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Abstract

We consider the concept classes of DNF formulas and unions of discretized, axis-
parallel d-dimensional boxes in discretized d-dimensional space with respect to sev-
eral different learning models. In the model of learning with queries we present an
algorithm to learn unions of boxes. We introduce a model of teaching that prevents
illicit communication between the teacher and the learner but that captures the
intuitive aspect of teaching: a learner should perform at least as well with a coop-
erative teacher as with an adversarial teacher. We propose the study of teaching
of DNF formulas and unions of boxes in this model. We also propose a study of a
teaching model in which the learner may be randomized. It is currently unclear if
randomization of the learner allows teaching of classes that are unteachable in the

current teaching model.






1. Introduction

Computational learning theory is, roughly speaking, the formal study of methods by which
machines can learn, with emphasis on efficient use of time and data. While much valuable
research in machine learning has been done with only ad hoc attention given to compu-
tational efficiency, we feel that it is essential to the goal of truly understanding machine
learning that a sound theoretical framework is present.

One of the great difficulties confronted in learning theory research at this early stage
is finding appropriate models for learning problems that enable careful analysis of data
and time requirements but also adequately express the underlying problem. How should
the learner acquire its information? What constitutes successful learning? How much
interaction with the environment is allowed? What is the nature of the environment?
These questions have been answered in various ways and the answers have provided several
models. The last question, in particular, may have a very large impact on what can and
cannot be learned within a model. The research proposed in this paper examines this
question in some detail,

Much of the research thus far in computational learning theory has centered on learning
{subclasses of) Boolean formulas (though not exclusively, as we shall see). In large part,
this is due to the expressive power of these formulas for representing information. The fact
that computers (and computer scientists) work well with such things is also important. In
this proposal we will consider disjunctive normal form (DNF) formulas. In addition we will
examine the geometric class of unions of boxes (these classes will be defined later).

The models of learning that we will use consist of one existing model (learning with
queries) and a new mode] that will be defined (a model of teaching). In the query model
the learner asks questions which are answered by an adversary who tries to reveal as little
information as possible with each answer. Thus, the learner is interacting with a worst-
case environment. In the teaching model we define, the adversary is replaced by a helpful
teacher who tries to speed the learner’s learning process. Intuitively, the helpful teacher
should allow more efficient learning. However, due to technicalities that will be discussed
later, this was not always the case in previous models of teaching.

This paper is structured as follows. Section 2 defines the models we use and provides the
notation that will be used throughout the proposal. Section 3 presents the teaching model
of Goldman and Mathias and discusses some of the important related results. Section 4
presents an algorithm for learning the unions of discrete d-dimensional boxes in discrete
d-dimensional space and proposes two related teaching problems. Section 6 discusses the
open problem of the learnability of DNF formulas and proposes developing algorithms for
this class, and subclasses, in the model of teaching discussed in Section 3. Finally, Section 7
proposes development of a model for randomized teaching and suggests a relationship to
previous work that may help in teaching DNF formulas.



2. General Definitions

We now describe the model of concept learning with queries as developed by Angluin [4].
Under this model the learner’s goal is to learn ezactly how an unknown, Boolean-valued
target function f, drawn from concept classC, classifies, as positive or negative, all instances
from instance space X'. It is often convenient to consider a concept as the set of instances
that it classifies as positive. In set notation, for each concept f € C, f C X. Often we
define C = (J,> Cn- That is, C is parameterized by a dimension measure appropriate to the
domain. (In the case of DNF formulas 7 is the number of Boolean variables). Similarly,
A = ,>1 A is the set of instances to be classified for a problem of size n. We say that
instance x is a positive instance for target concept f if z € f and say that z is a negative
instance otherwise. For instance 2 € Xy, let f(x) = 1 denote that z is a positive instance
for f, and and let f(z) = 0 denote that 2 is a negative instance for f. A hypothesis h is a
polynomial-time algorithm that given any @ € X, outputs a prediction for f(z).

As mentioned above, the learning criterion expected here is that of ezact identification.
This is achieved by the learner if it can infer a hypothesis A that is logically equivalent to the
target concept. That is, in order to achieve exact identification we require the hypothesis i
to be such that A(z) = f(a) for all instances z € X. In this model, the learner is provided
queries with which to learn about f. The two types of queries in most common use are
membership queries and equivalence queries. A membership query MQ(z) returns “yes” if
J{z) = 1 and returns “no” if f(z) = 0. An eguivalence query, EQ(h), takes a polynomially
evaluaiable hypothesis h and returns “yes” if A is logically equivalent to f or returns a
counterexample otherwise. A positive counterezample w is one for which f(z) = 1 but
h{z) = 0. Likewise, a negative counterezample is one for which f(z) = 0 but A(z) = 1. Two
other query types that will be used here are superset and subset queries. A superset query,
SupQ(h), takes a hypothesis, h, and returns “yes” if & O f or a counterexample otherwise
(in this case the counterexample must be an instance @ such that 4(z) = 0 and f(z) = 1).
Similarly, a subset query, SubQ(h), takes hypothesis h and returns “yes” if A C f or a
counterexample otherwise (in this case the counterexample must be an instance = such that
h(z) =1and f(z) = 0). Each of the queries that returns a counterexample has a restricted
counterpart that simply answers “no” rather than returning a counterexample.

Another important learning model is the PAC model introduced by Valiant {42]. In this
model the learner is presented with labeled examples chosen at random according to an
unknown, arbitrary distribution D over the instance space. The learner’s goal is to output
a hypothesis that with high probability, at least (1 — §), correctly classifies most of the
instances in the instance space (the weight, under D, of misclassified instances is at most
¢). The learner is permitted time polynomial in 1/¢, 1/§ and n (recall that n is some size
measure relevant to the doamin) to formulate a hypothesis.

Boolean formulas in disjunctive normal form (DNT') are an important concept class
discussed throughout this proposal. In the Boolean domain we have A, = {0,1}" where
Y1,92, -, Yn are the Boolean variables. A [literal, £;, is a variable or its negation. A DNF
formula f = 43 + &2 + ... + ¢, is a disjunction of terms where each term #; = {18 -+ - £, is
a conjunction of some number of literals. A k-term DNF formula is simply a DNF with
k terms where %k is usually some constant. Finally, a monotone DNF formula is a DNF
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formula in which all of the variables are unnegated. An implicant of a DNF formula f is
a term ¢ such that if {(z) = 1 then f(2) = 1. A prime implicant of f is a term T that is
an implcant with the property that if any literal is deleted from T then it is no longer an
implicant of f.

3. A Teaching Model

All of the results in this section are presented in more detail by Goldman and Mathias [20].

Recently, there has been interest in developing formal models of teaching [7, 18, 22,
28, 41] through which we can develop a better understanding of how a teacher can most
effectively aid a learner in accomplishing a learning task. A weakness of the formal models
of teaching that have been introduced in the learning theory community is that they place
stringent restrictions on the learner to ensure that the teacher is not just providing the
learner with an encoding of the target. In particular, previous models require the teacher
to present a set of examples for which only the target function (or one logically equivalent
to it) is consistent. Thus, teaching under these models is made unnecessarily difficult since
the problem reduces to teaching an obstinate learner that tries as hard as possible not to
learn while always outputting a hypothesis consistent with all previous examples. In fact,
if a teacher is required to teach any consistent learner !, there are many examples for which
an exponential length teaching set is required to teach even those classes for which efficient
learning algorithms are known. For many of the classes that can be taught efficiently, it is
necessary in previous models to allow the teacher and learner to share a small amount of
“trusted information”, such as the size of the target function, since there is no other way
to eliminate concepts from the given class that are more “complicated” than the target.
Jackson and Tompkins [28] are able to show that anything learnable with membership
and equivalence queries is teachable with trusted information. However, their method for
preventing collusion still requires that the teacher successfully teaches any consistent learner.

As a concrete example of a consequence of requiring that the teaching set is sufficient for
any consistent learner, consider the class C consisting of all singletons plus the empty set.
While, this class is quite simple and thus should be easy to teach, Goldman and Kearns show
that |C| — 1 examples are required to teach it in their model. Furthermore, this hardness
result has been embedded into several other hardness results such as that for teaching full
decision lists [28] and teaching linearly separable Boolean functions [7]. Thus these hardness
results appear to be due to a defect in the model rather than an intrinsic difficulty in teaching
these classes. Similar problems to the ones discussed above emerge when comparing these
teaching models to the self-directed learning model 2. In particular, for many classes the
self-directed learning complexity is asymptotically less than the teaching complexity. Again,
because the teacher must successfully teach all consistent learners, a “smart” self-directed
learner can perform better on its own than with the teacher’s guidance. Yet, if the teacher

1A learner is consistent if its hypotheses are consistent with all previously seen examples.
%A self-directed learner [21, 24] is a learner that selects the presentation order for the instances. In this
model, the learning complexity is measered according to the number of incorrect predictions made.



and learner could cooperate (which should be the case if the teacher is working with the
single learner), intuitively this phenomenon should not occur.

The key contribution of this work is the introduction of a formal teaching model that
allows the teacher and learner to cooperate, yet the teacher cannot simply encode the target
function. We start with a teacher/learner pair as in the model introduced by Jackson and
Tompkins [28]. However, unlike in their work, we only require that if the teacher is replaced
by an adversarial “substitute” that embeds the teaching set of the true teacher within his
teaching set, then the learner will still output a hypothesis that is logically equivalent to
the target function. While the adversarial substitute has the strength to prevent collusion,
it does not require that the teacher successfully teaches any consistent learner. We show
that any class for which there is an efficient deterministic learning algorithm (even when
provided with sophisticated queries) can be taught (without trusted information) under our
model.

3.1. Previous Work

We now briefly review the theoretical work studying the complexity of teaching. Goldman,
Rivest and Schapire [23] introduced the model of teacher-directed learning, in which a help-
ful teacher selects the instances, and applied it to the problem of learning binary relations
and total orders. Building upon this framework, Goldman and Kearns [22] defined a for-
mal model of teaching in which they measured the complexity of teaching by the minimum
number of examples that must be presented to any consistent learner so that the learner
outputs a hypothesis logically equivalent to the target function. Independently, Shinohara
and Miyano [41] introduced an equivalent notion of teachability in which a class is teachable
by ezamples if there exists a polynomial size sample under which all consistent learners will
exactly identify the target. Romanik and Smith [39, 40] propose a testing problem that
involves specifying, for a given target function, a set of test points that can be used to
determine if a tested object is equivalent to the target. However, their primary concern is
to determine for which classes there exists a finite set of instances such that any represen-
tation in the class that is consistent on the test set is “close” to the target function in a
probabilistic sense.

Within the learning theory community, our new teaching model is most closely related to
the model introduced by Jackson and Tomkins [28]. Tn their model there are teacher/learner
pairs in which the teacher chooses examples tailored to a particular learner. To avoid
collusion between the teacher and learner, they consider the interaction between the teacher
and learner as a modified prover-verifier session [25} in which the learner and teacher can
collude but no adversarial substitute teacher can cause the learner to output a hypothesis
inconsistent with the sample. While it appears that the teacher’s knowledge of the learner in
this model is powerful, they showed that under their model the teacher must still produce
a teaching set that eliminates all but the target function {or some logically equivalent
function) from the representation class. They also introduced the notion of a small amount
of trusted information that the teacher can provide the learner. This trusted information
is used by the teacher to provide the learner with the size complexity of the target function
or a stopping condition.



Within the inductive inference paradigm, Freivalds, Kinber and Wiehagen [18] and
Lange and Wiehagen [29] have examined inference from “good examples”. Good examples
are chosen by a helpful teacher to reduce the number of examples required. In both, encoding
is avoided by requiring that the inference task is accomplished even when the learner is
presented with any superset of the set of teacher-chosen examples. Neither of these results,
however, offer careful proof that this method actually prevents collusion between the teacher
and learner. Lange and Wiehagen [29] examine learning pattern languages and show that
this can be achieved with good examples.

3.2. Our Model

We now formally define our model. The teacher’s goal is to teach the learner the target
function ® f chosen from some known representation class C, which is a set of representations
of functions mapping some domain X into {0,1}. Each representation f € C, has a size
denoted by |fl. Typically, this is the number of symbols needed to write the representation
of f as a member of the representation class C,, from which it is chosen.

A teaching set for f ¢ C is an unordered set of labeled instances where each instance is
selected from & and labeled according to f. We define the teacher 7' to be an algorithm
that when given a representation f € C outputs a teaching set T°(f) for f. Similarly, we
define the learner L to be an algorithm that takes as an argument any teaching set § and
outputs a representation f’ from C. We use L(S) to denote the representation output by
L. (Observe that this definition can easily be extended to allow the learner to output a
representation from some class C’' D C.) If the learner is deterministic then L(S) is well-
defined, however, in the case that the learner uses a randomized algorithm, instead L(S5)
induces a probability distribution over C. We shall denote this distribution by Pr(§). For
the remainder of this section we consider only deterministic learners.

We now describe our teaching protocol. The learner L and teacher T' both have prior
knowledge of the representation class C from which the target function will be selected.
Furthermore, they can cooperate to develop coordinated teaching and learning strategies
that best enable the teacher to teach the learner some unknown function from the class. In
addition to the teacher and learner, there is an adversary A who has unlimited computing
power and complete knowledge of T and L. The teaching session, illustrated in Figure 1,
proceeds as follows:

o The adversary selects a target function f ¢ C and gives f to T
o The teacher computes T'(f) and gives it to A.

¢ Next the adversary (with knowledge of C, f, T and L) adds properly labeled examples
to T(f) with the goal of causing the learner to fail. The teaching set obtained (54 2
T(f)) is then given to the learner.

¢ Finally, the learner outputs the representation given by L(S54).
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Figure 1: An overview of a teaching session. The adversary chooses the target function,
f, giving it to the teacher. The teacher then generates T'(f). Given T(f) the adversary
generates Sq 2 T(f) and gives this to the learner. The learner (possibly randomized)
outputs a representation from C thus defining a probability distribution Pr(54) over C.

The goal of the teacher is to teach the learner to predict perfectly whether any given
instance is a positive or negative instance of the target function. Thus, the learner must
achieve exact (logical) identification of the target. Of course, the teacher would like to
help the learner achieve this goal with the fewest number of examples possible. However,
as discussed above, we must preclude unnatural “collusion” between the teacher and the
learner (such as agreed-upon coding schemes to communicate the representation of the
target via the instances selected without regard for the labels) which could trivialize our
model. Informally, we define collusion as the passing of information, by the teacher to the
learner, about the representation of the target rather than about the function represented.

We define a valid T/L pair for C to consist of a teacher T and learner L such that: For
any f € C the teaching set T'(f) output has the property that if L is provided with any
teaching set S4 2 T(f) where all added examples are properly labeled according to f, then
Pr,(S4) has the property that for all f/ € C, if f’ has non-zero weight in the distribution
Pr(54) then f’ is logically equivalent to f. In other words, any representation output by
L will be logically equivalent to f.

Given a valid T/L pair, we say that the teacher T is a polynomial-time teacher if, given
any f € Cp, it outputs T'(f) in time polynomial in » and |f|. Likewise, the learner L is a
polynomial-time learner if it runs in time polynomial in », | f| and |54| for any S4 2 T(f).
We say that a representation class C is T/L-teachable if, for all f € C,, there exists a
valid T/L pair for which [T'(f)| is polynomial in [f]| and n. We say that C is polynomially
T/L-teachable if it is T /L-teachable by a pair for which T is a polynomial-time teacher and
I is a polynomial-time learner. Finally, we say that C is semi-poly T/L-teachable if it is
T /L-teachable with a polynomial-time learner but a teacher that may be computationally
unbounded.

3.8. Justification for Our Model

We now show that any representation class learnable in deterministic polynomial time from
“example-based” queries (including equivalence, membership, subset, superset, disjointness,
exhaustiveness, justifying assignments, partial equivalence)} is teachable in our model by a

*Technically, the teacher is given a representation f € €. However, we shall equate f with the logical
function it represents.



Type of Query k pr(@1,. .., 2k)
equivalence(/) 1| A(z1) = flz1)
membership(z) 0 f(z)
subset(h) 1 | Ae)=1= flz1)=1
superset(h) 1 fle) =1= hiz) =1
disjointness(h) 1 (f(z1) = 1= A(z1) = 0) A (A1) = 1= fzy) = 0))
exhaustiveness(h) 1 (f(z1) =0=R(z1) = 1) A(A(z1) = 0 = f(z1) = 1))
justifying-assign(v;) 1 Fupmo(@1) = foma(z1)
partial-equivalence(%) 1 (h(z1) = f(z1)) V (A(21) # %)

Pigure 2: We show how to represent various queries as example-based queries. Equivalence,
membership, subset, superset, disjointness and exhaustiveness queries are defined by An-
gluin [4]. A justifying assignment for an input variable is an instance whose classification
changes if the value of the variable is changed. Thus, for Boolean domains, a justifying
assignment query on v; returns “yes” if there is no justifying assignment, or as a counterex-
ample it returns two instances that provide a justifying assignment for v;. (The notation
Jo;—0 denotes the function obtained from f by fixing »; = 0.) Finally, in a partial equiv-
alence query (as defined by Maass and Turdn [35]) the learner can present a hypothesis
h: X — {0,1,*}, and is either told that all specified instances are correct or is given an
% € X such that h(z) € {0,1} and = is misclassified by h.

computationally unbounded teacher and a polynomial-time learner. We define an ezample-
based query to be any query of the form:

Y (21,22,...,2;) € X | does ¢s(wq,2a,...,21) = 17

where & is constant, and @s(z1,23,...,2%) is any poly-time computable predicate with
membership-query access to the target f. Observe that the predicate ¢ may use the z;’s to
compute other instances on which to perform membership queries. The answer provided to
the example-based query is either “yes” or a counterexample consisting of (zy,22,...,2k) €
X* (with their labels) for which @;(%1,%2,...,2) = 0 and the examples (and their labels)
for which membership queries were made to evaluate the predicate. In Figure 2 we give the
definition for the predicate ¢ corresponding to queries in standard use. Observe that all
reasonable, and some fairly bizarre, queries can be formulated in this manner.

THEOREM 3.1. Any representation class C learnable in deterministic polynomial-time using
example-based queries is semi-poly T/L-teachable.



Proof: We prove this result by demonstrating a valid T /L pair for any representation class C
learnable in deterministic polynomial-time by an algorithm A that uses only example-based
queries. We assume fhere is some total ordering m on X (such as a lexicographical order)
upon which the learner and teacher have agreed. Given any two sets of k£ instances from X
we define the following ordering among them. Let = (zy,...,2¢) for 2y < 22 < -+ < 3,
be one set and let y = (y1,...,4%) for 11 < y2 < --- < y; be the other set. Then we say that
z < y (according to w) if there exists a 1 < j < k such that 2; < y; and for all § < j,2; = ;.

The teacher T constructs its teaching set T(f) for f as follows. Initially, let T(f) = 0.
Now T simulates A’s execution until the point at which the first example-based query ¢ is
performed. Let % be the number of instances over which ¢ is quantified. The teacher now
goes through all (z1,2,...,2%) € X* from smallest to largest, evaluating @(z1, . . ). If
there are no counterexamples to ¢ then the teacher replies “yes” to A’s query. Otherwise,
let (%1,%2,...,2%) be the smallest counterexample and let ¢,...,¢; be the instances on
which membership queries were made to evaluate ¢(z1,...,2z;). Note that the number of
membership queries made by ¢y (and thus £) is polynomial since ¢y is poly-time computable.
The teacher lets S = {21, f(z1)} U - U {2k, f(2r)} U {q1, @)} U---U {q, f(ge)}, replies
to A with 5, and updates 7'(f) to be T(f)U 5. The teacher continues in this manner until
A halts.

We now create the learner L from A as follows. Let S4 D T(f) be the teaching set
that the learner receives. Whenever A makes a query ¢, the leaner will proceed as follows.
The learner will consider all k-tuples in S4 from smallest to largest. For each such tuple
(21,...,2%) the learner attempts to evaluate ¢(21,...,2x). In order to evaluate ¢, recall
that the learner may need to perform some additional membership queries. If these in-
stances appear in 54 then the learner computes @(zy,...,2%). If ¢(21,...,2;) = 0, then
L gives A the k-tuple (z1,...,%;) along with the labeled examples corresponding to the
membership queries made in evaluating ¢ on this k-tuple. What if the learner is unable
to evaluate ? Since T(f) contained the minimum counterexample for ¢ (including all
instances needed to evaluate ) and 54 2 T'(f), it follows that (zy,..., ;) must not be
a counterexample. Thus, if the learner computes that ¢(z1,...,2;) = 1 or is unable to
evaluate it, then the learner continues with the next k-tuple in the ordering. If for all k-
tuples in 54 the predicate ¢ is true or unevaluatable (i.e. there is no counterexample to ¢
in §4) then L responds to A with “yes”. Observe that since ¢ is quantified over a constant
number of instances, in time polynomial in |54} the learner can consider all k-tuples from
S4. Furthermore, because the teacher evaluated k-tuples of instances from minimum to
maximum when constructing 7°(f), the membership queries needed to evaluate ¢ will be
present for the minimum counterexample.

We now argue that L will halt in polynomial time and output f. The key observation
here is that the teacher’s and learner’s simulations of .4 always remain the same. Since A
is deterministic its execution is altered only by the responses given to its queries. While
the adversarial substitute may add other counterexamples, the learner will always find the
minimum one, which was included in T'(f) by T, and thus T and L both give A exactly the
same counterexamples. n

The following corollary follows directly from Theorem 3.1.



CoroiLARY 3.1. If representation class C is not semi-poly T/L-teachable then it is not
deterministically learnable in polynomial time using example-based queries.

Thus, negative results obtained for a class in our model give very strong negative results
with regards to the learnability of the class. It is possible that this correspondence will pro-
vide new techniques to prove hardness results for learning. As an immediate consequence
of this result we know that many classes (namely, all of those for which exact-identification
is efficiently achieved with queries) are T/L-teachable with an efficient learner. In par-
ticular, this contrasts the negative result of Jackson and Tompkins [28] that the class of
1-decision lists is not teachable without trusted information, and the negative result of An-
thony et. al [7] that linearly separable Boolean functions are not efficiently teachable. In
fact, Bshouty’s [12] result that arbitrary decision trees are learnable with membership and
equivalence queries implies that a much broader class than 1-decision lists is T /L-teachable
with a polynomial-time learner.

3.4. Research Plan

There is further work to be done in this new model of teaching. We propose the study of
teaching of specific classes in this model. While it may be possible to teach some class in
this model that connot be learned in any of the previously existing models, it is also be
interesting to examine how T'/L pairs compare to standard learning algorithms for classes
known to be larrnable. In particular, how much more efficient in the use of time and data
can T/L pairs be than learning algorithms in the standard learning models?

Two classes are of particular interest in this regard. Decision lists are of interest be-
cause they have a rich representational power. As defined by Rivest [38], a 1-decision
list (1-DL) over the set ¥, = {v1,¥2,-.-,¥n} of n Boolean variables is an ordered list
F={(£1,01),..., (£, b)) where each £; is y; or %5 for y; € Y, and each b; € {0,1}. For an
instance » € {0,1}"*, we define f(2) = b; where 1 < 7 < r is the least value such that 4; is
1 in @; f(z) = b, if there is no such j. We refer to each pair (€;,b;) as a node in f. One
may think of a decision list as an extended “if—then——elseif—. .. else” rule. Rivest also
defines the class of k-decision lists (k-DL) as the generalization of 1-decision lists in which
£; is any conjunction of at most & literals from ¥,. Rivest presents an algorithm to learn
the class of k-decision lists in the PAC model, and later Nick Littlestone * constructed an
algorithm to exactly identify k-DLs using only equivalence queries. When applied to the
class of 1-DLs, Littlestone’s algorithm uses O(rn) equivalence queries and O(rn?) time.

Another class of interest is Horn sentences. The question of the learnability of Horn
sentences was open for some time before being answered positively by Angluin, Frazier and
Pitt [5). A Horn clause is a disjunction of literals at most one of which is unnegated. A Horn
sentence is a conjunction of Horn clauses. The algorithm by Angluin, Frazier and Pitt [5]
exactly identifies an m-clanse Horn sentence using O(mn) equivalence queries, O(m*n)
membership queries and, O(m2n2) 5. where n is the number of variables in the instance

*This result is unpublished and may have been discovered independently by others.
*The “soft-oh” notation is like the standard “big-oh” except that log factors are also left out.



space. Note that each Horn clause can be viewed as a logical implication in which the
consequent contains the, at most one, unnegated variable.

We propose the study of teaching the classes of 1-DI and Horn sentences in this new
model of teaching. The study of the teachability of these classes may lead to the study of
other classes that are known to be learnable. The question of the teachability of a class not
known to be learnable in existing models is addressed in Section 6.

4. Learning Unions of Boxes

Recently, learning geometric concepts in d-dimensional Euclidean space has been the subject
of much research. One such class of geometric concepts is unions of boxes. {By a “box”,
we mean an axis-aligned hypercuboid. So a box is the set of all points whose cartesian
coordinates satisfy a given set of univariate linear inequalities.) We study this problem
under the model of learning with queries [4] in which the learner is required to output a
final hypothesis that correctly classifies every point in the domain as to whether or not it is
inside of one of the target boxes. Note that this class is easily learnable in the PAC model.
The key to that algorithm is the use of an approxiamte set cover approach to cover all of the
positive examples seen. To apply the query model to a domain such as learning boxes (or
unions of boxes) in d-dimensional Euclidean space, it is necessary to look at a discretized
version of the domain. More formally, let Box;‘{1 denote the class of axis-parallel boxes over
{1,...,n}%. (So d represents the number of dimensions and n represents the number of
discrete values that exist in each dimension.) Let [4, ] denote the set {m € N| i < m < j}.
Then, BOXffL = {><ﬁ=1 ligs k] 11 < i < 3k € n}. Soig and ji, are the minimum and maximum
positive values of the k-th coordinate of a box. Note that by allowing equality of i; and 7,
we include in Box? boxes with zero size in dimension k. Finally, let {J, Box? denote the
class of the union of at most s concepts from BOXﬁ. We note that it is easy to show that
this class is a generalization of disjunctive normal form (DNF) formulas® and a special case
of the class of unions of intersections of half-spaces over {1,...,n}%

We present an algorithm that uses membership and equivalence queries to exactly learn
the concepts given by the union of s axis-parallel boxes over {1,...,n}¢. This algorithm
receives at most sd counterexamples, makes O((8s)? + sdlogn) membership queries, and
uses O((8s)? + sdlogn) time. Thus our aigorithm is the first algorithm to exactly learn
the union of s discretized boxes in d-dimensional discretized Euclidean space in polynomial
time in s and logn for any consant d.

The hypothesis class used by this algorithm, selected to keep the algorithm simple,
can be evaluated in time O{dlogs)”. However, in O((25)*%) time we can transform our

5For the class of DNF formulas let » = 2, d be the number of boolean variables in the instance space and
& be the number of terms in the formula. (Thus, dimensions correspond to variables and boxes correspond
to terms). Note that unless the target DNF is a tautology the maximum dimension of any term is d — 1.

"The hypothesis essentially partitions {1,...,7}% into at most (45 + 1)* regions where all points in any
region are classified as either positive or negative. The classifiations for the regions are stored in 2 bit matrix,
and we use a set of d balanced binary search trees to efficiently find the region in which a point is contained.
(See Section 4 for more details.)

10



hypothesis to the union of at most O(dslogs) boxes from BOX2. Thus we obtain the even
stronger result that our algorithm learns the union of s axis-parallel boxes over {1,...,n}%,
makes at most sd+1 equivalence queries® where each equivalence query is simply the union
of O(dslog s) concepts from BoXE, makes O((8s)? 4 sdlogn) membership queries, and has
time complexity O((2s)%* + sdlog n). Thus for any constant d, this algorithm still uses time
and queries polynomial in s and logn.

4.1. Previous Work

The problem of learning geometric concepts over a discrete domain was extensively studied
by Maass and Turan [33, 34, 35]. One of the geometric concepts that they studied was
the class BOX%. They showed that if the learner was restricted to only make equivalence
queries in which each hypothesis was drawn from BoxZ then Q(dlogn) queries are needed
to achieve exact identification [30, 35]. Auer [8] improves this lower bound to Q(% logn).

If one always makes an equivalence query using the simple hypothesis that produces the
smallest box consistent with the previously seen examples, this yields an algorithm that
makes O(dn) equivalence queries. An algorithm making O(2%log n) equivalence queries was
given by Maass and Turan [32, 34]. The best known result for learning the class BoxS
was provided by the work of Chen and Maass [15] in which they gave an algorithm making
O(d?logn) equivalence queries. They also provide an algorithm to learn the union of two
axis-parallel rectangles in the discretized space {1,...,n} x {1,...,m} in time polynomial
in logn and log m, where one rectangle has a corner in the top left corner of the instance
space and the other has a corner in the bottom right corner of the instance space. Finally,
Auer (8] investigates exact learning of rectangles where some of the counterexamples, given
in response to equivalence queries, are noisy. Auer shows that Box¢ is learnable if and only
if the fraction of noisy examples is less than 1/(d 4+ 1) and presents an efficient algorithm
that handles a noise rate of 1/(2d + 1). More recently, Chen [14] gave an algorithm that
used equivalence queries to learn general unions of two boxes in the (discretized) plane.
The algorithm uses O(log® n) equivalence queries, and involves a detailed case analysis of
the shapes formed by the two rectangles. It does not appear to generalize easily to higher
numbers of boxes or dimensions.

Since designing algorithms to exactly learn the union of boxes from equivalence queries
has been difficult, a natural problem to study is the problem of exactly learning unions of
boxes from both membership and equivalence queries. In this direction, in work independent
of ours, Chen and Homer [27] have given an algorithm to learn the union of s rectangles
in the plane using O(s®logn)} queries (both membership and equivalence) and O(s®logn)
time. The hypothesis class of their algorithm is the union of 8&% — 2 rectangles.

Closely related to the problem of learning the union of discretized boxes, is the problem
of learning the union of non-discretized boxes in the PAC model [42]. There are known PAC-
algorithms to efficiently learn an s-fold union of boxes in E? for s constant and arbitrary
d (the dominating term contains the factor d°) [31] and for d constant and arbitrary s (the
dominating term contains the factor s%) [11]. Note that a polynomial-time algorithm for

*The final equivalence query is the correct hypothesis, and thus at most sd counterexamples are received.
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arbitrary d and s would solve the problem of learning DNF, in view of the earlier observation
that unions of boxes are a generalization of DNI'. Under a variation of the PAC model in
which membership queries can be made, Frazier et al. [17] have given an algorithm to PAC-
learn the s-fold union of boxes in E¢ for which each box is entirely contained within the
positive quadrant and contains the origin. Furthermore, their algorithm learns this subclass
of general unions of boxes in time polynomial in both s and d.

Because the teaching model described in Section 3.2 is very new, we know of no pre-
vious attempt to design efficient algorithms in this model for the class |, Box¢. However,
Goldman and Kearns [22] show that TD(BoxZ) = 2 4 2d (the teaching dimension model is
described in Section 3.1).

4.2. Definitions

We use 1,...,yq4 to denote the d dimension variables. An alternate view of a concept
f € U, BoxZ that we use is to treat it as an axis-parallel d-dimensional discretized polygon.
For the remainder of this paper, when using the word “polygon” we refer to such an axis-
parallel discretized polygon. Observe that each box is defined by the intersection of 2d
halfspaces, two for each dimension. We introduce the following definitions:

DerFINITION 1. We define a hyperplane to be the set of all points for which one of the v;
has some fixed value.

(Thus a hyperplane is metrically equivalent to {1,...,n}41.)

DEFINITION 2. For a concept f € |J, Box%, we define a dimension i, +/— pair to be a
positive point py. = (%1,...,%;,...,24), where y; = z; for 1 < 2; < n, paired with a
negative point p_ where p_ = (z1,...,2;+1,...24) or p— = (21,...,2; — 1,...,24) where
we implicitly assume that any point that is outside of {1,.. .,n}‘i is a negative point. We
use +/'— pair to denote a dimension i, +/— pair.

It can be seen that any +/— pair defines a unique (axis-aligned) halfspace separating
the positive from the negative point. We also define the hyperplane associated with a given
+/— pair to be the (unique) hyperplane H that contains the positive but not the negative
point. Namely, fora /i~ pair where the positive point’s ith coordinate is c, if the negative
point’s ith coordinate is ¢ + 1 then H is given by y; < c¢. Similarly, if the negative point’s
+th coordinate is ¢ — 1 then H is given by 1 > ¢. Observe that there are a total of at most
2sd hyperplanes that define the target polygon.

OBSERVATION 1. For f € |J, BOXY, if there is a +/'— pair in which the positive point
P+ = (21,...,%i,...,2q) where z; € {1,...,n} is the coordinate of py in dimension j, then

there must be some side of the target polygon that is on the hyperplane defined by y; = ;.
Generalizing Observation 1 we obtain the following.

OBSERVATION 2. For any two instances p; and p; such that f(p;) = 0 and f(p;) = 1, a
straight line drawn between p; and p; must cross an odd number of sides of f. Thus, such
a line musi cross at least one side of f.
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4.3. A Learning Algorithm for Unions of Boxes

All of the results in this section are presented in more detail by Goldberg, Goldman and
Mathias [19].

In this section we present an algorithm that exactly identifies any concept from J, Box¢
while receiving at most sd counterexamples, and using O((85)? + sdlogn) membership
queries and processing time.

We now describe the hypothesis class used by this algorithm. For each of the d dimen-
sions, we maintain a set of hyperplanes defined by the sides of the target polyhedron that
have been identified by the existence of +/— pairs for the given dimension. For 1 < i < d,
let n; be the number of hyperplanes that have been defined by +4/'~ pairs. Note that
n; < 2s. For 1 £ j < my, suppose that the n; hyperplanes found are y; = @; where
1 € z; < n. Thus in dimension ¢ we have decomposed {1,...,n}* into up to 2n; + 1 re-
gions: n; + 1 corresponding to the regions defined by the hyperplanes and n; corresponding
to the hyperplanes themselves.

For our hypothesis, we would like to divide {1,...,n}¢ into
ML, (2n;+1) ST (4s + 1) = (45 + 1)2

regions, and then just classify all points in a given region as positive (or as negative). To
achieve this goal, for 1 <€ ¢ < d we maintain a balanced binary search tree T} for dimension
¢ where each internal node of the tree corresponds to one of the hyperplanes (with z;
used for the key), and each external node corresponds to one of the regions defined by
the hyperplanes. Also in each leaf node, the key field is replaced by a range field that
holds a pair (min, maxz), where min (respectively, maz) holds the minimum (respectively,
maximum) 2; such that 3 = 2; is a point in the region corresponding to that leaf. (For
the internal nodes, the key itself serves the role of both min and max.)

Let S; = {[min,, maz,] | min, and maz, are the range for node v in tree T;} and let
T ={T1,...,Tq}. Observe that the hyperplanes stored in the internal nodes of 7" partition
{1,...,n}% into a set of regions Ry given by the cross product Ry = §1 X S5 X -+ X Sy

In addition to the trees 71,...,T; our hypothesis also maintains a prediction array A
with |R7| entries where for r € Ry, A[r] is either 0 (indicating that for any point in 7 the
hypothesis will predict negative), or 1 (indicating that for any point in » the hypothesis
will predict positive) or contains a pointer to an element of a queue (to be explained in a
moment) that indicates that the classification of the points in region r is not well defined.
We use iR, 4 to denote the hypothesis defined by the regions in Ry with the classifications
given in A. Figure 3 shows the set of regions defined by a target concept once all hyperplanes
are discovered. The classifications of all of the regions (as stored in A) are also shown in
Figure 3. The corresponding trees 77 and T3 are shown in Figure 4.3.

Given hypothesis hr, 4, we define a region r € Rz to be valid if each of the at most 9d
corner points of r have the classification given by A[r]. We define hg.. 4 to be walid if each
region in Rz is valid. For a valid hypothesis Ar, 4 and a point z = (21,...,24) we can
compute h(z), the prediction made by hypothesis A on point z, as follows. For 1 < i < d
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Figure 3: This shows the final set of regions corresponding to the target polyhedron that
is outlined in bold. Observe that the target polyhedron consists of 20 segments since each
segment is a maximum portion of one of the bold lines that is not intersected by one of the
thin lines. The classification of all the two-dimensional regions are shown inside the region.
(The classifications of the one-dimensional and zero-dimensional regions are not shown, but
are stored in the prediction matrix A.)

we perform a search for z; in tree T; to find the node having z; in its range. Combining the
ranges of the d nodes found defines the region » € Rt that contains x. Finally A(z) = A[r].
Observe that, for point z, if & of the binary searches end at non-leaf nodes, and d — % of the
binary searches end at leaf nodes, then the region r in which z is contained has dimension
at most d — k.

A key step of our algorithm is the ability of the learner to construct a valid hypothesis
that incorporates all known hyperplanes. We first prove that given a set of hyperplanes
(represented in the d binary trees) the learner can efficiently comstruct a valid hypothesis.
To help in the process of making a hypothesis valid, we maintain a queue @ of invalid
regions. In addition, for each region r € () we store two lists: a list pos—list containing all
positive corner points of r, and a list neg—I¢st containing all negative corner points of r.
Observe that by the definition of an invalid region, for all regions in @ both pos—list and
neg—{ist must be nonempty.

4.3.1. Building a Valid Hypothesis. In this section we provide a procedure that
takes an invalid hypothesis hg, 4 and the queue § of invalid regions from R7 (and thus ¢
is non-empty), and refines hr, 4 so that it will be valid. In refining hp, 4 our procedure
uses membership queries to find new hyperplanes and uses them to modify the hypothesis.
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Figure 4: This shows the T3 and T, trees for 57 X 55 corresponding to the regions shown
in Figure 3. The internal nodes are shown as circles and the external nodes are shown as
rectangles. The range for each node is shown inside it.

Our procedure to build a valid hypothesis never removes any hyperplane from any tree in
7, and only searches for a new hyperplane in such a way that we are certain that an existing
hyperplane will not be rediscovered in the process. We also maintain the invariant that ¢
always contains exactly one entry for each invalid region of Rr.

Our procedure to build a valid hypothesis repeatedly does the following until ¢ is empty
(and thus the hypothesis is valid). Let r be the region at the front of the queue. Since 7
is an invalid region it must have at least one corner that is positive and one corner that is
negative. Using such a positive corner 24 and such a negative corner z_, we search for a
+/— pair contained within region r. The search for such a +/— pair takes the form of a
binary search between z., and z_- where comparisons in the binary search are replaced by
membership queries. Observe that since the instance space is {1,...,n}¢%, we are guaranteed
to find a 4/~ pair for which both points in the pair are contained within r while using
only O(logn) membership queries and time. Furthermore, the hyperplane defined by this
+/— pair is guaranteed to be a hyperplane that has not yet been discovered (by the way we
have defined the region). For the remainder of this paper, we shall just speak of performing
a binary search between a positive and negative point to find a hyperplane.

We now describe the procedure ADD-HYPERPLANE that modifies our hypothesis to incor-
porate the new hyperplane found. Without loss of generality, we assume that the hyperplane
found by the binary search is 3; = ¢. Let v be the leaf in T; with the range [min,, maz,]
such that min, < ¢ < maz,. We begin by using the standard tree insertion procedures for
a balanced search tree to update tree 7; so that v becomes an internal node with a key of
¢, it has left child ve5; with the range [min,,c — 1], and it has right child v with the
range [e¢ + 1, maz,). Thus each region in

Rielete = S1 X - -+ x Si_1 X {[min,, maz,]} X Sipq x -+ x Sg
is replaced by three regions, giving us the new regions
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Rogd = 51 % -+ X 81 X {[ming, ¢ — 1], [¢, ], [e+ 1,maz,]} X Sipq X -+ X Sq.

Observe that for each » € Ryqq that there are at most 29-! corner points for which a
membership query has not yet been performed. Since all regions in Ryejese no longer exist,
we remove any that are in ¢ by using the pointer provided in A (storing the points in
pos—iist and neg-list in the corresponding new region in Rg44). We then take each region
r € R,4q making membership queries on the, at most, 2¢~1 previously unqueried corners
and then determine if the new region is valid (in which case the classification can be entered
in A) or invalid (in which case it can be enqueued). Once the queue is empty, we know that
we have a valid hypothesis and thus have completed the process. The detailed algorithm is
shown in Figure 5.

4.3.2. Putting it Together. Our algorithm LEARN-RECTANGLES] works in the fol-
lowing way. For ease of exposition we artificially extend the instance space from {1,...,n}¢
to {0,1,...,n,n 4 1} where it is known a priori that any example with a coordinate of 0
or n+ 1 in any dimension is a negative example. (The pseudocode does not explicitly make
this check, but one could imagine replacing the calls to MQ by a procedure that first checks
for such cases.) Initially, R just contains the single region corresponding to the entire
instance space. Purthermore, since all of the corners are negative, the intial hypothesis
predicts 0 for all instances.

We then repeat the following process until a successful equivalence query is made. Let
x be the counterexample received from an equivalence query made with a valid hypothesis.
We now discuss how to use membership queries (in the form of a binary search) to find two
new hyperplanes defined by the target concept. Without loss of generality, we assume that
is a positive counterexample. (Negative counterexamples are handled in the same manner.)
Every counterexample is within one of the regions, say region », in 5; X --+ x §4. Since
the hypothesis was valid and z is a positive counterexample, we know that all corners of 7
are classified as negative. Thus we can use two opposing corners of r (in conjunction with
z) as the endpoints for binary searches to discover two new hyperplanes. The hypothesis
is updated using ADD-HYPERPLANE to incorporate these two hyperplanes. Finally, we call
MAKE-VALID-EYPOTHESIS to further refine any invalid regions. Figure 6 gives the complete
algorithm.

4.3.3. Using a Hypothesis Class of Unions of Boxes. We now describe how a
valid hypothesis can be converted to the union of O(sdlogs) boxes from BoxS. Recall that
all equivalence queires are made with valid hypotheses, and thus such a conversion enables
our algorithm to learn the union of s boxes from BoxZ using as a hypothesis class the union
of O(sdlogs) boxes from BOXZ.

Recall that a valid hypothesis % essentially encodes the set of positive regions. Thus our
goal is to find the union of as few boxes as possible that “cover” all the positive regions. We
now describe how to formulate this problem as a set covering problem for which we can then
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ADD-HYPERPLANE(hR, 4,Q,1,¢)

Let v be the leaf of T; for which min, < ¢ < max,
Using a standard balanced tree insertion procedure, update T so that
v is an internal node with key ¢
v has a left child with range [min,, ¢ — 1]
v has a right child with range [¢ + 1, maz,]
Let Rastere = Sl Koo X 35_1 X {[minv,mamv]} X Si+1 KX Sd
Let Regq = S1 X -+ X 851 X {[miny,c— 1],{c,¢),[e+ 1, maz,]} X S5z X -+ X Sy

For each 7 € Rgpiete
Let r—, r< and r5 be the regions in Ryqq for which (r=Urc Urs) =7
HAr)=b(forb=00rb=1)
Let Alr=] = A[re]l = Alrs] = b
Else (so A[r] is a pointer to element ¢ of @)
Generate a new queue node for r~., ro and r-
Set the corresponding entries of A to point to these new nodes
Divide points on q.pos—{ist and g.neg—list among the queue entries for ro and =~

Remove ¢ from ¢

For each ' € Ryyq
Make membership queries on the 2¢~! new corners of 7/
If A[+'] points to ¢ (versus being 0 or 1)
If g.pos—list = § and all new corners are negative, let A[r']
If g.neg-list =  and all new corners are positive, let Ar’]
Flse (r is invalid)
Add the new positive corners to the g.pos—Iist
Add the new negative corners to the g.neg-list
().ENQUEUE{g)
Else If (A[r'] = 0 and a corner of 7' is pos.) or (A[+'] = 1 and a corner of ' is neg.)
Build a queue entry ¢ for »/
Place each corner of #' on g.pos-list if positive or g.neg-list if negative
Let A[r'] point to ¢
().ENQUEUE(q)

=0
=1

Figure 5: Qur subroutine to update kg, 4 to incorporate the newly discovered hyperplane
y; = ¢. The new hyperplane is added to tree T;. Then all regions in Rq that are split are
removed from €. Finally this procedure initializes the new entries of Ry in the prediction

matrix A.
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LEARN-RECTANGILES]:

Let Q — @
Forl1<:<d

Initialize 75 to be a single leaf covering the range 0 to n + 1
For r be the single region of By, let A[r] =0

While Equiv(hp, 4) # “yes”
Let 2 be the counterexample where & is in region » of A, 4
Let z; and #; be two opposing corners of r
For1<£<2
Perform binary search between 2 and z to find hyperplane 7; = ¢
ADD-HYPERPLANE(AR, 4,@,%,¢)
hRy,A —MAKE-VALID-HYPOTHESIS(hR, 4, Q)
Return Ap, 4

MAKE-VALID-HYPOTHESIS(ARr, 4,@)

While @ # 0
q +— DEQUEUE(Q)
Let p4 be the first point on the ¢.pos—iist
Let p_ be the first point on the g.neg-list
Perform binary search between p, and p_
to find the hyperplane y; = ¢
ADD-HYPERPLANE(AR, 4,@,1,¢)

Figure 6: Algorithm for learning unjons of d-dimensional axis-parallel rectangles.
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use the standard greedy set covering heuristic [16] to perform the conversion. The set X of
the objects to cover will simply contain all positive regions in h. Thus |X| < (4s+1)%. Then
the set F of subsets of X' will be made as follows. Consider the set B of boxes where each
box in B is formed by picking a minimum and maximum coordinate, in each dimension,
from the hyperplanes represented in A for that dimension. For any such b € B, if b contains
any negative region, then throw it out. Otherwise, place in F the set of regions contained
within b. Thus |F| < (2s)%¢, and furthermore, it contains a subset of size s that covers
all items in X. Finally, we can apply the greedy set covering heuristic [16] to find a set
of at most s(In [X| 4 1) = s(dIn(4ds + 1) + 1) = O(dslogs) boxes. The time to perform
the conversion is O((2s)%?). Thus, since at most sd + 1 equivalence queries are made, the
total time spent in converting the internal hypotheses into hypotheses that are unions of
rectangles is at most O(sd(2s)%?).

4.4. Research Plan

There are several areas in the algorithm presented that may be improved. In Section 4.3.3
we discussed constructing a hypothesis composed of a small number of boxes using an
approximation algorithm for the set covering problem. It is clear from the work of Masek [36]
that the covering problem we consider is NP-complete. However, it may be possible to
exploit some properties of the domain to get an approximation that is better than the
logarithmic ratio given by the greedy algorithm.

The running time of our algorithm is due, largely, to the number of regions it creates.
If we could create fewer regions then the running time might be decresed. We have con-
sidered methods for doing this but it is presently unclear how they affect the performance
of our algorithm. Consider that when a counterexample is received, and the corresponding
hyperplane found, the learner extends the hyperplane only the length of the region contain-
ing that counterexample. Thus, for every counterexample only one new region is created.
While this seems very promising at first, it is easy to construct problem instances that
would require rediscovery of a hyperplane O(s) times. With this method it is also easy
to show that for some concepts the order in which the counterexamples are recieved can
make a significant difference in the number of regions created. Discovery of a method for
decreasing the number of regions created is a goal of this research.

5. Teaching Unions of Boxes

While it may be possible, due to the power of a computationally unbounded teacher, to
devise a T/L pair for |J,B0x% where the learner is polynomial in s, logn and d, it is
probably more reasonable to try to design learners that are exponential in either s or d.
In fact, simply combining Theorem 3.1 with our algorithm for learning |J, Box? gives an
algorithm for teaching this class that is polynomial in s¢ and logn. If, however, we could
reduce this to be polynomial in 2¢ or 2° then we could handle more than a constant number
of dimensions {2¢ is polynomial in s for d = O(log s)) or a constant number of boxes (2° is
polynomial in d for s = O(logd)). In this section we propose further study of a T/L pair
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for the class (J, Box? in which the learner runs in time polynomial in s and 2¢. This T/L
pair is outlined in Section 5.1. We also discuss a plan for designing a T/L pair to learn this
class with a learner that is polynomial in ¢ and 2°.

5.1. Research Plan

Recall that the class |, Box2 is a generalization of DNF formulas. Here we present a T/L
pair to leamn [J, Box< with a learner that is polynomial in s and 2¢. Thus, this learner
is efficient for O(logs) dimensions. In terms of DNF formulas, this allows learning over
a number of variables that is logarithmic in the number of terms. The T/L pair should
allow us to achieve the learning task with asymptotically fewer quiries and less time than
the learning algorithm of Goldberg, Goldman and Mathias [19] thereby allowing efficient
teaching of |J, Box¢ for non-constant values of d.

5.1.1. Teaching Unions of Boxes: A TFirst Cut. At a high level, the algorithms
for the teacher and the learner function as follows. The teacher simply provides examples
for every exterior corner of the target concept where an exterior corner is one that borders
negative instances {i.e. is not contained within another box). The teacher provides enough
examples to identify every corner as either convex or concave and to give its orientation
(e.g. upper-right corner). See Figure 7 for examples of concave and convex corners. Note
that this can be done with at most (d+42)-2¢ examples for each box. To see this consider the
concave corner in Figure 7. Notice that positive examples are used at the corner, distance
one form the corner in each dimension and a negative is used that is distance one from the
corner in every dimension. Thus, the total number of examples provided by the teacher is
at most (d +2)-s-2% = O(sd - 2%). Notice that the teacher gives enough information for
the learner to be able to ignore any adversarial examples. This is because the teacher has
shown the learner every exterior corner. The adversary cannot add examples that look like
a corner but that are not a corner.

Assume, for the moment, that the entire positive space is contiguous. The learner reads
in all of the examples and constructs corners by placing adjacent examples together in a
record (provided that the examples form a valid corner configuration as seen in Figure 7).
Once all of the examples have been processed the learner deletes any corners that are
incomplete. Since, as mentioned, the adversary cannot create a false corner all adversarial
examples are discarded. The learner now finds a minimum corner (closest to the origin)
and for every other corner calculates the number of dimensions in which it differs from the
minimum corner (this is the distance to the minimum corner when all sides have length one).
Sorting the corners by this distance yields a breadth-first ordering. Using this breadth-first
ordering on the corners the learner can “create” the sides of the positive region. To
malke these ideas viable it is necessary to develop a hypothesis that can be maintained and
evaluated without asympiotically increasing the running time of the algorithm.

In the previous discussion of the learning algorithm we assumed that the entire positive
space was contiguous. If this is not the case the learner can use the orientation of each
corner to determine in which directions its “matching” corners can be found. Thus, it is
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convex corner

| concave corner

Figure 7: An example showing concave and convex corners and the examples given by
the teacher for each. For a concave corner the teacher provides the positive example at
the corner, the (at most) d positive examples each distance one from the corner and the
negative example that is distance one from the corner in each dimension. For a convex
corner the teacher again provides the positive example at the corner and also provides the
d negative examples each distance one from the corner. Note that each corner uses at most
(d+ 2) examples.

impossible for a corner of a neighboring, non-contiguous positive region to be confused with
a corner of the region under consideration by the learner.

5.1.2. Can We Do Better?. An alternate approach for teaching (J, Box¢ is to at-
tempt to find a T/L pair in which the learner runs in time polynomial in d and 2°. This
allows efficient teaching of concepts with the number of boxes logarithmic in the number of
dimensions (this is analogous to DNF with a number of terms logarithmic in the number
of variables).

Blum and Rudich [9] give a randomized learning algorithm for learning DNF formulas
that runs in time O(n - 20(8)) where n is the number of Boolean variables and  is the
number of terms in the target DNF. This algorithm is efficient for values of & as large
as O(logn). The randomization in this algorithm is used by the learner to find helpful
examples. Because we have a powerful teacher choosing the examples to present to the
learner it is possible that our teacher can do this work and thus allow our learner to be
deterministic. We must then extend the algorithm to work for the broader class of | J, Boxg.
This may introduce a dependence on the size of the domain, » (note that this is not the
same 7 as the number of variables in the DNT' case), likely polynomial in logn. It is also
possible that modifications to the T /L pair discussed earlier in this section could produce
a learner with the desired complexity.
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6. Teaching Disjunctive Normal Form Formulas

One of the largest open problems in computational learning theory is the learnability of
disjunctive normal form (DNF) formulas. There is some evidence that DNF formulas with
an arbitrary number of terms are not learnable in existing learning models. Therefore, much
of the research in this area has been directed at learning various subclasses of DNTF formulas
such as k-term DNF (formulas with a constant number of terms), read-u DNF (formulas
where each variable appears at most p times) and monotone DNF (formulas in which all
variables are unnegated). However, in the model of teaching of Goldman and Mathias [20]
(discussed in Section 3) it is possible that the power of the cooperative teacher may be
employed to aid the learner sufficiently to allow learning of DNF formulas.

6.1. Previous Work

There has not been any known previous work on the problem of teaching DNT formulas.
There has been a great deal of previous work, however, on learning subclasses of DNF
formulas in standard learning models.

In the PAC learning model there are algorithms for several subclasses of DNF formulas.
Monotone DNF was shown learnable by Valiant {42] in the PAC model using membership
queries. Hancock [26] has given a PAC algorithm for the class read-twice DNF. Angluin [4]
proved that an algorithm for exact identification of a class using equivalence queries implies
the PAC learnability of the class (if the query algorithm also uses membership queries then
a similar result holds for the PAC model with membership queries). Thus, there are other
positive results for PAC learning subclasses of DNF formulas implicit in results for the query
model.

Angluin has shown that the class of monotone DNF is learnable in the query model
using both equivalence and membership queries [4]. For the class of read-twice DNF, Aizen-
stein and Pitt [2] give an exact identification algorithm. Surprisingly, perhaps, Aizenstein,
Hellerstein and Pitt [1] show that read-thrice DNF is not learnable by any equivalence and
membership query algorithm, unless NP = co-NP, when all equivalence queries must use hy-
potheses from the class read-thrice DNF. (Note that there is no known exact-identification
algorithm for read-twice DNF when hypotheses must also be read-twice DNF). The class
of k-term DNF has been extensively studied. Blum and Singh [10] have given an algorithm
for learning this class by the class of DNF formulas using only equivalence queries and
O(n*) time. Angluin [3] gives an algorithm to exactly identify any k-term DNF formula
in time O(nkz) using equivalence queries and membership queries and a hypothesis class
of k-term DNF. Notice that both of these algorithms are efficient only for constant values
of k. Finally, Blum and Rudich [9] give a randomized algorithm that exactly identifies the
class k-term DNF, using equivalence and membership queries, in O(n-QO(’“)) expected time.
This algorithm returns a hypothesis of O(2°%)) terms but is efficient for & = O(log n).

Pitt and Valiant {37} gave a representational-dependent hardness result for k-term DNF.
They show that k-term DNF is not learnable by &-term DNF using only equivalence queries
unless RP = NP. Since Angluin gave an algorithm to learn this class using equivalence
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and membership queries and hypotheses from the concept class, we know that membership
queries help in learning k-term DNF formulas when the hypothesis class is k-term DNF
formulas. Angluin and Kharitonov [6], however, have shown that membership queries do
not help in learning DNT formulas with an arbitrary number of terms. They show, under
cryptographic assumptions, that the learner is unable to determine helpful instances on
which to ask membership queries.

6.2. Research Plan

We have already expended some effort considering the problem of teaching DNF formulas
and have discovered approaches that seem not to work. This is due in part to the existence
of DNF formulas with an exponential number of prime implicants the disjunction of which
are not sufficient to cover the function. In fact, formulas exist in which these terms are not
only insufficient but also unnecessary. In our feaching model it is not hard to see that the
adversary may cause these terms to be created and, thus, prevent the learner from creating
a polynomial size hypothesis.

The result of Angluin and Kharitonov suggests that membership queries might help if
the learner was able to formulate useful queries. This is encouraging since in our model
the teacher can provide the learner with the answer to a membership query (ie. include in
the teaching set a labeled example) in a way that does not require the learner to explicitly
ask the query. Thus, by searching the teaching set the learner may be able to find a useful
membership query. It may also be helpful to allow the learner to use other types of queries.
That is, the learner may gain some power by treating the examples in the teaching set as
answers to subset queries or superset queries. Note that this does not require any additional
resources since we already have a computationally unbounded teacher that can simulate the
learner and provide the needed answers to any example-based query.

There are also several interesting subclasses of DNF formulas that may be interesting to
investigate. The negative result for read-thrice DNT raises the question of teachability of
this class. Tt is possible that an approach that fails for general DNF may be promising for
teaching read-thrice DNF (though even read-twice DNF formulas may have an exponential
number of unnecessary prime implicants). Also, Blum and Rudich note that the learnability
of DNT' formulas with polylog(n) terms is an open question. The teachability of either of
these classes might provide some insight into the possibility of teaching general DNF.

Finally, it is clear from Theorem 3.1 that a negative teaching result for any of these
classes shows that they are not learnable using example-based queries. (The implied neg-
ative result for learning would be representation-independent only if the negative teaching
result was also representation-independent.)

7. A Model of Randomized Teaching

In the design of algorithms it is often useful to allow some amount of randomization. In
learning algorithms randomization can be used in two ways: to help the learner find a useful
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example (a randomized teacher) or to decide for the learner how to use the examples once
they are found (a randomized learner). Because the teaching algorithm in our model can
supply the learner with useful examples, the first type of randomization is probably not
useful for a model of teaching ®. The second type of randomization may, however, give
additional power to cur model.

It is not possible to simply allow randomization of the learning algorithm in our model
as presently defined, however. The problem is that the teacher may need to simulate the
learner in order to choose helpful examples. Obviously, if the learner is randomized the
teacher cannot accurately simulate the learner. In this section we introduce one possible
teaching model that allows randomization of the learner.

7.1. Research Plan

The following model is proposed as a starting point for investigation of this problem. In
each phase of the process: the teacher builds a paertial teaching set that gives the learner
the required information until the first coin flip in the learning algorithm; the adversary
may add to this partial teaching set in the same way as in Section 3.2; the learner uses
the teaching set from the adversary deterministically and then makes the coin flip; the
teacher observes the coin {lip and the next phase begins. Such a teaching session is shown
in Figure 8.

fommmmmman coinflip_________ -

Y : .
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Figure 8: An overview of a teaching session with a randomized learner. The adversary
chooses the target function, f, giving it to the teacher. The teacher then generates a partial
teaching set T(f). Given the partial T'(f) the adversary generates S4 2 T(f) and gives
this to the learner. The learner uses 54 until the first random move, which is witnessed
by the teacher, and then the process is repeated. When finished the learner outputs a
representation from C thus defining a probability distribution Pr(S4) over C.

It is unclear if using the randomization in this way increases the power of the T/L
pair (i.e. makes some class teachable that was unteachable in the model of Goldman and
Mathias). It is also unknown if the adversary in this model is capable of preventing collusion.
Much work remains to be done in the development of a randomized teaching model.

H it is possible to develop an appropriate randomized teaching model then we can teach
the class of DNF formulas in that model. Recently Bshouty, Cleve and Tamon [13] have
given a randomized algorithm for exactly identifying DNF formulas using only restricted
superset and subset queries. Recall that a superset query on hypothesis A for target function

%This type of randomization might be useful to make an otherwise inefficient teacher run in expected
polynomial time. However, we are generally less concerned with the complexity of the teaching algorithm.
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Jf answers “yes” if b D f and otherwise returns a counterexample 2 such that 2 € f — h.
Subset queries are analogous. Since both superset and subset queries are example-based
queries we get (with an appropriate model) that DNF formulas are teachable. In our model
it would not be necessary to rely on superset and subset oracles since the teacher would
perform this task.

8. Summary

It is expected that the work proposed here will provide answers to several open questions
in computational learning theory. The main contributions of this work will be:

e The first model of teaching that avoids collusion (as defined) but is able to benefit
significantly from the presence of a helpful teacher.

o The first efficient (for constant d) algorithm to learn exactly the union of an arbitrary
number of boxes in d dimensions.

e Algorithms, in the above teaching model, to teach the class of unions of boxes in d
dimensions that are efficient for either a number of dimensions that is logarithmic
in the number of boxes or a number of boxes that is logarithmic in the number of

dimensions.
o An algorithm to teach efficiently the class of DNF formulas.

¢ A model of teaching in which the learner may be randomized but that still prevents
collusion while taking advantage of the power of the teacher.
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