, 2003.

[19] C. Lu, X. Wang, and X. Koutsoukos. Feedback Uti-
lization Control in Distributed Real-Time Systems
with End-to-End Tasks. IEEE Transactions on Par-
allel Distributed Systems, 16(6):550–561, June 2005.

[20] S. Martello and P. Toth. Knapsack problems: algo-
rithms and computer implementations. John Wiley
& Sons, Inc., New York, NY, USA, 1990.

[21] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek.
A Resource Allocation Model for QoS Management.
In IEEE Real-Time Systems Symposium, pages 298–
307, Dec. 1997.

[22] R. Rajkumar, C. Lee, J. P. Lehoczky, and D. P.
Siewiorek. Practical Solutions for QoS-Based Re-
source Allocation. In IEEE Real-Time Systems Sym-
posium, pages 296–306, 1998.

[23] D. C. Steere, A. Goel, J. Gruenberg, D. McNamee,
C. Pu, and J. Walpole. A Feedback-driven Propor-
tion Allocator for Real-Rate Scheduling. In Operat-
ing Systems Design and Implementation, pages 145–
158, 1999.

[24] J. Sun and J. W.-S. Liu. Synchronization Proto-
cols in Distributed Real-Time Systems. In Inter-
national Conference on Distributed Computing Sys-
tems, 1996.

[25] P. Tondel, T. A. Johansen, and A. Bemporad. Eval-
uation of Piecewise Affine Control via Binary Search
Tree. Automatica, 39:945–950, 2003.

[26] X. Wang, D. Jia, C. Lu, and X. Koutsoukos. De-
centralized Utilization Control in Distributed Real-
Time Systems. In IEEE Real-Time Systems Sympo-
sium, 2005.

10

	Optimal Discrete Rate Adaptation for Distributed Real-Time Systems with End-to-End Tasks
	Recommended Citation
	Optimal Discrete Rate Adaptation for Distributed Real-Time Systems with End-to-End Tasks

	tmp.1415913124.pdf.ameKw

