View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Washington University St. Louis: Open Scholarship

Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCSE-2005-33

2005-07-22

A Collision Detection Chip on Reconfigurable Hardware

Nuzhet Atay, John W. Lockwood, and Burchan Bayazit

Collision detection algorithms check the intersection between two given surfaces or volumes.
They are computationally-intensive and the capabilities of conventional processors limit their
performance. Hardware acceleration of these algorithms can greatly benefit the systems that
need collision detection to be performed in real-time. A Field Programmable Gate Array (FPGA)
is a great platform to achieve such acceleration. An FPGA is a collection of digital gates which
can be reprogrammed at run time, i.e., it can be used as a CPU that reconfigures itself for a
given task. In this paper, we present an FPGA based collision detection chip. The... Read
complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

b‘ Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

Atay, Nuzhet; Lockwood, John W.; and Bayazit, Burchan, "A Collision Detection Chip on Reconfigurable
Hardware" Report Number: WUCSE-2005-33 (2005). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/952

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://core.ac.uk/display/233233851?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F952&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F952&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F952&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F952&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F952&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F952&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F952&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/952?utm_source=openscholarship.wustl.edu%2Fcse_research%2F952&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/952

A Collision Detection Chip on Reconfigurable Hardware

Nuzhet Atay, John W. Lockwood, and Burchan Bayazit

Complete Abstract:

Collision detection algorithms check the intersection between two given surfaces or volumes. They are
computationally-intensive and the capabilities of conventional processors limit their performance.
Hardware acceleration of these algorithms can greatly benefit the systems that need collision detection
to be performed in real-time. A Field Programmable Gate Array (FPGA) is a great platform to achieve such
acceleration. An FPGA is a collection of digital gates which can be reprogrammed at run time, i.e., it can
be used as a CPU that reconfigures itself for a given task. In this paper, we present an FPGA based
collision detection chip. The chip can be used as a co-processor for a traditional computer or several of
them can be utilized to work in parallel to create a very fast collision detection server for real time
environments. In our experiments we have seen speeds-up of 36 with respect to a fast Pentium 4 chip.
Further improvements are possible by using more advanced collision detection techniques

https://openscholarship.wustl.edu/cse_research/952?utm_source=openscholarship.wustl.edu%2Fcse_research%2F952&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/952?utm_source=openscholarship.wustl.edu%2Fcse_research%2F952&utm_medium=PDF&utm_campaign=PDFCoverPages

Washington
University in St.Louis

SCHOOL OF ENGINEERING
Department of Computer Science & Engineering & APPLIED SCIENCE

2005-33

A Collision Detection Chip on Reconfigurable Hardware

Authors: Atay, Nuzhet; Lockwood John W; Bayazit Burchan

July 22, 2005

Abstract: Collision detection algorithms check the intersection between two given surfaces or volumes. They are
computationally-intensive and the capabilities of conventional processors limit their performance. Hardware
acceleration of these algorithms can greatly benefit the systems that need collision detection to be performed in
real-time. A Field Programmable Gate Array (FPGA) is a great platform to achieve such acceleration. An FPGA
is a collection of digital gates which can be reprogrammed at run time, i.e., it can be used as a CPU that
reconfigures itself for a given task.

In this paper, we present an FPGA based collision detection chip. The chip can be used as a co-processor for a
traditional computer or several of them can be utilized to work in parallel to create a very fast collision detection
server for real time environments. In our experiments we have seen speeds-up of 36 with respect to a fast
Pentium 4 chip. Further improvements are possible by using more advanced collision detection techniques.

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160

A Collision Detection Chip on Reconfigurable Hardware*

Nuzhet Atay

John W. Lockwood

Burchan Bayazit

Washington University in St. Louis
{at ay, | ockwood, bayazit }@se. wst| . edu

Abstract

Collision detection algorithms check the intersection between
two given surfaces or volumes. They are computationally-
intensive and the capabilities of conventional processors limit
their performance. Hardware acceleration of these algorithms
can greatly benefit the systems that need collision detection to
be performed in real-time. A Field Programmable Gate Ar-
ray (FPGA) is a great platform to achieve such acceleration.
An FPGA is a collection of digital gates which can be repro-
grammed at run time, i.e., it can be used as a CPU that recon-
figures itself for a given task.

In this paper, we present an FPGA based collision detection
chip. The chip can be used as a co-processor for a traditional
computer or several of them can be utilized to work in parallel
to create a very fast collision detection server for real time envi-
ronments. In our experiments we have seen speeds-up of 36 with
respect to a fast Pentium 4 chip. Further improvements are pos-
sible by using more advanced collision detection techniques.

1 Introduction

A wide range of applications, such as robotics, ani-
mation systems, physical simulations, virtual prototyping
(CAD/CAM), biomedicine, require collision detection in
order to perform particular tasks. In the simplest defini-
tion, the collision detection is the task of deciding whether
a geometric contact between two objects exists. The ob-
jects can be represented in several different ways, such as
polygonal models, using constructive geometry, as para-
metric or implicit surfaces. In robotics, for example, the
physical environment and the robot itself can be repre-
sented as a set of polygons. Then a motion planning algo-

*Authors' address: Dept. of Computer Science and Engineering,
Washington University, St. Louis, MO 63130.

rithm can be used to find a collision-free path that allows
the robot to navigate through the environment. In anima-
tion, physical properties of an object, such as deforma-
tion, can require finding colliding surfaces of the object
with the environment. Because of their importance, col-
lision detection algorithms are well studied and continu-
ously being improved [12, 16].

With the advance of graphics processing units (GPUSs),
we have started to see their utilization in collision detec-
tion. However, GPUs are primarily designed to increase
the speed of graphics computation. The limitations on the
resolutions or need to use a limited shading language ef-
fects the collision detection algorithms running on them.
For example, [2, 14] can handle general polygonal mod-
els only when they are represented as unions of convex
objects. More general algorithms [5, 6] usually require
both CPU and GPU resources. On the other hand, Field
Programmable Gate Arrays (FPGAS) can be used to im-
plement a dedicated collision detection chip capable of
working without any other resources from CPU. Since an
FPGA is a collection of digital gates which can be repro-
grammed at run time, it can be reconfigured to suit a given
task. FPGAs are continuously improving while suppress-
ing the Moore’s law. A recent analysis shows that it is
expected that their floating-point performance will over-
pass the general purpose CPUs by 2009 [22].

In this paper, we present a collision detection chip
based on FPGAs. Our design takes advantage of inherent
parallelism of collision detection algorithms and checks
collisions in parallel. Since we hope to utilize our system
in motion planning algorithms, we have defined our colli-
sion detection problem as the following: ’given an envi-
ronment, a dynamic object within this environment, and a
set of configurations of the dynamic object, decide if the
dynamic object at the given configurations is in collision

with the environment”. We have both the environment
and the dynamic object represented as triangular meshes.
Our models are general, non-convex objects. Each con-
figuration of the dynamic object is represented with six
parameters (three for the position and three for the orien-
tation). For each configuration our chip finds the transfor-
mations of the dynamic object’s triangles and do several
parallel fast triangle intersection tests against the environ-
ment. Although we have a dynamic object and static en-
vironment, the design can easily be extended to collision
detection between a pair of dynamic objects. Similarly
instead of just returning a binary value representing the
collision state, the system can return the triangles in col-
lision.

To the best of our knowledge, we are the first to im-
plement a dedicated collision detection chip on an FPGA.
Since it is highly parallel and use simpler operations, we
have used a fast triangle-triangle intersection test to de-
cide the collisions. Please note that our system is highly
modular and we can replace our basic collision detec-
tion module with other more advanced collision detection
modules such as hierarchical algorithms [4] or algorithms
that can utilize temporal coherence [11]. Current FPGA
technology lets us do up to 25 triangular collision detec-
tions in parallel. We have noticed that even with one col-
lision detection circuit, because of the highly parallel na-
ture of the matrix multiplication and other operations, our
chip can still do the collision check faster than a general
purpose CPU. In fact, with 25 collision detection circuit
our design shows speed-ups of around 36 with respect to
a Pentium 4, 3 Ghz.

In the next section we will give a brief information
about FPGAs. Related work is discussed in Section 3.
Section 4 presents our architecture and Section 5 de-
scribes individual modules. Experimental results are in
Section 6 and Section 7 concludes our paper.

2 Field Programmable Gate Arrays
(FPGA)

A field-programmable gate array (FPGA) is an inte-
grated circuit (IC) that can be programmed in the field
after it is manufactured. FPGASs are similar in princi-
ple to, but have vastly wider potential application than,

Configurable Log

Programmable 1/0s

CLB Block SelectRAM

Figure 1. A typical FPGA layout: configurable logic cells
(CLBs), block RAMs, digital clocks (DCMs) and input output
buffers (10Bs).

programmable read-only memory (PROM) chips. FP-
GAs can be defined as reconfigurable processors that can
be used for testing and implementing designs. Designs
loaded on FPGAs are not final. As a result, the configura-
tion of the circuit can be updated whenever needed.

A typical FPGA circuit (see Figure 1) consists of con-
figurable logic cells (CLB) which are the primitive el-
ements of FPGAs. Each CLB contains look-up tables
(LUT) where combinatorial logic is stored. LUTSs are
memory elements which are addressed by inputs of cir-
cuit. Instead of rearranging gates according to design,
the design is converted into LUTs. Capacity of LUTS is
limited with the number of inputs, not with the complex-
ity of design. By this way, delay through a LUT is con-
stant. Large circuit designs can be performed by connect-
ing CLB modules together. This structure is supported by
on-chip and external memories. On-chip memories are
block rams and distributed ram. These memories have
low capacity (up to 1.5 MByte) but have very low access
time (1 clock cycle) and large data width (up to 256 bits).
Many low capacity (up to 336) memory modules (4 Kbit-
18Kbit) can be accessed independently. This is an im-
portant advantage over general purpose processors where
memory is a serious bottleneck. External memory has
much higher capacity (up to terabit) but has higher access
time. For synchronous circuits, programmable clocks are
provided where each clock has frequency up to 500 Mhz.

To define the behavior of the FPGA it is required to use
a Hardware Description Language (HDL) or a schematic

designed using an Electronic design automation tool. Ei-
ther of these, when compiled, will generate a net list, that
can be mapped to the actual FPGA architecture. When
done the binary file generated is used to (re)configure the
FPGA device. Common HDL’s are VHDL and Verilog.
A good introduction to FPGAs can be found in [15].

3 Reéated Work

A good survey of recent developments in collision de-
tection algorithms can be found at [12, 16]. Recently a
new class of collision detection algorithm, image space
collision detection [1, 2, 3, 4, 7, 9, 10, 14, 19, 20, 21, 23,
25] is proposed to take the advantage of graphics hard-
ware (GPUs). Such algorithms project the object geom-
etry onto the image plane and do the collision check in
this reduced space while using the depth map information
stored in the GPU. They are fast, but they are not always
accurate when the objects are far away. They are also
limited by the resolution of the viewport. As a solution,
hybrid methods are suggested where the parts of the al-
gorithm takes advantage of GPUs and refine the result on
CPU [5, 6, 8, 13].

To the best of our knowledge, we are the first re-
searchers implementing a collision detection chip on
an FPGA. However, there has been a recent design
on Application-Specific Integrated Circuit (ASIC) [26].
Their design is based on dynamically aligned DOP-
trees [7, 25]. In addition to advantage of FPGAs over
ASIC, such as more flexible design and low cost, we be-
lieve our design is more modular, i.e., the collision de-
tection module can be replaced by any other collision de-
tection algorithm and the further performance gain can be
achieved. Also, an FPGA can be reprogrammed by the
user as oppose to the manufacturer when ASICs are used.
This way, the user can program the hardware to use slow
but accurate collision detection algorithm or fast but ap-
proximate collision detection algorithm. Please also note
that, while their results are all based on simulations, our
design is also implemented on a real FPGA.

Serial Input

Memory (Block RAM)
Transformation . Robot
Points Triangles

Transformation
Matrix Circuit

| Transformed Robot Triangles |
Collision Detection Collision Detection
Circuit 1 Circuit 25
ﬁ Obstacle Triangles ﬁ
Memory (Block RAM)
—‘ System Controller
Serial Output

Figure 2: System overview.

4 System Overview

Our collision detection chip communicates with the
host through serial port. The chip has a local memory to
store object representations as well as the configurations
of the dynamic object. A transformation circuit trans-
lates the dynamic object to given position and orientation.
There are n parallel collision detection circuits each of
which get a transformed triangle of dynamic object and
check it against the environment’s in parallel. The results
of collision detection at each configuration is then sent
back to the host. Note that this system is very flexible,
by replacing the collision detection circuit, we can imple-
ment different collision detection algorithms.

5 Collision Detection Chip

The collision detection chip has four major modules
(see Figure 3): (i) 1/O is responsible from communica-
tion between the host computer and the chip, (ii) memory
stores the object models, (iii) transformation transforms
the dynamic object, and, (iv) collision detection checks

Transformation

. :

Collision
Detection

Figure 3: The collision detection chip.

the triangular intersection between the dynamic object
and the environment.

51 1/0

In the current implementation, the host computer ac-
cesses to the collision detection chip using RS-232 serial
communications. However since it is modular, it can eas-
ily be replaced by a PCI interface. It is used to get the
geometrical models for the dynamic object and the envi-
ronment to the chip. The configurations of the dynamic
object is also sent through 1/0 module. Once all the con-
figurations are processed, the chip returns the binary re-
sults (True or False) for each configuration through 1/0.

5.2 Memory and Data Structures

36 bits 36 bits 36 bits 36 bits
A A A A

_A/
SR ZTG

(x1, x2, x3)
v1y2,y3)
(21, 22, 23)

Figure 4: Storage of object triangles in block RAMs. Each
Block RAM has two data paths, path A and path B. If the address
of path A is k, then path B’s address is n — k when n is the
maximum address on Block RAM.

The memory module of the collision detection chip is
responsible from storing the object models, the configu-
rations of the dynamic object and results of the collision

detection for each configuration. The objects are rep-
resented as triangular meshes. In order to avoid costly
floating point operations, we are using 32-bit fixed point
arithmetic. Please note that this does not effect the per-
formance of our chip since we normalize the coordinates
before sending them to the chip. Each triangle is repre-
sented using 288 bits of data (each vertex is three 32-bit
number, i.e., 96 bits, hence each triangle is 96x 3).

Instead of having one large memory, FPGAs usually
have several small memories which are called Block
RAMs. Each Block has data paths to CLBs. The ad-
vantage of using such a distributed memory is that sev-
eral memory block can be accessed in parallel. How-
ever, the designer has to be careful to maintain data con-
sistency when the data is distributed among the memory
blocks. The amount of the data that can be transfered from
memory module to the computational components at each
clock cycle depends on the data width. In our implemen-
tation, each Block RAM has a data width of 36 bits. There
are two data paths from each block, effectively doubling
the data width to 72 bits. Hence we can get whole triangle
data, including vertex points in 4 clock cycles. Instead of
waiting 4 clock cycles, we distributed our triangle data
to four Block RAMs resulting in one triangle read per
clock cycle. The structure of memory is shown in Fig-
ure 4. Block RAMs are cascaded to obtain data width of
144 bits for one data path, and 288 for two paths.

One Block RAM has a capacity of 18K bits, so we can
store up to 576 32-bit numbers, allowing 4 Block RAMs
to store up to 256 triangles. Current FPGA chips can
contain up to 336 Block RAMs which increases the to-
tal number of triangles to 86016.

5.3 Transformation and Collision Detection

As we have mentioned before, our system utilizes in-
tersection checks between triangles to decide a collision.
Since the dynamic object is moving, its triangles must
be transformed to new positions as the dynamic object
changes its position and orientation. Our triangle-triangle
intersection test is based on the fast triangle-triangle inter-
section test described in [18]. Next, we will briefly sum-
marize this algorithm and then show how it can be applied
in hardware.

Fast Triangle-Triangle I ntersection Detection. This
algorithm considers three cases: (i) triangles lie in the

half-planes of each other, (ii) the triangles are coplanar,
(iii) the triangles are not coplanar. It works in the follow-
ing way:

o Half-plane check: If all the vertices of one triangle
lies on the same half-space of the other triangle, there
is no way these triangles intersects so just return col-
lision free.

e Coplanar: If the triangles are coplanar, project them
onto the axis-aligned plane where the areas of the
triangles are maximized. Then do a two-dimensional
triangle-triangle overlap test.

e Not Coplanar: If L is the line at the intersection of
two planes containing each triangle, both triangles
are guaranteed to intersect with L. Find the inter-
section intervals for each triangle and check if they
overlap (collision).

Collision Detection Hardware. Our hardware imple-
mentation closely matches the above algorithm. Figure 5
shows the internal structures of the transformation and
collision detection circuits. Once a configuration is read,
then the elements of transformation matrix is computed in
parallel. When the matrix is found, we start transforming
the dynamic object’s triangles. For this purpose, we get
a triangle from the memory (all vertices in parallel) and
compute the new position of the triangle (by transforming
each vertex in parallel). Once a triangle is transformed,
it can be directly sent to the collision detection circuit to
check the collision with environment. However, since the
overall collision check is a slower process than the trian-
gle transformation (number of triangles compared is much
higher than the number of triangles transformed), we use a
buffer (FIFO) to store the results of transformations while
waiting for the collision detection circuit become ready.

The collision detection circuit gets the next dynamic
object triangle (Ty,) from the buffer, and gets the next en-
vironmental triangle (7%) from the memory. It computes
the plane equations for both triangles in parallel. Next, it
checks if all the vertices of the Ty, lies in one side of T,
(all vertices are checked in parallel). If that is the case,
then there is no collision, so the circuit moves to the next
environmental triangle. Otherwise, the circuit checks if
the planes are coplanar. If that is the case, then it per-
forms a triangle-triangle collision test in 2D. Otherwise,

finds the line L at the intersection of the planes contain-
ing Ty, and T,. The final collision detection test is then
to find the intersection of L and each triangle (in parallel)
and check if they overlap.

Collision detection between the dynamic object and the
environment continues until either all triangle pairs are
compared or one triangle-triangle intersection test returns
collision. In order to increase the parallelism of the sys-
tem, further collision detection circuits can be added to
the chip. The number of the total parallel collision detec-
tion circuits is only limited by the number of logic slices
on the FPGA chips. When several collision detection cir-
cuits are employed in parallel, the transformed triangle
T4, can be compared with several environmental triangles
in parallel. A block diagram of this approach is given in
Figure 5(b).

Design Issues. We have used VHDL to develop our
chip. Since trigonometric functions and multiplication are
not directly supported in VHDL, we have used the Xilinx
CoreGen tool to generate lookup tables (LUTS) that con-
tain the results of trigonometric functions. We created a
trigonometric module for sine and cosine functions which
has symmetric output and uses distributed memory. When
distributed memory is used for a LUT, the circuit has a la-
tency of 2 clock cycles compared to 3 with Block RAM.
Since speed is the most important issue in our problem,
we preferred distributed memory. Input precision of 10
bits was specified, and the output precision was set to
32 bits. Similarly, the multiplications are also generated
with CoreGen. It is a parallel signed multiplier with min-
imum pipelining and has a latency of 2 clock cycles. If
maximum pipelining were chosen, the latency would be
6. This circuit also uses LUTS constructed on distributed
memory. Inputs are 32 bits wide and output is 64 bits wide
which satisfies our 32-bit number representation. For di-
visions, we have used right shifts since CoreGen divisions
are very costly (both space wise and latency wise). Al-
though this reduced the precision, we haven’t observed
any problem with it so far. Other operations are completed
using standard VHDL functions. The algorithm works as
a state machine with approximately 50 states.

Start Tranformation
| Circuit

i

ead Configuration <:> Memory

i

Until all configuration Compute
points are read Transfor_matlcn
Matrix

i

Read Dynamic
K >{ Memo
Object Triangle 24

Until all
triangles ‘
are converted Compute New FIFO
Triangle

J Collision Detection
‘ [Circuit

Read Dynamic
Object Triangle

Read

Environmental <:> Memory
Triangle

Compute Plane Compute Plane
Equation Equation

All vertices on the

" All venicgs onJhe
same side and same side an
Half-Plane Check until all env
triangles are controlled triangles are controlled
Coplanar Vertices are +n both sides Not Coplanar

Two-dimensional Planes intersect on a line
. . Both triangles intersect that lin)
Not intersect and triangle-triangle Find intervals of lines formed| Not intersect and
until all obstacl env. intersection test by triangles and compare them all env. triangles
triangles are controlled ‘ ‘ are controlled

Collision if any triangles intersect
If all triangles are compared and not intersection is found, there is no collision

(&)

Environment Environment

Triangle 26 Triangle 50

Dyn. Object Environment Environment

Triangle Triangle 1 o Triangle 25
(Memory) (Memory) (Memory)

Configuration Transformation Collision Detection P Collision Detection
(Memory) Cireuit Circuit 1 ’—' Circuit 25
\

Indicates collision if thereis

at least one module that detects
collision

(b)

Figure 5: Internal structures of transformation and collision detection circuits: (a) collision detection path, (b) modular represen-
tation.

6 Experiments

Our target FPGA chip is Xilinx Virtex-4
XC4VLX200 [24]. This chip allows us to create up
to 25 collision detection circuits in parallel and can run
our design at the clock rate of 50 MHz. We compared
our solution to the sequential execution running on a
workstation with Pentium-4 processor at 3 GHz with 1
GB memory. We have both simulation and real hardware
results.

In our simulation experiments, we have used Model-
Sim XE Il/Starter 5.8c by Mentor Graphics [17] edition.
ModelSim is an HDL (Hardware Description Language)
high-end simulator. It takes the VHDL description of the
design as well as input values, then compiles the design,
and runs it in the defined clock frequency. Outputs and in-
ternal signals of circuit can be examined while simulation
is running. Simulation runs circuit in real-time so timing
is accurate, i.e. same results are obtained when design is
loaded to FPGA chip. Our development board has a 40-
MHz clock on it, so we have simulated circuit using this
frequency.

In order to test our chip, we designed an experiment
where a dynamic object is placed at different configura-
tions in an environment. The object is made-up of 12 ran-
dom triangles. Next we have randomly placed 1600 ob-
stacle triangles in a workspace which has 10 times length,
width and height of the bounding box covering the dy-
namic object. We have checked the collision of the dy-
namic object at 20 different configurations.

In our experiments, we have executed a functionally
similar algorithm in a workstation. In the worst case,
each collision check between the moving object and the
environment takes 19200 triangular intersection checks.
For 20 different configurations of the dynamic object, we
have to perform 384,000 triangle comparisons. Collision
checking for 20 configurations took 247 milliseconds on
the workstation. Next, we run the same experiment us-
ing our design in ModelSim. The same set took 170.28
msec when our chip contained only one collision detec-
tion circuit. When we have included 12 collision detec-
tion circuits, it took 13.44 msec to finish. Finally when
we used 25 collision detection circuits, the collision de-
tection time was 6.85 msec. Our results can be seen in
Figure 6. These results show that even without any par-
allel collision detection circuit, our chip performs faster

than a Pentium 4. Its performance can be explained by
the parallelism in individual circuits. This increases the
speed-up up to 36 when collision detection circuits are
replicated and run concurrently. Another advantage is the
FIFO between transformation circuit and collision detec-
tion circuit. This lets transformation circuit time over-
lap collision detection circuit time. As a result, the time
we obtained is only the time for collision detection cir-
cuit. Please note that there are two main modules in the
system, transformation matrix circuit and collision detec-
tion circuit. These circuits include algorithms that can
be changed or optimized according to application. In our
experiments, we have noticed that transformation circuit
takes 710 ns and collision detection circuit takes 440 ns in
the worst case with 40 MHz clock frequency. These times
do not depend on anything except clock frequency. More-
over, the time of transformation matrix totally overlaps
with collision detection time except the time it takes in
the beginning of the execution. The FIFO between them
lets constant data flow between these modules. As a re-
sult, in the worst case (where there are not collisions, and
triangles are arranged so that one vertex lies on one half
space and the others lies on the other half space) total time
of execution is defined as:

Ndyn, * Nen'u * Nconf * Tcol
of collision detection modules

time = + Ttrans
where Ny, is the number of triangles in the moving ob-
ject, N, is the number of the triangles in the environ-
ment, Neony number of configurations, T, is the colli-
sion detection time in one circuit and T},.4,,, iS the trans-
formation time for a triangle.

To verify that our system is working, we have also
tested it on Virtex-4 ML401 evaluation board. Unfor-
tunately, this board contains a limited capacity FPGA
(Virtex-4 XC4VLX25), we could only test one collision
detection circuit in the real FGPA. We were successfully
run the same experiment on this board and found similar
results to the simulation.

7 Conclusion
We have presented a collision detection chip based

on an FPGA. Our chip takes the advantage of inher-
ited parallelism of collision detection algorithms and can

Time
255 :
240 el
225 et
210 i
195]
180 e
165 — —
@ 150 +— e
5 i I
£ 20 f | |@Time
F 105 4 e
90 ++f i
75 fd e
80 +——f e
45 Sl]
30 e L
15 € ==t
5 HE- e
1 collision 12 collision 25 collision Pertium 4
detection detection detection 2GHz
circuit circut circuit

Figure 6: Collision detection chip with 1, 12 and 25 collision
detection circuit vs. Pentium 4 for 384K triangle intersection
test.

compute the collision detection up to 36 times faster
than a Pentium-4, 3Ghz CPU. Our current chip uses fast
triangle-triangle intersection test to check collision. Our
future work includes implementing more advanced colli-
sion detection algorithms on the FPGA and introducing
pipelining to our chip. We would also like to compare our
chip’s performance to other collision detection algorithms
running on the CPU. Finally, we would like to migrate our
design to custom hardware platforms to get even further
speed-ups.

References

[1] G. Baciu and S. K. Wong. Image-based techniques in a
hybrid collision detector. In IEEE Trans. on Visualization
and Computer Graphics, 2002.

[2] G. Baciu, W.S.-K. Wong, and H. Sun. Recode: an image-
based collision detection algorithm. The Journal of Visu-
alization and Computer Animation, 10(4):181-192, 1999.

[3] J. Eckstein and E. Shomer. Dynamic collision detection in
virtual reality applications. In In WSCG’99, pages 71-78,
1999.

[4] S. Gottschalk, M. Lin, and D. Manocha. OBB-Tree: A
hierarchical structure for rapid interference detection. In
SIGGRAPH, pages 171-180, 1996.

[5]1 N. K. Govindaraju, M. C. Lin, and D. Manocha. Fast and
reliable collision culling using graphics hardware. In Vir-
tual Reality Software and Technology (VRST), 2004.

[6] N. K. Govindaraju, S. Redon, M. C. Lin, and D. Manocha.
Cullide: Interactive collision detection between complex
models in large environments using graphics hardware. In
Graphics Hardware, 2003.

[7] A. Gress and G. Zachman. Object-space interference de-
tection on programmable graphics hardware. In In SIAM
Conf. on Geometric Design and Computing, 2003.

[8] B. Heidelberger, M. Teschner, and M. Gross. Real-time
volumetric intersections of deforming objects. In Proc. of
Vision, Modeling and Visualization, 2003.

[9] K. Hoff, A. Zaferakis, M. Lin, and D. Manocha. Fast
and simple 2d geometric proximity queries using graph-
ics hardware. In Proc. of ACM Symposium on Interactive
3D Graphics, pages 145-148, 2001.

P. M. Hubbard. Collision detection for interactive graphics
applications. In IEEE Transactions on Visualization and
Computer Graphics, volume 1, pages 218-230, 1995.

M. Hughes, M. C. Lin, D. Manocha, and C. Dimattia. Ef-
ficient and accurate interference detection for polynomial
deformation and soft object animation. In Proc. of Com-
puter Animation, pages 155-166, 1996.

P. Jimenez, F. Thomas, and C. Torras. 3D collision detec-
tion: A survey. Computers & Graphics, 25(2):269-285,
2000.

Y. J. Kim, M. A. Otaduy, M. C. Lin, and D. Manocha.
Fast penetration depth computation for physically-based
animation. In Proc. of ACM Symposium on Computer An-
imation, 2002.

D. Knott and D. K. Pai. Cinder: Collision and interference
detection in real-time using graphics hardware. In Proc. of
Graphics Interface, 2003.

[10]

[11]

[12]

[13]

[14]

[15] H. Krupnova and G. Saucier. FPGA technology snapshot:
Current devices and design tools. In 11th IEEE Interna-
tional Workshop on Rapid System Prototyping (RSP 2000),

pages 200-2005, 2000.

M. C. Lin and S. Gottschalk. Collision detection between
geometric models: a survey. In Proc. of IMA Conference
on Mathematics of Surfaces, volume 1, pages 602-608,
1998.

Modelsim. http://www.model.com/.

[16]

[17]
[18] Tomas Moller. A fast triangle-triangle intersection test. J.

Graph. Tools, 2(2):25-30, 1997.

[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]

K. Myszkowski, O. G. Okunev, and T. L. Kunii. Fast col-
lision detection between complex solids using rasterizing
graphics hardware. In The Visual Computer, volume 11,
pages 497-512, 1995.

J. Rossignac, A. Megahed, and B. D. Schneider. Interactive
inspection of solids: cross-sections and interferences. In
Proceedings of ACM SIGGRAPH, 1992.

M. Shinya and M. C. Forgue. Interference detection
through rasterization. In The Journal of Visualization and
Computer Animation, volume 2, pages 131-134, 1991.

Keith Underwood. FPGAs vs. CPUs: trends in peak
floating-point performance. In FPGA ’04: Proceedings
of the 2004 ACM/SIGDA 12th international symposium
on Field programmable gate arrays, pages 171-180, New
York, NY, USA, 2004. ACM Press.

T. Vassilev, B. Spanlang, and Y. Chrysanthou. Fast cloth
animation on walking avatars. In Computer Graphics Fo-
rum (Proc. of Eurographics’01), volume 20, pages 260—
267, 2001.

Xilinx. http://www.xilinx.com/.

G. Zachman. Rapid collision detection by dynamically
aligned dop-trees. In Proc. of IEEE Virtual Reality Annual
Internation Symposium, VRAS’98, pages 90-97, 1998.

G. Zachman and G. Knittel. An architecture for hierarchi-
cal collision detection. In The 11th International Confer-
ence in Central Europe on Computer Graphics, Visualiza-
tion and Computer Vision’2003, pages 149-156, 2003.

	A Collision Detection Chip on Reconfigurable Hardware
	Recommended Citation
	A Collision Detection Chip on Reconfigurable Hardware

	tmp.1469562486.pdf.RUxFK

	Abstract: Abstract: Collision detection algorithms check the intersection between two given surfaces or volumes. They are computationally-intensive and the capabilities of conventional processors limit their performance. Hardware acceleration of these algorithms can greatly benefit the systems that need collision detection to be performed in real-time. A Field Programmable Gate Array (FPGA) is a great platform to achieve such acceleration. An FPGA is a collection of digital gates which can be reprogrammed at run time, i.e., it can be used as a CPU that reconfigures itself for a given task.

In this paper, we present an FPGA based collision detection chip. The chip can be used as a co-processor for a traditional computer or several of them can be utilized to work in parallel to create a very fast collision detection server for real time environments. In our experiments we have seen speeds-up of 36 with respect to a fast Pentium 4 chip. Further improvements are possible by using more advanced collision detection techniques.

	Footer2: Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160
	Footer1: Department of Computer Science & Engineering - Washington University in St. Louis
	Notes:
	Email:
	Date: July 22, 2005
	Author: Authors: Atay, Nuzhet; Lockwood John W; Bayazit Burchan
	Title: A Collision Detection Chip on Reconfigurable Hardware
	ReportNumber: 2005-33
	DepartmentName: Department of Computer Science & Engineering

