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Abstract

1 Introduction

In the last few years, there has been active research on aggregating advanced statistical measures
in multi-dimensional data cubes [10] from partitioned subsets of data. In this paper, we propose
a compression and aggregation scheme to support Bayesian estimations in data cubes based on the
asymptotic properties of Bayesian statistics. The main application of the technique developed in this
paper is data warehousing and the associated on-line analytical processing (OLAP) computing. OLAP
allows for interactive analysis of multidimensional data to facilitate effective data mining at multiple
levels of abstraction.

Earlier work in data cubes [10] supports aggregation of simple measures such as sum() and average().
However, the fast development of OLAP technology has led to high demand for more sophisticated
data analyzing capabilities, such as prediction, trend monitoring, and exception detection of multidi-
mensional data. Oftentimes, existing simple measures such as sum() and average() become insufficient,
and more sophisticated statistical models are desired to be supported in OLAP. Recently, some re-
searchers developed aggregation schemes for more advanced statistical analysis including parametric
models such as linear regression [6, 11] general multiple linear regression [5, 14] logistic regression anal-
ysis [23] and predictive filters [5], as well as nonparametric statistical models such as naive Bayesian
classifiers [4] and linear discriminant analysis [15]. Along this line, we develop an aggregation scheme
support Bayesian estimations in data cubes.

Bayesian methods are statistical approaches to parameter estimation and statistical inference which
use prior distributions over parameters. Bayesian methods have been successfully applied in many dif-
ferent fields such business, computer science, economics, epidemiology, genetics, imaging and political
science. The premise of Bayesian statistics is to incorporate prior knowledge, along with a given set of
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current observations, in order to make statistical inferences. The prior information could come from
previous comparable experiments, from experiences of some experts or from existing theories.

Bayes’ rule provides the framework for combining prior information with sample data. Suppose
that f(D|θ) is the probability model of the data D with parameter (vector) θ ∈ Θ and π(θ) is the
prior probability density function (pdf) on the parameter space Θ. The posterior distribution of θ

given the data D, using Bayes’ rule, is given by

f(θ|D) =
f(D|θ)π(θ)∫

θ∈Θ f(D|θ)π(θ)dθ
.

The posterior mean θ∗ =
∫
θ∈Θ θf(θ|D)dθ is then a Bayesian estimate of the parameter θ.

While it is easy to write down the formula of the posterior mean θ∗, a closed form existed only
in a few simple cases, such as normal sample with a normal prior. In practice, Markov chain Monte
Carlo (MCMC) methods such as Gibbs samplers and Metropolis algorithms are often employed to
evaluate the posterior mean. However, these algorithms are usually slow especially for large data sets,
which makes the OLAP processing based on these algorithms infeasible. Furthermore, these MCMC
algorithms requires using the complete data set. In many data mining applications such as mining
stream data applications, we often encounter the difficulty of not having the complete set of data in
advance. One-scan algorithms are required for such applications.

In this paper, we propose a compression scheme and its associated theory to support high-quality
aggregation of Bayesian estimation in a multi-dimensional data space. In the proposed approach, we
compress each data segment by retaining only the model parameters and a small amount of auxil-
iary measures. We then develop an aggregation formula that allows us to reconstruct the Bayesian
estimation from partitioned segments with a small approximation error. We show that the Bayesian
estimates and the aggregated Bayesian estimates are asymptotically equivalent.

2 Concepts and Problem Definition

We develop our theory and algorithms in the context of data cubes and OLAP. In this section, we
introduce the basic concepts related to data cubes and define our research problem.

2.1 Data cubes

Data cubes and OLAP tools are based on a multidimensional data model. The model views data in the
form of a data cube. A data cube is defined by dimensions and facts. Dimensions are the perspectives
or entities with respect to which an organization wants to keep records. Usually each dimension has
multiple levels of abstraction formed by conceptual hierarchies. For example, country, state, city, and
street are four levels of abstraction in a dimension for location.

To perform multidimensional, multi-level analysis, we need to introduce some basic terms related to
data cubes. Let D be a relational table, called the base table, of a given cube. The set of all attributes
A in D are partitioned into two subsets, the dimensional attributes DIM and the measure attributes
M (so DIM ∪ M = A and DIM ∩ M = ∅). The measure attributes depend on the dimensional
attributes in D and are defined in the context of data cube using some typical aggregate functions,
such as count(), sum(), avg(), or some Bayesian analysis related measures to be studied here.
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A tuple with schema A in a multi-dimensional data cube space is called a cell. Given three distinct
cells c1, c2 and c3, c1 is an ancestor of c2, and c2 a descendant of c1 if on every dimensional attribute,
either c1 and c2 share the same value, or c1’s value is a generalized value of c2’s in the dimension’s
concept hierarchy.

A tuple c ∈ D is called a base cell. A base cell does not have any descendant. A cell c is an
aggregated cell if it is an ancestor of some base cells. For each aggregated cell, the values of its
measure attributes are derived from the set of its descendant cells.

2.2 Aggregation and classification of data cube measures

A data cube measure is a numerical or categorical quantity that can be evaluated at each cell in the
data cube space. A measure value is computed for a given cell by aggregating the data corresponding
to the respective dimension-value pairs defining the given cell. Measures can be classified into several
categories based on the difficulty of aggregation. 1) An aggregate function is distributive if it can
be computed in a distributed manner as follows. Suppose the data is partitioned into n sets. The
computation of the function on each partition derives one aggregate value. If the result derived
by applying the function to the n aggregate values is the same as that derived by applying the
function on all the data without partitioning, the function can be computed in a distributive manner.
For example, count() can be computed for a data cube by first partitioning the cube into a set of
subcubes, computing count() for each subcube, and then summing up the counts obtained for each
subcube. Hence, count() is a distributive aggregate function. For the same reason, sum(), min(),
and max() are distributive aggregate functions. 2) An aggregate function is algebraic if it can be
computed by an algebraic function with several arguments, each of which is obtained by applying
a distributive aggregate function. For example, avg() (average) can be computed by sum()/count()

where both sum() and count() are distributive aggregate functions. min N(), max N() and stand dev()

are algebraic aggregate functions. 3) An aggregate function is holistic if there is no constant bound
on the storage size needed to describe a sub-aggregate. That is, there does not exist an algebraic
function with M arguments (where M is a constant) that characterize the computation. Common
examples of holistic functions include median(), mode(), and rank().

Except some simple special cases like normal sample with normal prior, Bayesian estimates seems
to be holistic measures because they require the information of all the data points in an aggregated
cell in order to calculate the Bayesian estimates. In general, Bayesian estimates are compressible
measures [5, 23]. An aggregation function is compressible if it can be computed by a procedure
with a number of arguments from lower level cells, and the number of arguments is independent
of the number of tuples in the data cell. In other words, for compressible aggregate functions, we
can compress each cell, regardless of its size (i.e., the number of tuples), into a constant number of
arguments, and aggregate the function based on the compressed representation. The data compression
technique should satisfy the following requirements: (1) the compressed data should support efficient
lossless or asymptotically lossless aggregation of regression measures in a multidimensional data cube
environment; and (2) the space complexity of compressed data should be low and be independent of
the number of tuples in each cell, as the number of tuples in each cell may be huge.

In this paper, we will show that Bayesian estimates are compressible measures. Especially, the
compression scheme developed in this paper for Bayesian estimates can support asymptotically lossless
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aggregation. Therefore, the compression and aggregation scheme in this paper is more similar to the
compression and aggregation scheme for logistic regression [23] than for linear regression [5].

3 Bayesian Statistics

Suppose that x1, · · · , xn are n observations from some probability model f(x|θ), where θ ∈ Θ is the
parameter (vector) of the probability model f(x|θ). The prior information in Bayesian statistics is
given by a prior distribution π(θ) on the parameter space Θ. Then, under the independence assumption
of the observations x1, · · · , xn given the parameter θ, the posterior distribution, f(θ|x1, · · · , xn), of
the parameter θ can be calculated using Bayes’ rule,

f(θ|x1, · · · , xn) =
f(x1, · · · , xn|θ)π(θ)∫

θ∈Θ f(x1, · · · , xn|θ)π(θ)dθ

=
∏n

i=1 f(xi|θ)π(θ)∫
θ∈Θ

∏n
i=1 f(xi|θ)π(θ)dθ

, (1)

where f(x1, · · · , xn|θ) is the joint distribution of x1, · · · , xn given the parameter θ.

Then, we could use the posterior mean θ∗n as an estimate of the parameter θ, i.e.

θ∗n =
∫

θ∈Θ
θf(θ|x1, · · · , xn)dθ

=
(∫

θ∈Θ

n∏
i=1

f(xi|θ)π(θ)dθ

)−1 ∫
θ∈Θ

θ
n∏

i=1

f(xi|θ)π(θ)dθ. (2)

While it is easy to write down the formula (2) for the posterior mean, a closed form existed only in
a few simple cases. MCMC methods such as Gibbs samplers and Metropolis-Hastings algorithms are
often employed to evaluate the formula (2). These algorithms are based on constructing a Markov
chain that has the posterior distribution (1) as its equilibrium distribution. After running the Markov
chain a large number of steps, called burn-in steps, a sample from the Markov chain could be viewed
as a sample from the posterior distribution (1). We then can approximate the posterior mean θ∗n with
any accuracy we wish by taking a large enough sample from the posterior distribution (1).

We consider the following example [17, 8, 22] to illustrate the algorithm of the Gibbs sampler.

Example 1: 197 animals are distributed multinomially into four categories and the observed data
are y = (y1, y2, y3, y4) = (125, 18, 20, 34). A genetic model specifies cell probabilities(

1
2

+
θ

4
,

1 − θ

4
,

1 − θ

4
,

θ

4

)
.

Assume that the prior distribution is Beta(1, 1), which is also the uniform distribution on the interval
(0, 1) and therefore is a non-informative prior. The posterior distribution of θ is

f(θ|y) ∝ (2 + θ)y1(1 − θ)y2+y3θy4

It is difficult, though not impossible, to calculate the posterior mean. However, a Gibbs sampler
can be easily developed by augmenting the data y. Specifically, let x = (x1, x2, x3, x4, x5) such that
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y1 = x1 + x2, y2 = x3, y3 = x4 and y4 = x5. Assume the cell probabilities for x is(
1
2
,

θ

4
,

1 − θ

4
,

1 − θ

4
,

θ

4

)
.

Then the distribution of y is the marginal distribution of x. The full conditional distribution of θ is
f(θ|x2, y) ∝ θx2+y4(1−θ)y2+y3 , which is Beta(x2 +y4 +1, y2 +y3 +1). The full conditional distribution
of x2 is f(x2|y, θ) ∝ (2/(2 + θ))y1−x2(θ/(2 + θ))x2 , i.e. the binomial distribution Binom(y1, θ/(2 + θ)).
The Gibbs sampler starts with any value θ(0) ∈ (0, 1) and iterates the following two steps.

1. Generate x
(k)
2 from the full conditional distribution f(x2|y, θ(k−1)), i.e. from Binom(125, θ(k−1)/(2+

θ(k−1))).

2. Generate θ(k) from the full conditional distribution f(θ|x2, y), i.e. from Beta(x2 + 35, 39).

Then, we could take average over θ(b+s), · · · , θ(b+sn) to get an estimate of θ, where b is a large positive
integer and s is a positive integer. The first b iterations are often called burn-in iterations and b is
usually chosen large enough such that the Markov chain converges after b iterations. When n is large
enough, this average will be a very good approximation to the posterior mean. The integer s is to
reduce the correlation between two successive samples and is usually chosen to be small. Set θ(0) = 0.5,
s = 1, b = 1000 and n = 5, 000. The sample average we got is 0.622646 and is very close to the true
posterior mean 0.622806. �

4 Aggregation of Bayesian Estimation

Since the computation of the Bayesian estimates θ∗n involves the integral (2) and MCMC methods are
often used, the compression and aggregation of Bayesian estimation are more difficult compared to
the OLS estimate of regression coefficients in linear regression model. In general, it is very difficult
to achieve lossless compression for the Bayesian estimation and we have to resort to the asymptotic
theory of Bayesian estimations to get the asymptotic lossless compression.

We first review the notion asymptotically lossless compression representation (ALCR) introduced
in [23].

Definition 4.1 In data cube analysis, a cell function g is a function that takes the data records of
any cell with an arbitrary size as inputs and maps into a fixed-length vector as an output. That is:

g(c) = v, for any data cell c (3)

where the output vector v has a fixed size.

Suppose that we have a probability model f(x|θ), where x are attributes and θ is the parameter of
the probability model. Suppose ca is a cell aggregated from the component cells c1, · · · , ck. We define
a cell function g2 to obtain mi = g2(ci), i = 1, . . . , k and use an aggregation function g1 to obtain an
estimate of the parameter θ for ca by

θ̃ = g1(m1, · · · ,mk). (4)
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We say θ̂, an estimate of θ, is an asymptotically losslessly compressible measure if we can find an
aggregation function g1 and a cell function g2 such that
a) the difference between θ̃ = g1(m1, · · · ,mk) and θ̂(ca) tends to zero in probability as the number of
tuples in ca goes to infinity, where mi = g2(ci), i = 1, . . . , k;
b) θ̂(ca) = g1(g2(ca)); and
c) the dimension of mi is independent of the number of tuples in ci.

The measures mi are called ALCR of the cell ci, i = 1, · · · k. In the following, we develop an
ALCR for Bayesian estimation (2) based on its asymptotic property. We show that the asymptotic
distributions of the estimates obtained from aggregation of the ALCR for each component cell and the
Bayesian estimates in the aggregated cell are the same and further show that the the difference between
them approaches zero in probability as the number of tuples in ca goes to infinity. Further, the space
complexity of ALCR is independent of the number of tuples. Therefore, the Bayesian estimations are
asymptotically losslessly compressible measures.

4.1 Compression and Aggregation Scheme

Consider aggregating K cells at a lower level into one aggregated cell at a higher level. Suppose that
there are nk observations in the kth component cell ck. Denote {xk,1, · · · , xk,nk

} are the observations
in the component cell ck. Note that the observations xk,j (j = 1, · · · , nk) could be multidimensional.
Based on the observations in the kth component cell ck, we have the Bayesian estimate

θ∗k,nk
=
(∫

θ∈Θ

nk∏
j=1

f(xk,j|θ)π(θ)dθ

)−1 ∫
θ∈Θ

θ

nk∏
j=1

f(xk,j|θ)π(θ)dθ. (5)

We propose the following asymptotically lossless compression technique for the Bayesian estimation

• Compression into ALCR. For each base cell ck, k = 1, · · · ,K, at the lowest level of the data
cube, calculate the Bayesian estimate θ∗k,nk

using (5). Save

ALCR=(θ∗k,nk
, nk)

in each component cell ck.

• Aggregation of ALCR. Calculate the aggregated ALCR (θ̃a, na) using the following formula

na =
K∑

k=1

nk, θ̃a = n−1
a

K∑
k=1

nkθ
∗
k,nk

Such a process can be used to aggregate base cells at the lowest level as well as cells at interme-
diate levels. But for any non-base cell, θ̃ is used in place of θ∗k,nk

in its ALCR.

4.2 Compressibility of Bayesian Estimations

We now show that (θ̃a, na) is an ALCR. We denote the Bayesian estimate for the aggregated cell to
be θ∗a and the corresponding estimates derived from ALCR compression and aggregation to be θ̃a. We
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will show that the asymptotic distributions of θ∗a and θ̃a are the same and their difference tends to
zero in probability.

Suppose that Θ ⊂R
p is an open subset of R

p. For simplicity, we will only give the theorem in
the case of p = 1 and multidimensional extension follows naturally. We make the following regularity
assumptions on fθ(·) = f(·| θ) before giving the main theorem.

(C1) {x : fθ(x) > 0} is the same for all θ ∈ Θ.

(C2) L(θ, x) = log fθ(x) is thrice differentiable with respect to θ in a neighborhood, Uδ0(θ0) =
(θ0 − δ0, θ0 + δ0), of θ0 ∈ Θ. If L′, L′′ and L(3) stand for the first, second and third derivatives,
then Eθ0 |L′(θ0,X)| and Eθ0|L′′(θ0,X)| are both finite and

sup
θ∈Uδ0

(θ0)
|L(3)(θ, x)| ≤ M(x) and Eθ0M(X) < ∞.

(C3) Interchange of the order of expectation with respect to θ0 and differentiation at θ0 are justified,
so that Eθ0L

′(θ0,X) = 0 and Eθ0L
′′(θ0,X) = −Eθ0 [L

′(θ0,X)]2.

(C4) Iθ0 = Eθ0 [L
′(θ0,X)]2 > 0.

(C5) If X1, · · · ,Xn are random variables from fθ0 and Ln(θ) =
∑n

i=1 L(θ,Xi), then for any δ > 0,
there exists an ε > 0 such that Pθ0{sup|θ−θ0|>δ[Ln(θ) − Ln(θ0)] ≤ −ε} → 1.

(C6) The prior has a density π(θ) with respect to Lebesgue measure, which is continuous and positive
at θ0. Furthermore, π(θ) satisfies

∫
θ∈Θ |θ|π(θ)dθ ≤ ∞.

These conditions guarantee the consistency and asymptotic normality of the posterior mean and
are the same as the conditions in [9]. Please see [9] and [13] for other sets of conditions that can
guarantee the consistency and asymptotic normality of the posterior mean.

Theorem 1 Suppose {fθ| θ ∈ Θ} satisfies Condition (C1)-(C5) and the prior distribution satis-
fies Condition (C6). Let X1,k, · · · ,X1,nk

(k = 1, · · · ,K) be random variables from the distribu-
tion fθ0, θ∗k,nk

be the posterior mean (2) based on the random variables X1,k, · · · ,X1,nk
and θ̃a =

n−1
a

∑K
k=1 nkθ

∗
k,nk

be the aggregated Bayesian estimate. Then we have

√
na(θ̃a − θ0)

d−→N(0, I−1
θ0

) as mK = min{n1, · · · , nK} → ∞.

Proof. Since {fθ| θ ∈ Θ} and π(θ) satisfy Condition (C1)-(C6), from Theorem 1.4.3 in [9] we have

√
nk(θ∗k,nk

− θ0)
d−→N(0, I−1

θ0
) as nk → ∞.

Let Zk,nk
=

√
nk(θ∗k,nk

− θ0) and φk,nk
(t) = E[eitZk,nk ] be its characteristic function. Denote v2 = I−1

θ0
.

Then, by Levy’s Continuity Theorem (see, for example, [7] and [21] among others), we have φk,nk
(t)

converges to exp(−v2t2/2) uniformly in every finite interval, where exp(−v2t2/2) is the characteristic
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function of the normal distribution N(0, v2). On the other hand, the characteristic function of the
random variable Zna =

√
na(θ̃a − θ0) is

φna(t) = E[exp{it√na(θ̃a − θ0)}]

= E[exp{it√nan
−1
a

K∑
k=1

nk(θ∗k,nk
− θ0)}]

=
K∏

k=1

E[exp{itn−1/2
a nk(θ∗k,nk

− θ0)}]

=
K∏

k=1

φk,nk
(n1/2

k n−1/2
a t).

Then, we have

| log[φna(t)] + v2t2/2| =
∣∣∣∣

K∑
k=1

{log[φk,nk
(n1/2

k n−1/2
a t)] +

nk

2na
v2t2}

∣∣∣∣
≤

K∑
k=1

∣∣ log[φk,nk
(n1/2

k n−1/2
a t)] +

1
2
v2
(
n

1/2
k n−1/2

a t
)2∣∣

Since φk,nk
(t) converges to exp(−v2t2/2) uniformly in every finite interval, log[φk,nk

(t)] will converge
to −v2t2/2 uniformly in every finite interval. Then for any ε > 0, there exists an Nk(ε) > 0 such
that when nk > Nk(ε), we have | log[φk,nk

(τ)] + v2τ2/2| ≤ ε/K for all |τ | ≤ |t|. Take MK(ε) =
max{N1(ε), · · · , NK(ε)}. Since |n1/2

k n
−1/2
a t| ≤ |t|, we have

| log[φna(t)] + v2t2/2| ≤
K∑

k=1

ε/K = ε

for mK ≥ MK(ε). Therefore, φna(t) converges to exp(−v2t2/2) for all t ∈ R and so Theorem 1 was
proved by Levy’s Continuity Theorem again. �

From Theorem 1, the aggregated Bayesian estimate θ̃na achieves the same efficiency as the Bayesian
estimate θ∗na

, i.e. their asymptotic variances are the same. Theorem 1 holds for multidimensional case,
but conditions in Theorem 1 need modification accordingly. For example, Condition (C2) and (C3)
would be about the partial derivatives with respect to the component of the parameter vector θ, and
Condition (C4) should change to “the Fisher information Iθ0 is a positive definite matrix”.

Corollary 1 Under the conditions of Theorem 1, the difference between the estimates θ∗na
and θ̃na

approaches 0 in probability.

Proof. From Theorem 1, θ̃na approaches θ0 in probability as mk goes to infinity. The Bayesian
estimate θ∗na

also approaches θ0 in probability. Therefore, the difference between θ∗na
and θ̃na converges

to 0 in probability. �

Corollary 1 means that the difference between θ∗na
and θ̃na will become smaller and smaller as we

have more and more data. Henceforth, the estimate θ̃na is a good approximation to θ∗na
when the data

set is large.
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4.3 Detection of Non-homogeneous Data

Theorem 1 and Corollary 1 rely on the assumption that the data from different subcubes come from
the same probability model, i.e. the data are homogeneous. Aggregation of non-homogenous data can
lead to misleading results and Simpson’s paradox [1] may occur. Therefore, it is important to develop
tools of testing non-homogeneity. The test of non-homogeneity should be able to support the OLAP
analysis and hence it should only depend on the compressed measures or the ALCRs of subcubes.
The ALCR defined in Section 4.1 is insufficient for the test of non-homogeneity and one additional
measure is needed. Let vk,nk

be the posterior variance matrix based on the observations in the kth

component cells, i.e.

vk,nk
=
(∫

θ∈Θ

nk∏
j=1

f(xk,j|θ)π(θ)dθ

)−1 ∫
θ∈Θ

(θ − θ∗k,nk
)(θ − θ∗k,nk

)T
nk∏
j=1

f(xk,j|θ)π(θ)dθ. (6)

If the parameter θ is of p-dimensional, the measure vk,nk
is a p × p matrix. We propose the following

modified compression and aggregation scheme.

• Compression into ALCR. For each base cell ck, k = 1, · · · ,K, at the lowest level of the data
cube, calculate the Bayesian estimate θ∗k,nk

using (5) and the posterior variance vk,nk
using (6).

Save
ALCR=(θ∗k,nk

, vk,nk
, nk)

in each component cell ck.

• Aggregation of ALCR. Calculate the aggregated ALCR (θ̃a, ṽa, na) using the following formula

na =
K∑

k=1

nk, θ̃a = n−1
a

K∑
k=1

nkθ
∗
k,nk

, ṽa = n−2
a

K∑
k=1

n2
kvk,nk

For any non-base cell, θ̃ and ṽa is used in place of θ∗k,nk
and vk,nk

in its ALCR.

Suppose that c1 and c2 are two subcubes and (θ̃1, ṽ1, n1) and (θ̃2, ṽ2, n2) are their ALCRs re-
spectively. By Theorem 1,

√
nk(θ̃k − θ0) approximately follows the normal distribution N(0, I−1

θ0
), or

θ̃k − θ0 (k = 1, 2) approximately follows the normal distribution N(0, n−1
k I−1

θ0
) (k = 1, 2). Use ṽk as

the estimate of n−1
k I−1

θ0
, and it follows that t = (θ̃1 − θ̃2)T (ṽ1 + ṽ2)−1(θ̃1 − θ̃2) approximately follows

χ2
p distribution. Then, we use the statistic t to test the non-homogeneity.

We use the kidney stone data as considered in [23] as an example of the test of non-homogeneity.
The data are from a medical study [3, 12] comparing the success rates of two treatments for kid-
ney stones. The two treatments are open surgery (treatment A) and percutaneous nephrolithotomy
(treatment B). Table 1 shows the effects of both treatments under different conditions. It reveals that
treatment A has a higher success rates than treatment B for both small stone and large stone groups.
However, after aggregating over the two groups, treatment A has a lower success rate than treatment
B.

Let S be the binary random variable that indicate whether the treatment succeeds or not, and T be
the type of treatment that a patient receives. Denote by pA and pB be the success rate of treatment A

9



Table 1: Success rates for different groups of stone size.
Treatment A Treatment B

Small Stone 93%(81/87) 87%(234/270)
Large Stone 73%(192/263) 69%(55/80)

Both 78%(273/350) 83%(289/350)

and B, and αA be the probability that a patient receives treatment A. Then, we have the probability
model

Pr(S, T |pA, pB , αA) =
[
pS

A(1 − pA)1−SαA

]I(T=A)[
pS

B(1 − pB)1−S(1 − αA)
]I(T=B)

,

where I(·) is the indicator function. Set priors for pA, pB , αA as the noninformative prior Beta(1, 1).
Given observations D = {(s1, t1), · · · , (sn, tn)}, the posterior distribution of (pA, pB , αA) is

f(pA, pB, αA|D) ∝ pnAs
A (1 − pA)nAf pnBs

B (1 − pB)nBf αnA
A (1 − αA)nB ,

where nAs =
∑n

i=1 siI(ti = A), nAf =
∑n

i=1(1 − si)I(ti = A), nBs =
∑n

i=1 siI(ti = B), nBf =∑n
i=1(1 − si)I(ti = B), nA =

∑n
i=1 I(ti = A) and nB =

∑n
i=1 I(ti = B). Therefore, the posterior

distribution is the product of three independent Beta distributions.

Denote θ = (pA, pB , αA). Based on the small stone group data, the Bayesian estimate is θ∗s =
(0.92, 0.86, 0.24) and the corresponding posterior variance is vs = diag{0.00080, 0.00043, 0.00051}.
Based on the large stone group, the Bayesian estimate is θ∗l = (0.73, 0.68, 0.77) and the corresponding
posterior variance is vl = diag{0.00075, 0.0026, 0.00052}. Using these results, the test statistic is
t = (θ∗s − θ∗l )

T (vs + vl)−1(θ∗s − θ∗l ) = 296.63, which is highly significant. Therefore, it is highly possible
that the two data sets are inhomogeneous and we should not aggregate them together.

5 Experimental Studies

We perform experimental studies on synthetic data to validate our method. The Bayesian model
under consideration is the mixture of transition models. Mixture of transition models have been used
to model user visiting website [2, 18, 19], unsupervised training of robots [16] and the dynamics of a
military scenario [20].

Transition models are useful in describing time series which have only finite number of states. The
observations of Transition models are finite state Markov chains of finite length. For example, the
sequence (A,B,A,C,B,B,C) could be a realization of a 3-state first order Markov chain, where the
transition probability at time t only depends on the state of the Markov chain at time t but not on
the previous history. If all the observations are realizations from the same transition model, one can
readily get a closed form of the posterior mean of the parameters. However, the set of sequences may
be heterogeneous and the sequences may come from several different transition models, in which case
the mixture of transition models is useful in estimating the transition matrices and clustering the
observational sequences.

Consider a data set of N sequences, D = {x1, · · · , xN}, that are realizations from some s-state
discrete first order Markov processes. The sequences are possibly of different length. Assume that each
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sequence comes from one of m transition models. Let (l)Pij be the (i, j) element of the lth probability
transition matrix, or the transition probability from state i to state j for a process in cluster l. Let

(l)pi be the ith element of the initial state distribution of processes from cluster l. Further assume that
αl is the probability that a process is from cluster l. Denote x0

k as the initial state of the sequence xk

and n
(k)
ij be the number of times the process xk transitioned from state i to state j. Then the mixture

of transition model is

f(xk|θ) =
m∑

l=1

αl

s∏
i=1

(l)p
I(x0

k=i)
i

s∏
i=1

s∏
j=1

(l)P
n

(k)
ij

ij ,

where θ is the parameter vector consisting of (l)Pij, (l)pi and αl as its elements, and I(·) is the indicator
function. The prior distribution for the parameter vectors α = (α1, · · · , αm), (l)p = ((l)p1, · · · , (l)ps)
and (l)Pi· = ((l)Pi1, · · · , (l)Pis) are Dirichlet priors with all parameters as 1. The Dirichlet priors used
here are non-informative priors. The posterior mean has no closed form for this Bayesian model.
However, by introducing a “missing data” δ

(k)
l , the 0/1 unobserved indicator that process k belongs

to cluster l, one can readily develop a Gibbs sampler [18, 19].

5.1 Quality of compression and aggregation scheme

We perform simulation studies for the mixture of transition models. In the simulation, the number of
clusters are set as three and the Markov chains are 2-state chains. We generated 10, 000 chains from
the mixture of transition model and each chain is of length 30. The underlying true parameters are
set as

1. initial probabilities:

(1)p = (0.2, 0.8), (2)p = (0.9, 0.1), (3)p = (0.4, 0.6);

2. transition matrices

(1)P =

(
0.9 0.1
0.8 0.2

)
, (2)P =

(
0.3 0.7
0.1 0.9

)
, (3)P =

(
0.7 0.3
0.9 0.1

)

3. the probability vector α = (0.2, 0.5, 0.3).

We partition the entire data set into K = 1, 10, 20 · · · , 100 cells with equal number of observations
and then use the aggregation algorithm to approximate the posterior mean for the entire data set. We
run the Gibbs sampler 11, 000 iterations and set the burn-in iterations as 1, 000. Note that the estimate
corresponding to K = 1 is just the posterior mean. Suppose (l)p̃, (l)P̃ and (l)α̃ be the estimates of

(l)p, (l)P and α (l = 1, 2, 3). Then we define the maximum absolute deviances (MAD) as D(p̃, p) =
max{|(l)p̃i − (l)pi| : l = 1, 2, 3, i = 1, 2}, D(P̃ , P ) = max{|(l)P̃ij − (l)Pij | : l = 1, 2, 3, i, j = 1, 2} and
D(α̃, α) = max{|α̃l − αl| : l = 1, 2, 3}. Figure 1 shows the MAD of the aggregated estimates from
different partitions. The solid line is for the maximum absolute deviance D(p̃, p), the blue dashed
line is for D(P̃ , P ) and the red dotted line is for D(α̃, α). It is clear that estimates from all different
partitions behave alike and they are all close to the underlying true parameter. The simulation study
shows that the accuracy of the aggregated estimates is as good as the accuracy of the original Bayesian
estimates.
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Figure 1: Maximum absolute deviance of the aggregated estimates with a varying number of partitions

5.2 Simulation study in data cube

In this simulation, we study the efficiency and quality of the compression and aggregation scheme
for aggregated cells in data cube. The Bayesian model under consideration is again the mixture
of transition model. Two dimensions are time and location. We have 20 months’ records in time
dimension and 50 states in location dimension. In practice, the data could be the records of a website
that records user’s visit to the website. The location dimension could just be the IP address of the
user. For each state in each month, we have 500 observations, i.e. we have 500 users’ records. Hence,
we have 500,000 observations in total. The observations are sequences that record users’ visiting path
in the website. As in Section 5.1, the number of clusters are set as three and the Markov chains are
2-state chains. The underlying true parameters are also set as in Section 5.1.

We compare our ALCR method to the direct Bayesian estimation method, which directly uses
raw data to calculate the Bayesian estimates of the parameters, by comparing their computing time
for handling 100 randomly generated queries. To save the computing time of the direct Bayesian
estimation method, the aggregated cells that the queries ask for can have at most 200 base cells.
More specifically, More specifically, to generate a query, we first randomly select a number D from
{1, · · · , 200}, and then we randomly select D cells from the 1000 base cells (ti, lj) (i = 1, · · · , 20,
j = 1, · · · , 50). For simplicity, we can the number D the size of the query. We run Gibbs samplers
6, 000 iterations and the buin-in iterations are set as 1, 000.

Table 2 shows the time with and without using compression, respectively. The first row shows the
computational time for compression and the second row shows the aggregation time for all these 100
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Table 2: Comparison of the computational time used for answering 100 queries.
ACLR compression no compression

Preprocessing (compression) 2,281 minutes NA
Query processing (aggregation) 1 minute 22,858 minutes

Figure 2: Comparison of the ALCR method (red dotted lines) and direct method (dark solid lines).
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(a) MAD for initial probabilities (b) MAD for transition matrices (c) MAD for probabilities α.

queries. Without using ACLR compression, the aggregation time is the time to compute Bayesian
estimates directly from the raw data of these selected cells. It is obvious that our method saves huge
amount of computational time when handling OLAP queries in a data cube.

Figure 2 compares MADs of estimates for each query from the ALCR method and the direct
method. The red dotted lines are for the ALCR methods and the dark solid lines are for the direct
method. Figure 2 (a), (b) and (c) are MADs of estimates for initial probabilities p, transition
matrices P and probabilities α. The queries are ordered according to queries’ sizes. Figure 2 shows
that estimates from the ALCR method tend to have larger MAD than estimates from the direct
method when the size of query is large, especially for the estimates of initial probabilities, but in
general MADs for both methods are very close.
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