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Optimizing Quality of Sensing in Shared Sensor
Networks with Resource Constraints

You Xu, Abusayeed Saifullah, Yixin Chen, Sangeeta Bhattacharya, and
Chenyang Lu

Department of Computer Science and Engineering
Washington University in St. Louis

Abstract. With the fast development of wireless sensor network (WSN)
technologies, WSNs have widely shifted from a specialized platform for a
single application to an integrated infrastructure supporting multiple ap-
plications. It is hence a critical problem to allocate multiple applications
to multiple sensors in order to maximize user utility subject to various
resource constraints. The resulting constrained optimization problem is
difficult since it is discrete, nonlinear, and not in closed-form.
In this paper, we develop an efficient optimization algorithm with rigor-
ous approximation bounds for submodular monotonic optimization with
multiple knapsack constraints. Based on a variance reduction formula-
tion, we prove several important theoretical properties, including the
monotonicity and submodularity of functions and the multiple knapsack
structure of constraints. Then, by exploiting these properties, we pro-
pose a local search algorithm with fractional relaxation of constraints
and prove the approximation bound that is better than any known re-
sults.
Experimentally, we verify the theoretical properties on a large dataset
from the Intel Berkeley Lab. Comparison against other constrained search
algorithms show that our algorithm is superior in both solution time and
quality, making it a practical choice for WSN design.

1 Introduction

While wireless sensor networks (WSNs) have traditionally been used as
specialized platforms for single applications, recent years have witnessed
the emergence of integrated WSNs as shared infrastructure for multiple
applications. A key challenge faced by shared WSNs is to deal with severe
resource constraints of WSN devices. For example, a representative WSN
platform, the TelosB mote [1], only has 10 KB of RAM, a 250 Kbps radio,
and a 16-bit CPU running at 8 MHz. These resource constraints necessi-
tate the allocation of nodes to contending applications to maximize the
overall Quality of Sensing (QoS) subject to multiple resource constraints.
Multi-application allocation in a shared WSN is a challenging optimiza-
tion problem. The objective functions for this type of problem is typically



defined over a finite discrete set representing the assignments of applica-
tions to different subsets of nodes. The resulting constrained optimization
problem is difficult since it is discrete, nonlinear, and does not have close
form objective functions.

To tackle this challenging constrained optimization problem, a key
observation is that the QoS of many networked sensing applications has
submodular properties with regard to node allocation due to the nature of
many physical phenomena. Intuitively, a function f that maps a subset
of a set S to a real value is submodular if it has a diminishing return
property, which means that adding an element to a smaller subset of S
makes a bigger difference than adding it to a larger subset of S.

Formally, we can define the function with this attribute as a submod-
ular function:

Definition 1 Given a finite set S of n elements and a function f : 2S 7→
R, f is submodular if and only if f(A ∩ B) + f(A ∪ B) ≤ f(A) + f(B)
for any A,B ⊆ S. f is monotonic if and only if f(A) ≤ f(B) for any
A ⊆ B ⊆ S.

The submodularity of node allocation in WSNs is due to the inherent
property that sensor readings from different nodes are often correlated.
For instance, the temperature readings from different nodes in a same
room are often correlated to each other. Allocating a new node to a tem-
perature monitoring application therefore results in diminishing improve-
ment to the QoS as the set of nodes allocated to the application grows.
Submodularity of sensor allocation for monitoring temperature [3] and
water quality [9] has been observed in previous studies of real-world data
sets.

While optimization of submodular functions has been extensively stud-
ied, the classical submodular optimization theory [8] has several fun-
damental limitations that severely restrict its applicability. In addition
to requiring submodularity of functions, the theory also requires that
the constraints yield a matroid. In QoS optimization for shared WSNs,
the classical assumptions are typically violated. In fact, the optimiza-
tion problem we study in this paper is more difficult than the classical
submodular optimization problem since its constraint is not a uniform
matroid constraint. Instead, its constraints are not even multiple matroid
constraints, but rather multiple knapsack constraints, which have been
rarely studied until some recent work is proposed [10].

In this paper, we first give a constrained optimization formulation
of the multi-application allocation problem in shared WSNs. We show



that the QoS optimization problem in a shared WSN can be formulated
based on a variance reduction function that maps a set of nodes to a QoS
value in presence of inter-node QoS correlation. Then we provide several
major theoretical results. 1) We show that the problem is a submodular
optimization problem with multiple knapsack constraints. 2) We prove
that our variance reduction formulation is a monotonic function. 3) We
propose a fractional relaxation based greedy local search algorithm for
solving the constrained optimization problem and prove that our algo-
rithm can achieve a 1/3-approximation bound, a bound better than any
other existing results. Our algorithm and results are not limited to sen-
sor applications, but are general for submodular monotonic optimization
with multiple knapsack constraints.

Empirically, we verify the submodularity and monotonicity of our vari-
ance reduction using Intel Berkeley Lab’s real-world data on humidity and
temperature monitoring [2] . We also present the experimental results and
analyze the scalability and execution time of our algorithm. We compare
our algorithm against two standard allocation algorithms, randomized
allocation and simulated annealing. The results demonstrate that our al-
gorithm achieves a much higher system QoS and is much more efficient
than other algorithms. As a result, the algorithm is an attractive and
practical solution for application allocation in shared sensor networks.

2 Related Work

We overview the existing theory for submodular optimization. Problems
with submodular objective functions have been extensively studied. How-
ever, most existing work require special matroid structure of the con-
straints.

Optimization with multiple applications under resource constraints
is difficult since the problem often violates the classical assumptions of
monotonicity, submodularity, and uniform-matroid constraints. We dis-
cuss classical and recent results below.

Definition 2 Given a finite set S of n elements, a submodular optimiza-
tion problem (SOP) is

maximize V⊆Sf(V ), subject to: hi(V ) = 0, i = 1, · · · ,M (1)

where f : 2S 7→ R, f is submodular function on S and hi : 2S 7→ {0, 1}, i =
1, · · · ,M are constraint functions.

Definition 3 Given a finite set S, an independent system I on S is a
set of subsets of S such that: 1) the empty set ∅ is in I, and 2) for every
set K ⊆ S, if K ∈ I, then every subset of K is in I.



Definition 4 (Matroid) Given a finite set S, an independent system
M on S is a matroid if it satisfies: for any A ⊆M and B ⊆M where A
has more elements than B, there always exists an element a ∈ A which
is not in B such that B ∪ {a} ∈M .

Definition 5 (Knapsack Constraint) Given a finite set S, a con-
straint h in a SOP on S is a knapsack constraint if it satisfies that,
h(V ) = 0 if and only if

∑
si∈S wi ∗ xi ≤ R, where xi is a binary variable

representing if si is in V (xi = 1) or not (xi = 0), wi is a positive weight
assigned to each si, and R is a positive constant.

Definition 6 (Multiple Knapsack Constraints) For a SOP, a set of
its constraints is called multiple knapsack constraints if each and every
constraint in the set is a knapsack constraint. Here the weight vector w
might be different for knapsack constraints across the set.

We summarize key existing results for submodular optimization be-
low. The results of Nemhauser et. al. showed that the maximization of a
monotonic submodular function under the constraints of a uniform ma-
troid is NP-complete [8]. Therefore, the optimization of a submodular
function generally does not pursue the optimal solution. Instead, an ap-
proximated solution is acceptable. Fisher, Nemhauser and Wolsey’s sem-
inal work [8] showed that a greedy algorithm can achieve a 1 − 1/e ap-
proximation rate in maximizing a non-decreasing submodular function
on a uniform matroid. Feige et al. [6] further proved that there is no
(1−1/e+ ε)-approximation polynomial algorithm for any constant ε > 0,
unless P = NP . Thus, (1−1/e) is considered to be the best approximate
rate we can get for polynomial algorithms.

The above results are for submodular optimization with uniform ma-
troid constraints. For other SOPs, we can classify them into those with
monotonic or non-monotonic objectives. For SOPs with monotonic sub-
modular functions, Fisher et. al. [7] proposed a 1/2 approximation al-
gorithm for SOPs with single matroid constraints. Some recent work im-
proved this bound to (1 − 1/e) assuming that f is the sum of some ma-
troid ranks [10]. For SOPs with one knapsack constraint, Sviridenko [12]
proposed a (1 − 1/e)-approximation algorithm. For SOPs with multiple
matroid constraints, we can achieve the bound of 1/(k + 1) where k is
the number of matroid constraints [10]. There is no result specifically for
SOPs with multiple knapsack constraints. A related work by Conforti [4]
shows that if all the constraints are in an independent system, which is a
general case for knapsack and matroid constraints, we can get a 1

1+k+1/k -
approximation rate.



For SOPs with nonmonotonic objective functions, the only known ex-
isting work is a very recent ( 1

k+2+1/k+ε)-approximation algorithm [10] for
k-matroid constraints based on a local search procedure. The algorithm
also provides a (1

5 − ε) approximation rate for SOPs with multiple knap-
sack constraints.

3 Problem Formulation

In this paper, we formulate our objective function by a variance reduction
function.

Suppose V is the set of sensor nodes we will deploy application t on.
For any two sensor nodes i and j ∈ V , i 6= j, the covariance σij can be
calculated based on measured data. We define a kernel matrix K where
the elements in the ith row and jth column is σij . K is essentially the
covariance matrix for sensor nodes. For two subsets of sensor nodes A
and B ⊆ V , we denote the covariance matrix of them by KAB, with rows
corresponding to A and columns corresponding to B extracted from K.

Given a finite subset A ⊂ V with applications allocated, if the system
is Gaussian, for any sensor node y ∈ V , we can predict its reading using
maximum likelihood estimation as arg maxXy P (Xy|XA). Note that the
distribution of Xy has variance as

σ2
y|A = Kyy −KyAK−1

AAKAy

Thus, for a given allocation A, the variance of the unknown region Ā =
V \A is

σ2
Ā|A = tr(KAĀ)− tr(KĀAK−1

AAKAĀ),

where tr() is the trace function of a matrix.
If we consider the QoS as the confidence of the measurement, natually,

we want to minimize the variance of Ā given A such that the quality of
sensing is maximized. Namely, we want to maximize the negation of the
variance. Since we have tr(K) = tr(KAA)+tr(KĀĀ), the objective function
to one application is:

maximize Q = tr(KAA) + tr(KĀAK−1
AAKAĀ) (2)

Now we turn to multiple applications. When there are multiple appli-
cations to allocate onto sensor nodes, our objective function is a sum of
variance reductions for each application. Suppose we have p applications
to allocate, the objective function is to maximize

∑p
t=1Qt, where each Qt

is the Q function for application t.



Since sensors usually have limited amount of resources, we have re-
source constraints in our formulation. For example, two critical resources
for applications to share are CPU usage and memory consumption. For
each sensor, the total CPU and memory consumed by all the applica-
tions assigned to the sensor cannot exceed its limits. In general, suppose
there are r resources each having a maximum usage of Ui, 1 ≤ i ≤ r, the
constrained optimization formulation is

(P1) : maximize
p∑
t=1

Qt (3)

subject to
p∑
t=1

at,jRi,t,j ≤ Ui, ∀i = 1, · · · , r, ∀j = 1, · · · , n

where at,j is a binary variable denoting if application t is assigned to node
j, Ri,t,j is the usage of resource i when application t is assigned to a sensor
node j, and n is the number of sensors.

4 Theoretical Properties

Now we study the characteristics of P1. These characteristics facilitate
the design and analysis of our search algorithm.

4.1 Submodular objective and knapsack constraints

Our variance reduction formulation is generaly not submodular for an
arbitary kernal matrix K. However, it can be shown that in the absence
of conditional suppressor variables, the variance reduction formulation of
Q is indeed submodular [5]. Since the conditional supressor is a statistical
attribute, the verification of such attribute is based on given data sets. We
note that a statistical verification for the conditional supressor attribute is
inherently the submodularity verification for two arbitary subsets. There-
fore, we will directly verify the submodularity of the variance reduction
function empirically based on some real world data.

When the variance reduction function Qt for each application t is
submodular, since the summation of submodular functions is still a sub-
modular function, the objective function of P1

∑p
t=1Qt is submodular.

Further, we see that constraints in P1 are multiple knapsack constraints
since they satisfy Definition 6.

In short, our QoS based application allocation problem is a submod-
ular optimization problem (SOP) with multiple knapsack constraints.



4.2 Monotonicity

In addition to the submodularity of the objective function of P1, we find
that it is also monotonic. The monotonicity is a strong property that
enables us to improve the approximationbound.

Assuming that the application set P contains p applications and the
node set V contains n nodes. Any application-to-node assignment (or
assignment for short) is a subset of M = P × V . We have the following
theorem:

Theorem 1 For p applications and n sensor nodes, if A and B are two
application-to-node assignments where A ⊆ B ⊆ M, we have Q(A) ≤
Q(B) if all kernel matrices for all p applications are semi-positive definite
(s.p.d.).

Since Q is a sum of Qt for t = 1, · · · p, we only need to prove that Qt
is monotonic if Kt is s.p.d. We prove this result by proving the following
lemma.

Lemma 1. Given a s.p.d. matrix K in the block separated form as

K =

 A D E
DT B F
ET F T C

 ,

tr(A) + tr((DE)(DE)TA−1) ≤ tr((A+B) +
(
E
F

)(
E
F

)T (
P Q
QT R

)
)(4)

where (
P Q
QT R

)
=
(
A D
DT B

)−1

(5)

Proof: We first expand both sides of (4) to tr(A) + tr(DTA−1D +
ETA−1E) ≤ tr(A+B) + tr(ETPE + F TQTE + ETQF + F TRF )

The proof consists of two parts.
Part 1: First we prove that tr(A+DTA−1D) ≤ tr(A+B).
Since K is an s.p.d. matrix, for any real vector x, y , we have

(x, y)T
(
A D
DT B

)
(x, y) > 0. (6)



Since an s.p.d. matrix always has a Cholesky factorization, we rewrite
A as UTU and plug in to the inequality above. Note that U is invertible
and U−T = (UT )−1; the left side becomes xTUTUx + xTUTU−TDy +
yTDTU−1Ux + yTBy + yTDTU−1U−TDy − yTDTA−1Dy. Thus, (6) is
actually (Ux+ UTDy)T (Ux+ U−TDy) + yT (−DTA−1D +B)y > 0.

Note that since the linear system Ax + Dy = 0 w.r.t x always has a
solution for any y since A is s.p.d., the vector (Ux+UTDy) can always be
0 for any given y. This implies that yT (−DTA−1D +B)y > 0 for any y.
Thus, we know that (−DTA−1D+B) is s.p.d,, i.e. tr(−DTA−1D+B) > 0
and tr(DTA−1D) < tr(B).

Part 2: Now we prove tr(ETA−1E) ≤ tr(ETPE+F TQTE+ETQF +
F TRF ), which can be written as

tr(ET (P −A−1)E + F TQTE + ETQF + F TRF ) ≥ 0 (7)

Since we have AP+DQT = I and AQ+DR = 0, namely, P+A−1DQT =
A−1 andQR−1QT+A−1DQT = 0, we get ET (P−A−1)E = ET (−A−1DQ)E =
ET (QR−1QT )E

Plugging this to (7), we get tr(ET (QR−1QT )E+F TQTE+ETQF +
F TRF ) ≥ 0, which is essentially

(
ET F T

)(Q 0
R I

)(
R−1 0

0 0

)(
Q RT

0 I

)(
E F

)T
Since R−1 is s.p.d., we see the trace of the above is non-negative. ut

4.3 Experimental verification of properties

We have also verified the monotonicity and submodularity of the variance
reduction function on Intel Berkeley Lab’s data set [2]. This data set con-
tains temperature, humidity, light, and voltage readings collected from 54
sensor nodes deployed in Intel Berkeley Research Lab between February
28th and April 5th, 2004. In particular, we have separated temperature
and humidity data of one day recorded by 20 sensor nodes. Using this
trimmed data set, we have computed temperature and humidity covari-
ance matrices. Using the temperature covariance matrix, the monotonic-
ity of the variance reduction function has been tested on 30843346 pairs
of subsets of the set of 20 nodes. Among these tested pairs, a total of
30405760 pairs (98.6%) have satisfied the monotonicity. We have tested
the submodularity by taking 30000000 random pairs of subsets of nodes.
A total of 29931514 pairs (99.8%) have satisfied the submodularity. We



Phenomenon
Monotonicity Submodularity

Total Satisfied % Satisfied Total Satisfied % Satisfied

Temperature 30843346 30405760 98.6 30000000 29931514 99.8

Humidity 35770000 35294259 98.7 30000000 29924700 99.7
Table 1. Submodularity and monotonicity tests on temperature and humidity data

have performed the similar tests on humidity readings as well. The mono-
tonicity and submodularity have been tested on 35770000 and 30000000
pairs of subsets, respectively, and have been satisfied by 35294259 pairs
(98.7%) and 29924700 pairs (99.7%), respectively. The test results are
summarized in Table 1.

We have observed that only a small fraction of data cannot satisfy
the monotonicity or submodularity of the variance reduction. In fact, the
data set is noisy and sensor readings may not be always accurate. These
results confirm our theoretical results that the variance reduction function
is submodular and monotonic.

5 Constrained Optimization Algorithm

In this section, we present our constrained optimization algorithm and
prove its approximation bound. We adopt the fractional relaxation frame-
work proposed in [10]. In addition, we exploit the monotonicity of the
objective function to obtain a tighter approximation bound.

5.1 Basic definitions

The objective function that we are going to optimize is f = Q. All applica-
tion to node assignments are subsets of the set V =M = P×V, where P
and V are the sets of applications and sensors, respectively. Since f maps
a subset of V to a value, we name V as the ground set of f and |V | = n.
We also use notation [n] to denote the set {1, · · · , n}. We use wr to denote
r normalized weight vectors corresponding to r resource constraints, all
having capacities normalized to 1. We define f∗ = max{f(v) : v ∈ V }
and assume each singleton set {v} ∈ V is feasible for the constraints
(otherwise, those violating elements can be removed from the problem).

We assume that the global optimal value for f subject to resource
constraints is Opt. We further assume that any feasible assignment, which
is a subset of V , can be partitioned into two sets : a heavy set and a light
set, where elements in the heavy set has a weight factor in the knapsack



constraints larger than a given threshold. The heavy set and the light set
of the optimal solution V ∗ are denoted by H and L, respectively.

Our fractional relaxation greedy (FRG) algorithm consists of the
following steps.

Step 1 Identify heavy elements and light elements based on a given threshold.
Enumerate all possible assignments of heavy elements and find the
optimal subset of heavy elements.

Step 2 Solve a relaxed problem on light elements in which the function f is
extended to a continuous function F .

Step 3 Round back the solution to the relaxed problem (from Step 2) to a
solution to the original problem. Combine the heavy elements and
light elements to get the final solution.

In Step 1, to decide heavy and light elements, we choose a fixed con-
stant η > 0. Let c = 16

η , we define δ = 1
4c3k4 . An element e ∈ V is heavy if

wi(e) ≥ δ for some knapsack constraint i ∈ [r]. The rest of them are called
light elements. We use H and L to denote the heavy and light element sets
in an optimal integral solution, respectively. In this case, Hi has at most
1/δ elements for each knapsack constraint since δ ·|Hi| ≤

∑
e∈H wi(e) ≤ 1.

Therefore, |H| ≤ r/δ, which is a constant. By enumeration, we can get
f(H) in a time complexity of nO(r/δ). So, we only focus on the light ele-
ments in Steps 2 and 3.

5.2 Step 2: Solving a relaxed problem

In this step, we extend f defined on the subsets of V to F which is defined
on fractional values.

Let F be a function that maps from [0, 1]n → R+. For y ∈ [0, 1]n,
let ŷ denote a random 0− 1 vector where each element is independently
rounded to 1 with probability yj or 0 otherwise. Then, F is defined as:

F (y) = E[f(ŷ)] =
∑
S⊆V

f(S) ·
∏
i∈S

yi ·
∏
j /∈S

(1− yj)

F is a monotonic and concave function which extends f to the con-
tinuous domain [0, 1]n. However, extending f to F changes the problem
domain from a finite set to a continuous domain, which is not suitable for
local search. Hence, we define a new set G ∈ [0−1]n called the discretized
set of F where for each dimension i, Gi can take values in the form of k/si
where si is a fixed integer and k ∈ [si]. We also denote the continuous
domain of F that satisfies the resource constraints as U .



Result: A local optimum y of the relaxed optimization function F
y = arg maxF ({x}), x is a singleton set;
while True do
N = neighborhood of y;
for y′ in N do

if y′ ∈ U ∩ G and F (y′) ≥ (1 + ε)F (y) then y ← y′ ;
end

end

Algorithm 1: The local search algorithm.

Since F is monotonic and concave, the discretization F is still a mono-
tonic function. Previous work [10] also proved that the discretized version
of F is still submodular.

We solve the following relaxed problem:

max{F (y) : wiy ≤ 1, y ∈ G ∩ U , ∀i ∈ [r], 0 ≤ yi ≤ 1} (8)

We use a local search method to solve (8). For any y ∈ G ∩ U , y′

is in the neighborhood of y if y′ differs from y by at most 2r elements,
among which at most r elements get increased and at most r elements
get decreased. Based on the neighborhood, the local search procedure is
shown in Algorithm 1.

For x, y ∈ Rn, we define (x ∨ y)j := max(xj , yj) and (x ∧ y)j :=
min(xj , yj) for j ∈ [n]. Lemma 3.5 in [10] gives the following results:

Lemma 2. For a local optimum y ∈ U ∩ G and any x ∈ U , we have
(2 + 2nε) · F (y) ≥ F (y ∧ x) + F (y ∨ x)− 1

2nf
∗ for any ε > 0.

Based on monotonicity, we give the following, stronger result.

Lemma 3. For a local optimum y ∈ U ∩ G and any x ∈ U , we have
(2 + 2nε) · F (y) ≥ F (x)− 1

2nf
∗, or F (y) ≥ (1

2 − ε)Opt for any ε > 0.

Proof. Based on the monotonicity result, it is easy to see that for any x
satisfying the knapsack constraints, (2+2nε)·F (y) ≥ F (y∧x)+F (y∨x)−
1

2nf
∗ ≥ F (x) + 1

2nf
∗. This result shows that the local search algorithm

provides an 1/2-approximate solution for the relaxed problem on F . ut

5.3 Step 3: Rounding back to a solution

Till now, we have established an 1/2-approximation algorithm for the
relaxed problem in ( 8). In Step 3, we round the relaxed solution back to
an integer solution for the original problem P1 using algorithm 2. In [10],
Lee proved the following two lemmas which we will use directly.



Data: A fractional solution y
Result: A feasible subset S of V
S ← ∅ ;
foreach element e in V do

add e to S with probability (1− ε)ye ;
if S violates constraints then return ∅ ;

end
return S ;

Algorithm 2: The simple rounding algorithm.

Lemma 4. Let α(S) = max{wi(S) : i ∈ [r]}, for any a ≥ 1, Pr[α(S) ≥
a] ≤ r · e−car2.

Lemma 5. For any a ≥ 0, max{f(S) : α(S) ≤ a + 1} ≤ 2(1 + δ)r(a +
1)Opt.

Now we prove the following theorem. Suppose we repeat Algorithm 2
many times, each time yielding a S set, we calculate the expected value
of f(S), assuming f(∅) = 0.

Theorem 2 The simple rounding algorithm for light elements obtains an
expected value E[f(S)] ≥ (1/2− η) Opt.

Proof. Consider disjoint events A0 = {α(S) ≤ 1} and Al = {α(S) ∈
(l, 1 + l]} for l ∈ N. We use ALG to denote E[f |A0]Pr[A0]. Obviously,
ALG is the expected objective function value for this algorithm’s output,
because we need α(S) ≤ 1 in order to to satisfy knapsack constraints.

According to Lemma 2 and 3, we get:

F (x) = E[f ] = E[f |A0]Pr[A0] +
∑
l≥1

E[f |Al]Pr[Al]

≤ ALG+
∑
l≥1

re−clr
2
2(1 + δ)r(l + 1)Opt

≤ 8Opt · l · r2 · e−clr2

Thus, we have

ALG = F (x)−
∑
l≥1

E[f |Al]Pr[Al] ≥ F (x)− 8
c
Opt

From Lemma 5 we know that F (x) ≥ (1/2− ε)Opt. Let η/2 = ε, we
get that ALG ≥ 1/2Opt− (η/2 + 8/c)Opt = (1/2− η)Opt.

Now we give an approximation bound for the overall solution after
combining heavy and light elements.



Theorem 3 Our fractional relaxation greedy (FRG) algorithm is a (1
3 −

η)-approximation algorithm for solving P1.

Proof. Recall that we use H and L to denote the heavy and light elements
in an optimal integer solution, respectively. The enumeration of heavy
elements in Step 1 of FRG will give an objective function value at least
f(H). Theorem 2 shows that the simple rounding algorithm for light
elements produces a solution of expected value at least (1/2− η) ∗ f(L).
Thus, using the convexity of the max function, we have

max{f(H), (
1
2
− η)f(L)} ≥ 1

3
f(H) +

2
3

(1/2− η)f(L) ≥ (
1
3
− η)f(H ∪L).

The above inequality shows the approximation bound. ut
Note that our (1/3-η) bound is better than the (1/5-ε) bound in [10],

the only known result for submodular problems with multiple knapsack
constraints.

6 Empirical Evaluation

In this section, we present our experimental results. We compare our algo-
rithm with a randomized algorithm and a simulated annealing algorithm.

We have run those three algorithms using Intel Berkeley Lab’s tem-
perature and humidity readings of 20 sensor nodes[2]. We have compared
the performance of these algorithms in allocating two applications (tem-
perature sensing and humidity sensing) to these 20 nodes. The QoS values
of the allocated node sets were computed using the Q function. The mem-
ory capacities of the 20 nodes were assigned randomly in the range from
1024 bytes to 2824 bytes and the memory requirements of the applica-
tions were considered in the range from 900 bytes to 1000 bytes. The CPU
requirements of these applications on 20 nodes were considered randomly
between 35% to 80%. One application was given weight 2 while the other
was given 1.

The randomized algorithm will randomly assign applications to nodes,
as long as the knapsack resource constraints are satisfied.

Simulated annealing (SA) is a probabilistic algorithm for global op-
timization. We used the SA package in the AIMA library [11] with a
user-defined neighborhood function such that for any application assign-
ment y, all its neighbors in N (y) contain only feasible assignments. To
avoid a large neighbor space, we also restrict that y′ ∈ N (y) differs from
y for at most two sensor nodes. In the SA algorithm, for an assignment
y and its neighbor y′, we set the acceptance probability function P (y, y′)



Run
Randomized Algorithm Simulated Annealing Our FRG Algorithm
Objective Time Objective Time Objective Time

1 926.70 0.39 1077.81 120 1179.46 7.99

2 918.90 0.38 981.32 120 1221.82 5.68

3 935.51 0.32 1198.49 120 1980.60 6.24

4 932.88 0.33 1456.37 120 1558.16 2.95

5 923.67 0.35 984.49 120 983.12 1.09

Table 2. Solution quality and time (in seconds) of three algorithms.

as exp(−Q(y)−Q(y′)
T ), where T is a parameter called temperature. We set

the initial temperature to 200 and set the cooling factor to be 0.75.
We test 5 different randomly selected subsets of data, each tested

with 20 random runs. We report the average quality and time in Table 2.
From Table 2, we see that our greedy algorithm is slower than randomized
algorithm but achieves much higher (better) utility. Comparing to SA, our
algorithm is better in terms of both time and quality. SA is too slow to
be practical. Our other tests show that SA needs to spend more than an
hour to achieve comparable utility value as our algorithm can achieve in
just a few seconds.

7 Conclusion

Optimization of the applications QoS is a critical issue for multiple ap-
plication deployment in resource constrained shared sensor networks. In
this paper, we have formulated this optimization problem using a variance
reduction function that maps a set of nodes to a QoS value in presence
of inter-node QoS dependency. Despite the computational challenges un-
derlying this problem, the optimization can be achieved by observing the
special structures of the problem. We have proven the monotonicity and
the submodularity of the variance reduction both theoretically and exper-
imentally using the real-world dataset of the Intel Berkeley Lab [2]. We
have proposed an efficient approximation algorithm that can achieve a 1

3
approximation bound. Our algorithm and results are not limited to sen-
sor applications, but are general for submodular monotonic optimization
with multiple knapsack constraints.

The effectiveness and the scalability of our algorithm have been eval-
uated by experiments with varying number of nodes and applications.
We have also compared its performance against two standard algorithms
and demonstrated that it outperforms those algorithms in achieving the
overall quality of sensing.
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