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Abstract

We investigate the problem of transforming one binary tree into another by rotations,
subject to certain weight constraints on the nodes of the trees. These constraints arise in
the problem of “morphing” one simple polygon to another simple polygon by continuous
deformations (translations and scalings) that preserve the turn angles and the simplicity
of the polygon; the two polygons must have the same sequence of turn angles. Our main
theorem is that two arbitrary n-leaf binary trees satisfying our weight constraint can
be morphed into each other with O(nlogn) rotations. Furthermore, we also present an
O(nlogn) time algorithm to determine these rotations. The previous best algorithm
for this problem used O(n%/3t¢) rotations.

1 Introduction

“Morphing,” the continuous deformation of one shape to another, is a popular theme in
computer graphics [1, 4, 5, 6]. A recent paper by Guibas and Hershberger [3] considers the
problem of morphing a simple polygon P to another simple polygon () whose edges, taken in
counterclockwise order, are parallel to the corresponding edges of P and oriented the same
way (we say that the two polygons are parallel). The transformation preserves simplicity
and parallelism: every intermediate polygon during the deformation is simple and parallel

to ).

1.1 Node Weights and Valid Trees

The algorithm of Guibas and Hershberger reduces the geometric problem of deforming
polygons to a combinatorial problem involving rotations on binary trees. In particular, the
problem of morphing polygons is first reduced to the slightly simpler problem of morphing
bi-infinite polygonal chains. A bi-infinite polygonal chain is represented by a binary tree—
the leaves represent the turn angles of the chain in order, and the tree structure represents
a hierarchical grouping of the angles of the chain. Fach node of the tree has a real-valued
weight that corresponds to 1/7 times the total turn angle in its group. The weight of a leaf
is an arbitrary real number in the range (—1, +1); the weight of an internal node is the sum
of the leaf weights in its subtree. We say that the weight at a node is valid if it lies in the
open interval (—1,+1), and a tree is valid if all its nodes are valid. Thus, a valid tree is one
all of whose nodes correspond to realizable turn angles, namely ones in the range (—m, +7).



Figure 1: Two valid trees with the same weight sequence at their leaves.

Let Ty and T, be two valid n-lealf binary trees whose leaves have the same weight
sequence wi,...,W,. Lhese trees correspond to two parallel bi-infinite chains, that is,
chains with the same turn-angle sequences. The structures of 77 and 73 above the leaves,
however, are in general not the same. See Figure 1. These differing structures correspond to
two different conformations of polygonal chains with the same underlying turn sequence. In
particular, the two trees may have vastly different heights, ranging from @(logn) to O(n).

The tree-morphing problem is to transform T3 to T by rotations that preserve validity,
called valid rotations. In the polygon-morphing setting, a valid rotation corresponds to
a deformation (translation and/or scaling) of a sub-chain that preserves parallelism and
simplicity. Transforming Ty to T, by a sequence of m valid rotations corresponds directly
to morphing one bi-infinite chain into another with m elementary morphing steps. In the
remainder of this paper, we will focus exclusively on the tree-morphing problem, ignoring
any relationship to the polygon morphing problem.

1.2 Our Results

The problem of transforming one tree to another without any weight constraint has been
studied before. Sleator, Tarjan, and Thurston [7] show that an n-node tree can be made
isomorphic to any other n-node tree by at most 2n — 6 rotations, slightly improving an
earlier result by Culik and Wood [2].

Our tree-morphing problem, however, is more difficult because of the weight constraint
on the nodes, which restricts the choice of rotations available to an algorithm. The best
previous algorithm for tree morphing requires O(n%/3+¢) rotations [3]. Our main result
is the following theorem: O(nlogn) rotations suffice to morph any valid binary tree into
another such tree. We can also compute these rotations in the same time bound.

This paper is organized in seven sections. In Section 2, we review some of the relevant
material from the paper of Guibas and Hershberger, and introduce the basic terminology.
In Section 3, we introduce the concept of node inclinations and a key invariant maintained
by our algorithm. Sections 4 and 5 provide the details of the proof of our main theorem,
and Section 6 describes our algorithm for finding the rotations. We conclude with some
remarks and open problems in Section 7.



2 The Basics of Tree Morphing

Let 77 and T3 be two valid n-leaf trees with the same weight sequence at their leaves. Tree
T is called the source tree and T the target tree. The weight at each internal node in either
tree is the sum of the weights at its leaf descendants; because Ty and T are in general not
isomorphic, the internal weights are not the same in the two trees. Because the trees are
valid, the weight of every node is strictly between —1 and +1.

/o\ /o\
e\ ™A
AN AN

Figure 2: A rotation is valid if all resulting node weights are valid.

A tree rotation creates one new node whose weight is not present in the tree before the
rotation. See Figure 2; the weight of the new parent of B and C does not exist in the tree
before the rotation. A valid rotation is one in which the new weight lies in the open interval
{(=1,41).

"The algorithm of Guibas and Hershberger [3] transforms 7} to T3 by a sequence of valid
rotations. The following high-level algorithm shows how the sequence is computed:

ALGORITHM BasicMonrprx

while [T3] > 1 do
1. Let o’ and b’ be a pair of sibling leaves in the target tree T3, and
let @ and & be the corresponding leaves in the source tree 7.
2. Perform valid rotations on T to make ¢ and b into siblings in 73.

3. Collapse a and & into their parent in 73, and assign the parent
node (a new leaf) the sum of the weights of ¢ and b. Similarly
collapse @’ and &' into their parent in 7%. This produces two
smaller valid trees with the same weight sequence at the leaves.

endwhile.

2.1 Spines and Sibling Operations

The core of the algorithm is Step 2. We call one execution of this step a sibling operation,
because it makes two consecutive leaves into siblings. The two consecutive leaves of T3 that
are made into siblings are joined by a path whose structure, shown in Figure 3, is best
described in terins of spines. (The significance of the arrows in the figure will be explained

later.)
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Figure 3: Leaves a and b in the source tree are ready for a sibling operation.

A right spine is a maximal sequence of right children in a tree; the top of a right spine is
either the root of the tree or the left child of its parent. A left spine is defined symmetrically.
Each leaf is the bottom of exactly one spine, either left or right. The total length of all the
spines in an n-leaf tree is 2n — 2, since every edge belongs to exactly one spine. We denote
by lca(a,b) the lowest common ancestor of two leaves ¢ and b. In Figure 3, the path from
the left leaf a to lea(a,b) consists of a right spine followed by a single edge from the top
of the spine to lea(a,b). The path from b to lea(a,b) consists of a left spine followed by a
single edge.

In general, the combined spine length for two adjacent leaves can be ©(n), implying
a similar lower bound on each execution of Step 2 in the worst case. To beat the naive
quadratic bound for the entire algorithm, one must take additional steps to reduce the
spine lengths for the merging siblings.

2.2 Spine Contraction and Normalization

The following three lemmas are from [3].

Lemma 2.1 Among any four consecutive internal nodes along a spine in a valid tree, at
least one can be rotated oul of the spine by a valid rotation.

Lemma 2.2 Let ¢ and b be two consecutive leaves whose weights have a valid sum, and
suppose that the spines above a and b have been contracted to length at most four by valid
rotations. Then a and b can be made into siblings by at most eight valid rotations involving
only nodes on the path from a io b.

Lemma 2.3 (Normalization Lemma) With O(nlog* n) valid rotations, we can trans-
Jform one valid n-leaf tree into another valid tree in which the mazimum spine length is

o(1).

Given two consecutive leaves ¢ and b as in Lemma 2.2, we can shorten the spines above
them to at most four edges apiece by repeated applications of Lemma 2.1. These spine-
contracting rotations affect only internal nodes of the spines, and not the nodes at the tops.
Once the spines have been contracted, we can make a and b into siblings by at most eight
more rotations, possibly involving the tops of the spines.

If the path length between a and b is & at the start of Step 2, then & — 2 valid rotations
suffice to make @ and b into siblings. The number of rotations is equal to the sum of the
lengths of the spines based at ¢ and b. To make the sibling operation efficient, we want to
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ensure that these spines are short. The Normalization Lemma above shows how to make
all spines short initially. The constant in Lemma 2.3 is modest: the maximum spine length
can be reduced to 8 by O(nlog*n) valid rotations (this is not stated in [3], but is not
difficult to prove). We call the operation of shortening the maximum spine length to eight
a normalization of the free.

The three lemmas given above are the basic tools used by Guibas and Hershberger [3]
to morph T} into Ty by O(n*/3%€) valid rotations. Specifically, they use Lemina 2.1 to argue
that if all spines are of constant length initially, then only O(n!"¢) rotations are needed
during n*/? iterations of the algorithm’s main loop. Their algorithm runs in n!/3 phases,
each consisting of a normalization and n?/3 iterations of the main loop. The running time
of a single phase is O(n!t¢), and the overall running time of the algorithm is therefore
O(n4/3+e)_

In the next three sections, we develop an improved algorithm that uses only O(nlogn)
rotations to morph one tree into another. The number of rotations needed to perform a
sibling operation in Step 2 of BasicMorph is the sum of the spine lengths above the two
consecutive leaves. The O(n*/3+) algorithm achieves its efficiency by shortening all spines
periodically and observing that spines cannot grow too rapidly during a sequence of sibling
operations. That algorithm’s insistence on keeping all spines short is overly aggressive.
We improve the rotation bound by focusing only on the spines that participate in sibling
operations. We identify those spines a priori and maintain them at constant length. The
cost of a single sibling operation is therefore constant; however, we need O(logn) rotations
to restore the spine length bound after each sibling operation.

3 Node Inclinations and the Inclination Invariant

The pattern of sibling operations (though not the exact sequence) is completely determined
by the target tree T5. Each sibling operation collapses a pair of sibling leaves of T% into
their parent node, while keeping the rest of the target tree unchanged.

At some time during the run of the algorithm, each leaf of the target tree collapses into
its parent. Internal nodes of the target tree become leaves when their children collapse into
them, and then they collapse into their parents. For each node, the direction of the edge to
its parent is fixed. If a target tree node is a left child, then it will be paired with a leaf to
its right when it eventually collapses into its parent. We say that a leaf that is a left child
in the target tree is right-inclined, because it will merge with a leaf to its right.

Although leaf inclinations are defined on the target tree, they are useful because of what
they tell us about the source tree. If ¢’ is a right-inclined leaf in the target tree, then the
corresponding leaf a in the source tree is also right-inclined: it will merge with a leaf to its
right when if participates in a sibling operation.

3.1 Merge Centers

Consider the sequence formed by taking the leaf inclinations in left-to-right order. The
sequence is composed of alternating runs of right and left inclination. Each alternation
from right inclination to left inclination is associated with a pair of sibling leaves in the
target tree. Each such pair is a possible site for a sibling operation, and we call the gap
between the two such leaves a merge center. Because the leaf inclinations are the same in



the two trees, the merge centers are also the same.

The number of merge centers is non-increasing as the algorithm runs: Each sibling
operation removes the two leaves adjacent to a merge center, replacing them by a single leaf
whose inclination is determined by the target tree. The new leaf may or may not belong to
a merge center. No other leaves change inclination. See Figure 4.
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Figure 4: The target tree: leaf inclinations, merge centers, and the results of
performing sibling operations at the merge centers.

The inclination of nodes in the target tree is determined by that tree’s structure, but the
inclination of nodes in the source tree is less obvious, since the structure of the source tree
differs from that of the target tree. We define the inclination of a source tree node to be the
union of the inclinations of its leaf descendants. Thus every node has some inclination, and
some are inclined both left and right (such nodes are both-inclined; nodes inclined only one
way are singly-inclined). The labels in Figure 3 show the inclinations of @, b, and lca(a, b).

3.2 The Invariant

If leaves ¢ and b participate in a sibling operation, the cost of the operation depends on the
lengths of the right spine above a and the left spine above 6. Any left spine involving a or
right spine involving b has no effect on the cost of this sibling operation. For this reason,
we maintain the following invariant:

Inclination Invariant: If a node in the source tree is right inclined (left in-
clined), then the portion of the right (left) spine above it to which it belongs (if
any) has constant length.

The Inclination Invariant is established in the beginning by the normalization operation
{Lemma 2.3), which ensures that all spines have constant length (< 8).

Lemma 3.1 If the Inclination Invariant holds, then the two leaves at any merge center are
joined by a constant length path in the source tree.

Proof: The path consists of two spines, which have constant length by the Inclination
Invariant, plus two edges linking the spines to the lowest common ancestor of the two
leaves. |

Before describing how to restore the Inclination Invariant after a sibling operation, we
must understand the effect of rotations on spine lengths. The following lemma summarizes

those effects.



Lemma 3.2 Let subtrees A and B be two children of a spine, consecutive in left-to-right
order. If a rotation is applied, making A and B into sibling grandchildren of the spine, then
the left spine of A and the right spine of B are lengthened by one. No other spine gets
longer.
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Figure 5: +/—/= indicate changes in spine lengths due to the rotation.

Proof: See Figure 5. |

4 Restoring the Invariant

In this section we describe how to restore the Inclination Invariant after it has been inval-
idated by rotations. Although this may in general require many rotations, by restricting
the invalidating rotations to subtrees containing only a few merge centers, we can apply
some of the ideas from balanced tree algorithms to restore the invariant with only O(logn)
rotations.

We choose the constant ¢ implied by the Inclination Invariant to be 9 (required by
Lemma 4.2 below). We first consider restoring the invariant for a subtree in which all nodes
have the same inclination.

Lemma 4.1 Let T' C Ty be a subtree of the source tree whose nodes are all left (right)
inclined. Suppose that all the left (right) spines in T have length at most ¢, for some
constant ¢ > 8, except for one spine longer than c that is incident to the root of T'. Then,
with O(log [T"]) rotations, we can shorten the long spine by one edge, while keeping all other
left (right) spines of T' no longer than c. No spine in Ty — T' becomes longer.

Proof: We prove the lemma for left spines; the other case is symmetric. Lemma 2.1
implies that there are at least two possible rotation sites on the spine that do not involve
the top node of the spine. (Because the top node is not involved, neither of the possible
rotations lengthens the single spine that extends from 7" up into the rest of the tree.)
Fach rotation takes two children of the spine and makes them into sibling grandchildren
of the spine (Lemma 3.2). The two rotations can be chosen to involve two disjoint pairs
of children. Let the two pairs be (A4, B) and (C, D), each pair ordered left-to-right, and
denote by AB and C'D the two possible subtrees, children of the spine, produced by the
two possible rotations.

We shorten the long spine of 77 by performing the rotation that involves the smaller of
the subtrees AB and CD: if [AB| < |CD|, the first rotation is chosen; otherwise the
second rotation is chosen. Because AB and C'D are disjoint, it follows that |AB| < 3|77
The rotation lengthens exactly one left spine: the left spine of AP is one edge longer



than the left spine of A before the rotation. The length of the left spine of AB may
increase to ¢ + 1, in which case we recursively apply the same algorithm to shorten
it. Because |AB| < 1|T'], the number of rotations needed to restore the Inclination
Invariant obeys the recurrence {(m) < #(m/2) + 1, where m is the subtree size. This
well-known recurrence solves to {(m) = O(log m), completing the proof. |}

We subdivide the leaf-sequence of the source tree into blocks of leaves with the same
inclination. The breakpoints between consecutive blocks are called inclination reversals.
Fach inclination reversal where the inclination changes from right to left is a merge center.
Thus the total number of inclination reversals in any subsequence of the leaves containing
k merge centers is at most 2k + 1.

Lemma 4.1 is not directly applicable to the general case of sibling operations, because we
cannot limit invariant violations to subtrees with only a single inclination. To remedy this
problem, we prove in the next section that we can always restrict the invariant violations to
subtrees containing only a constant number of inclination reversals. Therefore, the following
lemma, lets us restore the invariant with only O(log n) rotations in the general case as well.

Lemma 4.2 Let TV C Ty be a subtree of the source tree in which the Inclination Invariant
holds (with constant ¢ > 9), except for one left (right) spine of length greater than ¢ incident
to the root of T'. Suppose that there are at most k inclination reversals among the leaves in
the left (right) subtree of T'. Then, using O(v/klog |[T"|) valid rotations, we can shorten the
long spine by one edge, and ensure that the Inclination Invariant holds for all other spines
in T’. No spine in Ty — T becornes longer.

Proof: As in the proof of Lemma 4.1 above, the long spine has at least two disjoint
rotation sites not involving the top node of the spine. Let the two pairs of subtrees
involved in these rotations be (A4, B) and (C, D), and denote by AB and C'D the subtrees
that result from the rotations. Let kap and kgp, respectively, denote the number of
inclination reversals among the leaves of the subtrees AB and C'D.

We shorten the long spine of 77 by performing the rotation that involves the subtree
with the smaller number of inclination reversals; suppose that t4p < kep, and so
the first rotation is chosen. Because AB and C'D are disjoint, it follows that kap <
k/2. The rotation lengthens two spines: the left spine of A and the right spine of
B are lengthened by one. This increase in length may result in a violation of the
Inclination Invariant. We restore the invariant recursively on the left and right spines
of AB separately, choosing rotations strictly below the root of AB. (Because ¢ > 9, the
spine length below the root of AB is at least nine, and two independent rotations are
always available below the root.) Since the rotations are below the root of AB, the two
recursive invariant restorations are independent. If either A or B is singly-inclined, then
we apply Lemma 4.1 to restore the Inclination Invariant in that subtree.

The inclination reversals in AB are divided between the subtrees A and B, meaning
that k4 + ks < kap. (Equality holds unless an inclination reversal falls between A
and B.) The number of rotations needed to restore the invariant obeys the following
recurrence:

g(k,m) < gk, ma) + g(kz, m2) + 1,
with k1 + k2 < |k/2] and my + mg <m

9(0,m) = [logm],



where % is the number of inclination reversals in a subtree, and m is the subtree size.
To remove the dependence on two variables, we replace the first inequality by

g(k:m) < g(khm) + g(kg,m) + 1.
The resulting system of inequalities is satisfied by
g(k,m) < vk |logm| — 1,

as can easily be verified. This completes the proof. |

5 Choosing a Sibling Operation

Lemma 4.2 shows that correcting violations of the Inclination Invariant is relatively inex-
pensive, so long as the number of inclination reversals in the subtree below the violating
spine is small. This section shows how to choose sibling operations that are not too destruc-
tive: the invariant-violating spines they induce have only O(1) inclination reversals below
them.

Let 2 be a merge center, and let v, be the lowest common ancestor (LCA) of z in the
source tree; a merge center corresponds to two consecutive leaves, and the LCA of these
leaves is defined as the LCA of the merge center. Node v, is both-inclined, since its subtree
includes two leaves that are inclined toward each other. By the Inclination Invariant, the
top of the spine that extends up from v, is a constant number of edges away. Let this spine
top, which is a strict ancestor of v, unless the latter is the root, be called the ancestral-spine
top of z, and denoted w,.

At each execution of Step 2 of the main algorithm, we select a merge center at which to
perform a sibling operation using the following criterion:

Merging Criterion:

1. Among all ancestral-spine tops defined by merge centers, choose a spine-top
w that is the ancestor of no other ancestral-spine top.

2. Among the merge centers with ancestral-spine top w, choose one whose
LCA v is the ancestor of no other LCA.

Algorithmically, one easy way to accomplish this selection is to sort all merge centers lexico-
graphically on the key (height(w), height(v)) and select a minimal element from the sorted
list.

This selection criterion is well-defined: The lowest common ancestor function is a one-
to-one mapping between pairs of consecutive leaves along the bottom of the source tree
and internal nodes of the tree. Thus part 2 of the Merging Criterion selects a single merge
center, since there is only one merge center associated with each lowest common ancestor.
Furthermore, since any internal node w (except the root) is the top of only one spine, all
the LCAs with w as their spine top lie along one spine (or at most two spines). There is
exactly one LCA (or at most two, if w is the root) that is the ancestor of no other—it is
the lowest on its spine.

The following lemmas show that a merge center selected according to the Merging
Criterion creates violations of the invariant that are easy to repair.



Lemma 5.1 The rotations needed lo process a sibling operation selected according to the
Merging Chriterion affect only the spine from the LCA v to its spine top w and the spines
below v.

Proof: The rotations needed to process the sibling operation involve no nodes above v
(Lemmas 2.1 and 2.2). The only spine above v that may be affected is the spine from »
to its spine top w. 1

Lemma 5.2 Let v be the LCA of a merge center selected according to the Merging Crite-
rion. Then there is at most one inclination reversal in each of the left and right subtrees of
v.

Proof: There is only one merge center below v, namely the one with v as its LCA: if
there were another merge center, then either the spine top of that merge center would
lie below w, contradicting part 1 of the Merging Criterion, or the LCA would lie below
v, contradicting part 2. A subtree containing no merge centers, such as the left or right
subtree of v, can have at most one inclination reversal among its leaves. |

Lemma 5.3 Let v be the LCA and w the ancestral-spine top of a merge center selected
according to the Merging Criterion. Let z be the child of w that is an ancestor of v. (Ifv
is the root, then let w = z = v.) Then there are O(1) inclination reversals among the leaf

descendants of z.

Proof: Let us assume for convenience that w is not the root of the source tree; the proof
is similar when w is the root. CraIM 1: O(1) merge centers have w as their spine top.
Each such merge center must have its lowest comnmon ancestor on the unique spine from
v to w. This spine has constant length, by the Inclination Invariant. Since each LCA
corresponds to a unique merge center, the claim follows. CrLAaiM 2: All merge centers
in the subtree rooted at » have w as their spine top. The spine of such a merge center
cannot end above w, because z and the parent of w are on the same side (left or right)
of w. The spine of such a merge center cannot end below w, or else w would not have
been selected by part 1 of the Merging Criterion. The two claims together prove the
lemma. 1

Lemma 5.4 Suppose that ¢ merge center is chosen by the Merging Criterion. If the In-
clination Invariant holds before the corresponding sibling operation is performed, then the
invariant can be restored after the sibling operation using only O(logn) rotations.

Proof: A sibling operation performs % rotations in the subiree below the LCA v, for
some & = O(1), and affects only spines below the spine top w (Lemmas 3.1 and 5.1).
These rotations add a total of at most 2% to the lengths of spines below v and extending
up from » to w (Lemma 3.2).

We restore the Inclination Invariant from the bottom up. We repeatedly pick a spine
that violates the invariant and has no violations below it. If the spine lies below v, then
it has at most three inclination reversals below it, by Lemma 5.2. If the length of the
spine is ¢+ §, where ¢ is the constant in the invariant, then the invariant can be restored
on and below the spine with O(jlogn) rotations, by Lemma 4.1. If the spine has w as
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its top, then it has O(1) inclination reversals below it, by Lemma 5.3. Its length can
also be reduced from ¢ + j to ¢ by O(jlogn) rotations (Lemma 4.2). (The constant of
proportionality is worse for the spine that reaches up to w, but the asymptotic rotation
bound is the same as for the spines below v.) ||

The preceding lemmas yield our main theorem on tree morphing.

Theorem 5.5 Let Ty and T, be two valid n-leaf binary trees with the same weight sequence
at the leaves. Then there is a sequence of O(nlogn) valid rotations that transforms Ty into
T5.

Proof: We establish the Inclination Invariant initially by normalizing the source tree,
then perform n — 1 sibling operations, each chosen according to the Merging Crite-
rion. Fach sibling operation requires a constant number of rotations (Lemmas 2.1, 2.2,
and 3.1), but it may introduce violations of the invariant. After each sibling operation,
we restore the invariant with an additional O(log n) rotations, using Lemma 5.4. 1

6 A Tree-Morphing Algorithm

The previous section shows that only O(nlogn) valid rotations are needed to transform 73
to 13, but does not give an algorithm to identify those rotations in less than quadratic time.
In this section we show how to compute the sequence of rotations in O(nlogn) time. To
compute the rotations, we maintain a linear amount of auxiliary data at the nodes of the
source tree and outside the tree. In all of these structures, we represent positions in the tree
as indices into the original list of leaves. Even though the source and target trees change
as leaves are merged into their parents, the leaf indices are computed as though the leaves
were still present.

We maintain the following auxiliary data, identified below with the notation “(DSz)”:

1. An ordered list of inclination reversals, represented as positions in the original list of
leaves.

2. For each merge center z

(a) Its lowest common ancestor v, and its ancestral-spine top w,.

(b) A pointer to its position in (DS1), the list of inclination reversals.
3. For each node of the source tree

(a) Indices of the first and last leaves below the node.

(b) A list of the merge centers for which the node is a lowest common ancestor or
an ancestral-spine top.

(c) A boolean flag that is TRUE iff any descendant of this node is the ancestral-spine
top of a merge center.

4. A set of merge centers that satisfy the Merging Criterion.
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After the initial normalization of the source tree, all of these data can be computed in
linear time by traversing the source and target trees.

We use these data to perform three functions critical to the algorithm: (1)} identify
merge centers that satisfy the Merging Criterion, (2) compute subtree sizes as required
by Lemma 4.1, and (3) count inclination reversals in subtrees, as required by Lemma. 4.2.
(In fact, we do not compute the actual subtree sizes, but only an approximation that is
sufficient to give an O(logn) performance bound in Lemma 4.1.) As the algorithm runs,
we must maintain the data as (1) the source tree is modified by rotations, and (2) merge
centers move or disappear because of sibling operations.

Lemma 6.1 The data described above are sufficient to perform each of the following algo-
rithm operations in constant time: (1) identifying merge ceniers that satisfy the Merging
Criterion, (2) computing subtree sizes, and (3) counting inclination reversals.

Proof: Identifying merge centers that satisfy the Merging Criterion is easy, since they
are maintained as part of the data (DS4).

Lemma 4.1 requires us to compute subiree sizes, which our data structures do not
record. However, we can get an asymptotic bound similar to that of Lemma 4.1 by
using approximate sizes. When Lemma 4.1 requests the size of the subtree at a node »,
we return one more than the difference of its first and last leaf indices, using the data
(DS3a) stored at ». This counts the “original” size of the subtree, namely the size it
would have if no leaves had collapsed into their parents. This quantity has the crucial
property that the value at a node is at most the sum of the values at the node’s children;
its maximum value is n. The analysis in the proof of Lemma 4.1 carries through if we
use original sizes instead of current sizes for the subtrees, and so we get an O(logn)
bound for restoring the Inclination Invariant when there are no inclination reversals in
the subtree.

Lemma 4.2 requires us to count inclination reversals in subtrees, but Lemma 5.3
ensures that there will be only O(1) inclination reversals in the subtrees for which the
queries are posed. Once a merge center has been chosen from (DS4), we locate it in
the list (DS1) by following the pointer (DS2b). The inclination reversals that will be
counted during the application of Lemma 4.2 are all within constant distance of this
position in the list. We can answer the counting queries in constant time by examining
O(1) list elements in the vicinity of the merge center. 1

Lemma 6.2 The data described above can be maintained in O(1) time per source iree
rotation, and tn O(1) amortized time per movement or disappearance of a merge center
because of a sibling operalion.

Proof: We consider rotations first. The list of inclination reversals (DS1) is unaffected
by rotations. Likewise the pointers (DS2b) are unaffected. The leaf indices (DS3a)
change only at the rotated nodes. A rotation affects a constant number of nodes in
the tree; in Figure 2 these nodes are B, C, and their parents. Before the rotation,
we identify all the merge centers whose lowest common ancestors or spine tops are at
one of these nodes, using (DS3b). After the rotation, some of these LCAs and spine
tops may have moved. We compute their new locations by visiting O(1) nodes in the
vicinity of the rotation (because the tree satisfies the Inclination Invariant, all spines

12



above LCAs have constant length). We change the affected node variables (DS3b) and
likewise change the merge center variables pointing to those locations (DS2a). The flags
(DS3¢) may change within a constant-sized neighborhood of moved spine fops. Spine
tops whose flag value is FALSE correspond to merge centers that satisfy the Merging
Criterion. We update the set (DS4) with the merge centers corresponding to any spine
tops whose flag value has changed.

When a merge center moves or disappears, there is no change to the structure of
the source tree. The leaf indices (DS3a) do not change, and the LCAs and spine tops
corresponding to unchanged merge centers likewise remain unchanged. We update the
list of inclination reversals (DS1) at the position of the changed merge center. If the
merge center moves, it is because two sibling leaves collapse into their parent, and the
new merge center is defined by the parent and its sibling in the target tree. The position
of the new merge center in the list (DS1) is the same as that of the one from which it is
derived, so (DS1) and (DS2b) are trivial to update. Because of the Inclination Invariant,
the LCA and spine top for the new merge center can be computed in constant time by
walks on the source tree, and variables (DS2a) and (DDS3b) are easily updated.

If the merge center simply moves, then flag values (DS3c) and the set (DS4) change
only for spine tops in the vicinity of the old spine top. When the merge center disappears,
because the parent of the two collapsing leaves has no sibling leaf in the target tree, the
flag values may be affected non-locally. Flag values change from TRUE to FALSE on a
path of arbitrary length above the disappearing merge center. We argue that the total
number of flag changes is nevertheless O(n + m), where m is the number of rotations
or merge center movements. There are initially O(n) flags set to TRUE. The total
number of changes from FALSE to TRUE is O(m}, because each rotation or merge
center movement affects only O(1) flags. It follows that the number of changes from
TRUE to FALSE is O(n + m), which proves the claim. The amortized cost of updating
flag values (DS3c) is O(1). Updating the set (DS4) after a flag change takes at most
O(1) time per flag change. |

By combining Theorem 5.5 and Lemmas 6.1 and 6.2, we obtain our main theorem.

Theorem 6.3 Let Ty and Ty be two valid n-leaf binary trees with the same weighl sequence
at the leaves. Then we can transform Ty into Ty using O(nlogn) valid rotations. Further-
more, the sequence of rotations can be computed in O(nlogn) time.

7 Conclusion

In the few years since its introduction, morphing has become a hugely popular technique
in computer graphics. Although its most prominent applications are still in the enter-
tainment industry, there are many serious applications in industrial design [6], medical
imaging [4], and data visualization. While morphing is useful in many applications, many
of the techniques employed to morph images are not fully understood. In fact, most of the
commercially available morphing software packages require a nontrivial amount of human
interaction, especially in choosing correspondence points between the source and target im-
ages. Furthermore, the intermediate stages of a morphing transformation often are illegal
images, with no corresponding valid three-dimensional picture.
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Qur investigation is motivated by the need to provide some theoretical underpinnings
for morphing. The work of Guibas and Hershberger (3] is a first step in this direction: it
formulates a rigorous model for morphing polygons using “parallel” moves and proposes an
algorithm to compute the moves required to morph one polygon to another. In the present
paper, we have focused on the combinatorial problem at the heart of the polygon-morphing
algorithm, and have obtained a significantly better bound than was previously known.

Although the weight constraint on our trees originated in the polygon-morphing prob-
lem, it appears to be a rather weak condition, and we suspect our theorem on tree-morphing
may have other applications outside the morphing context. The main open problem sug-
gested by our paper is to determine the true complexity of tree morphing. The number of
valid rotations needed to morph between two valid trees is Q(n) and O(nlogn); cither a
tighter lower bound or a better algorithm is needed.
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