
Washington University in St. Louis Washington University in St. Louis 

Washington University Open Scholarship Washington University Open Scholarship 

All Computer Science and Engineering 
Research Computer Science and Engineering 

Report Number: WUCSE-2007-34 

2007 

Scheduling Induced Bounds and the Verification of Preemptive Scheduling Induced Bounds and the Verification of Preemptive 

Real-Time Systems Real-Time Systems 

Terry Tidwell, Christopher Gill, and Venkita Subramonian 

Distributed real-time and embedded (DRE) systems have stringent constraints on timeliness and 

other properties whose assurance is crucial to correct system behavior. Our previous research 

has shown that detailed models of essential middleware mechanisms can be developed, 

composed, and for constrained examples verified tractably, using state of the art timed 

automata model checkers. However, to apply model checking to a wider range of real-time 

systems, particularly those involving more general forms of preemptive concurrency, new 

techniques are needed to address decidability and tractability concerns. This paper makes three 

contributions to research on formal verification and validation of DRE systems.... Read complete Read complete 

abstract on page 2. abstract on page 2. 

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research 

 Part of the Computer Engineering Commons, and the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Tidwell, Terry; Gill, Christopher; and Subramonian, Venkita, "Scheduling Induced Bounds and the 
Verification of Preemptive Real-Time Systems" Report Number: WUCSE-2007-34 (2007). All Computer 
Science and Engineering Research. 
https://openscholarship.wustl.edu/cse_research/135 

Department of Computer Science & Engineering - Washington University in St. Louis 
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Washington University St. Louis: Open Scholarship

https://core.ac.uk/display/233233841?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F135&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F135&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F135&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F135&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F135&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F135&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F135&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/135?utm_source=openscholarship.wustl.edu%2Fcse_research%2F135&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx


This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/135 

Scheduling Induced Bounds and the Verification of Preemptive Real-Time Scheduling Induced Bounds and the Verification of Preemptive Real-Time 
Systems Systems 

Terry Tidwell, Christopher Gill, and Venkita Subramonian 

Complete Abstract: Complete Abstract: 

Distributed real-time and embedded (DRE) systems have stringent constraints on timeliness and other 
properties whose assurance is crucial to correct system behavior. Our previous research has shown that 
detailed models of essential middleware mechanisms can be developed, composed, and for constrained 
examples verified tractably, using state of the art timed automata model checkers. However, to apply 
model checking to a wider range of real-time systems, particularly those involving more general forms of 
preemptive concurrency, new techniques are needed to address decidability and tractability concerns. 
This paper makes three contributions to research on formal verification and validation of DRE systems. 
First, it describes how bounded fair scheduling policies introduce a quasi-cyclic structure in the state 
space of multi-threaded real-time systems. Second, it shows that bounds on the divergence of threads' 
execution can be determined for that quasi-cyclic structure, which then can be exploited to reduce the 
complexity of model checking. Third, it presents a case study involving progress-based fair scheduling of 
multi-threaded processing pipelines, with which the approach is evaluated. 

https://openscholarship.wustl.edu/cse_research/135?utm_source=openscholarship.wustl.edu%2Fcse_research%2F135&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/135?utm_source=openscholarship.wustl.edu%2Fcse_research%2F135&utm_medium=PDF&utm_campaign=PDFCoverPages


Department of Computer Science & Engineering

2007-34

Scheduling Induced Bounds and the Verification of Preemptive Real-Time
Systems

Authors: Tidwell, Terry; Gill, Christopher; Subramonian, Venkita;

Corresponding Author: cdgill@cse.wustl.edu

Abstract: Distributed real-time and embedded (DRE) systems have stringent constraints on timeliness and other
properties whose assurance is crucial to correct system behavior. Our previous research has shown that
detailed models of essential middleware mechanisms can be developed, composed, and for constrained
examples verified tractably, using state of the art timed automata model checkers. However, to apply model
checking to a wider range of real-time systems, particularly those involving more general forms of preemptive
concurrency, new techniques are needed to address decidability and tractability concerns. This paper makes
three contributions to research on formal verification and validation of DRE systems. First, it describes how
bounded fair scheduling policies introduce a quasi-cyclic structure in the state space of multi-threaded real-time
systems. Second, it shows that bounds on the divergence of threads' execution can be determined for that
quasi-cyclic structure, which then can be exploited to reduce the complexity of model checking. Third, it presents
a case study involving progress-based fair scheduling of multi-threaded processing pipelines, with which the
approach is evaluated.

Notes:
Research at Washington University was supported in part by NSF awards CCF-0615341 (EHS) and

Type of Report: Other

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160





Scheduling Induced Bounds and the
Verification of Preemptive Real-Time Systems ∗

Terry Tidwell and Christopher Gill
CSE Department, Washington University

St. Louis, MO, USA

{ttidwell,cdgill}@cse.wustl.edu

Venkita Subramonian
AT&T Labs, Inc.

Florham Park, NJ, USA

venkita@research.att.com

ABSTRACT
Distributed real-time and embedded (DRE) systems have stringent
constraints on timeliness and other properties whose assurance is
crucial to correct system behavior. Our previous research has shown
that detailed models of essential middleware mechanisms can be
developed, composed, and for constrained examples verified tractably,
using state of the art timed automata model checkers. However, to
apply model checking to a wider range of real-time systems, par-
ticularly those involving more general forms of preemptive con-
currency, new techniques are needed to address decidability and
tractability concerns.

This paper makes three contributions to research on formal ver-
ification and validation of DRE systems. First, it describes how
bounded fair scheduling policies introduce a quasi-cyclic structure
in the state space of multi-threaded real-time systems. Second,
it shows that bounds on the divergence of threads’ execution can
be determined for that quasi-cyclic structure, which then can be
exploited to reduce the complexity of model checking. Third, it
presents a case study involving progress-based fair scheduling of
multi-threaded processing pipelines, with which the approach is
evaluated.
Categories and Subject Descriptors: D.2.4 [Software/Program Ver-
ification]: Model Checking
General Terms: Verification, Scheduling
Keywords: Middleware, Timed Automata.

1. INTRODUCTION
Long running reactive service applications are a fundamental

part of today’s computing environments. These applications are of-
ten quasi-cyclic [9] in nature, endlessly repeating similar sets of ac-
tivities according to temporal or system events. Usually, these ap-
plications (1) share common computing resources and middleware
infrastructure to reduce system costs, (2) use multi-threading to
support concurrent execution of activities, and (3) schedule threads
preemptively to make such concurrency temporally predictable.
∗Research at Washington University supported in part by NSF
awards CCF-0615341 (EHS) and CCF-0448562 (CAREER).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’07, October 1–3, 2007, Salzburg, Austria.
Copyright 2007 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Two major challenges in the verification of such systems are to
represent their time and event semantics with high fidelity, and
to apply analysis techniques that remain decidable and tractable
across the wide variety of system concurrency and scheduling se-
mantics that may arise in practice. Our previous research [17] has
shown that incorporating domain-specific information into reusable
formal models based on timed automata both increases the cost
of analysis and offers new ways to mitigate that cost. For exam-
ple, thread identifiers added to model run-to-completion semantics
must be managed carefully to avoid over-constraining possible exe-
cutions, but also allow the state space to be pruned accurately, e.g.,
for leader election in a thread pool [17].

In addition to the time and event semantics of the application
and its supporting middleware, the effects of schedulers and other
mechanisms for policy enforcement also must be considered in the
verification of correct system behavior. Our previous work on veri-
fication of real-time systems considered a restricted but widely used
class of scheduling policies (rate-monotonic scheduling of fixed-
period tasks [17]) in which preemption only occurs at well defined
points. However, many quasi-cyclic real-time systems have less
constrained scheduling semantics. For example, in the example
application we consider in more detail in Section 3, the relative
progress of a related set of video processing pipelines may be kept
within a specified bound [2], but may allow preemption points to
vary dynamically as a function of application inputs or the system’s
operating environment.

The challenge posed by these more general scheduling seman-
tics is that verifying correct behavior of systems with more widely
dispersed preemption raises crucial questions, about the fidelity
with which concurrency can be represented, and the decidability
and tractability with which it can be analyzed. Furthermore, as we
discuss in Section 2, there are important limitations on the ability
of existing techniques to address these challenges, which in turn
motivate the research presented in this paper.

In this paper we present a novel extension of quasi-cyclic state
space reduction techniques [9] to timed systems, with the effect
of allowing systems scheduled with bounded fairness to be veri-
fied tractably and with reasonable fidelity. In this approach, models
of the individual process are composed into a single time domain
with the result being an infinite state timed automaton (called a time
domain automaton) in which each state represents an equivalence
class of all possible execution interleavings that result in a partic-
ular event ordering. We then show that schedulers which enforce
bounded fairness also prune the state space that is explored, giving
a timed quasi-cyclic structure with well defined bounds.

The rest of this paper is structured as follows. Section 2 describes
other work related to the approach presented in this paper. Sec-
tion 3 discusses a video processing application that is representative



of the broader class of applications whose scheduling semantics
motivate and guide our approach, and discusses the analysis chal-
lenges posed by that class of applications. Section 4 describes how
timed automata models can be parameterized with domain-specific
scheduling information, and how analytic bounds on the behavior
of the system can be transformed into bounds on the structure of
the state space that must be verified. Section 5 presents a case
study in which we apply our parameterized modeling techniques
to analyze the time and event semantics of the example applica-
tion presented in Section 3, and evaluate how well our approach
captures the actual behavior of that application. Finally, Section 6
presents conclusions and describes future work.

2. RELATED WORK
The most relevant general purpose modeling techniques (stop-

watch automata [5], timed automata [1], and untimed finite au-
tomata) have important limitations for modeling preemptively sched-
uled systems: (1) checking stopwatch automata models may be un-
decidable, (2) the time representation in traditional timed automata
is incompatible with the operations needed to model preemption,
and (3) the resulting state space for untimed finite automata is in-
tractably large.

Stopwatch automata, where clocks’ derivatives can be either zero
or one, would seem to be a natural way to model preemptively
scheduled systems. In preempted states, the clock’s derivative would
be set to zero, and in a running state, the clock’s derivative would be
set to one. However because a system can change state infinitely
many times between any two time values it has been shown that
many scheduling problems are undecidable using stopwatch au-
tomata [14]. More powerful tools like Hytech [12], also allow veri-
fication of stopwatch automata, but in general may run into similar
concerns with decidability and tractability.

Another approach for modeling systems with preemption is to
use timed automata, a restricted form of stopwatch automata, where
all clocks’ derivatives must be one. Because clock values can take
on any nonnegative real value, these systems have potentially in-
finitely many states. To allow state exploration to terminate, states
must be collapsed into a finite set of equivalence classes. For timed
automata model checkers like UPPAAL [3] and IF [4] this is done
by using timed difference bound matrices [8] (TDBM).

To model preemptive scheduling the model checker must write
out values of individual clocks and restore them later when a pro-
cess is rescheduled. However, the TDBM stores disjunctions of
inequalities that represent generally infinite clock values. There-
fore, writing out the value of the clock requires picking a subset of
possible clock values and splitting the current state into a number
of states equal to the cardinality of the subset. The larger this sub-
set the faster the propagation of states in the state transition system,
leading quickly to intractability, while the smaller the subset, the
less fidelity the model has to the modeled system.

A third approach for modeling systems with preemption is to
discretize time. In this case, the system needs no clocks and can be
modeled using finite automata. State exploration is now simply the
task of assigning each quantum to a process. There are, however,
exponentially many such orderings and thus full exploration takes
exponential time: except for restricted systems or verification over
small windows of execution, this method may be impractical.

The limitations of these general purpose modeling approaches
have given rise to a number of other approaches, which capture
and leverage additional information about the structure of the sys-
tem itself. One such approach is to compose automata based on
common interfaces and sets of resources [13, 6]. Another relevant
approach is to identify quasi-cyclic structures in the system’s ex-

ecution, which can be used to reduce the state space that must be
checked [9]. A third approach is to use abstract interpretation in
combination with model checking [7] to reason about event inter-
leavings and paths of execution in the system. While each of these
approaches has influenced the work in this paper, none of them pro-
vides the combined ability to analyze relative resource consump-
tion, timing, and preemption that is needed for verification of the
kinds of systems we describe in Section 3.

3. MOTIVATING EXAMPLE
The research presented in this paper is motivated by the prob-

lem of verifying real-time systems in which (1) thorough analysis
of the system’s behavior with respect to timing and event order-
ing constraints is needed to verify its correctness; but (2) analy-
sis is complicated by scheduling semantics that allow threads to
be preempted at dynamically variable points in time, e.g., due to
application-specific variations in task execution times, or environment-
specific variations in wireless network bandwidth.

Figure 1 illustrates the high level architecture of such a system,
which abstracts the structure of several specific applications that
were the focus of our previous work [18, 2, 11]. The important

Figure 1: System Architecture

features of the system architecture include:

• server-side devices and/or repositories that capture and/or
store streams of related images (e.g., frames of a video stream,
or tiles of a large static image);

• multiple server-side tasks that capture, compress, and trans-
mit each image;

• a network across which image streams are transmitted;
• multiple client-side tasks that receive, decompress, and dis-

play each image; and
• client-side devices where images are displayed.

Within the overall system architecture, alternative concurrency
architectures and scheduling policies may be appropriate for dif-
ferent applications. For example if the image processing is a best
effort activity that shares resources with other more critical process-
ing [11], then a concurrency architecture that has different thread
lanes for different levels of criticality, atop a priority-based thread
scheduling mechanism [10] may be appropriate. This approach is
well suited for enforcing a variety of classical real-time schedul-
ing policies [10], including the rate-monotonic policy to which our
previous verification approach was applied [17].

However, for other applications, such as a multi-camera video
monitoring system for security, fire detection, and process control
in an automated industrial plant, hardware may be dedicated explic-
itly to the capture, distribution, and processing of video streams. In
this case, the challenge is less to isolate critical processing from
interference by non-critical tasks, but rather to ensure synchroniza-
tion and then reduce end-to-end latency of multiple related video



streams. For such an application, a pipelined concurrency model,
in which multiple copies of each task, each with its own thread of
execution (e.g., according to the Active Object pattern [15]) may
be appropriate: (1) if a task is blocked on input or output, other
tasks can be using the CPU and other resources to make progress;
(2) tasks can be distributed or mapped to multiple processors easily
if those additional resources are made available; and (3) all threads
(and thus the execution of all tasks) can be placed under common
scheduling control at either the operating system or middleware
level [2].

Figure 2 illustrates such a concurrency architecture, with a sepa-
rate processing pipeline connecting each server-side image source
to a distinct client-side display. Each active object implements a

Figure 2: Concurrency Architecture

particular stage in a concurrent processing pipeline:

• multiple server-side video devices (or image repository searches)
capture images concurrently;

• each captured image is then compressed concurrently with
other images;

• compressed images are transmitted concurrently across the
network;

• compressed images are received concurrently on the client;
• received images are decompressed concurrently;
• the client-side display for each pipeline is updated with its

decompressed images, concurrently with the other pipelines.

While our previous work has shown that such a system can be
built using open-source real-time operating systems and middle-
ware, and that appropriate scheduling semantics can be enforced
effectively and efficiently [2], verification of such a system remains
an open problem despite our previous progress on modeling the se-
mantics of the middleware mechanisms involved [17]. The remain-
ing challenge is to develop a combined framework for evaluating
the effects of different scheduling policies (the scheduling model)
on different concurrency architectures (the process model) in such
a system, in a manner that can support decidable and tractable rea-
soning about preemption and its related complications. Section 4
describes our development of such a framework, and Section 5
presents a verification case study using that framework, both of
which are major contributions of this paper.

4. QUASI-CYCLIC TIMED STRUCTURES
To improve scalability of model checking for real-world systems,

Dwyer, et al., introduced the idea of a quasi-cyclic structure, in
which a predicate over system states produces a projection of the
state space in which a set of sub-states – with the same values for
a subset of the system’s state variables – is visited recurrently [9].
Such quasi-cyclic structures occur naturally in many systems with
cyclic timing and/or event semantics. When they do, their regu-
lar structure can make verification of these systems tractable by
reducing the time and/or space needed to search the state space.

However, each such quasi-cyclic projection is domain-specific, and
must be constructed based on (1) a model of the system’s states
and (2) a bounding predicate whose constraint results in a quasi-
cyclic projection. In this section we show how timed automata and
fair scheduling can be combined to give quasi-cyclic structures for
verification of preemptively scheduled systems.

Several extensions to the work in [9] are needed in order to take
advantage of quasi-cyclic structures in preemptively scheduled sys-
tems. First, for real-time systems timed automata (rather than un-
timed automata) often are the most natural way to model system
states. We use timed automata models to capture important features
of preemptively scheduled processes, as is described in Section 4.1.

Second, the effects of preemption must be modeled in a way
that is amenable to extracting a quasi-cyclic structure, i.e., allow-
ing identification of common values of key variables (particularly
regarding time). We do this by composing the individual process
models into a single automaton with a common time domain, as
is described in Section 4.2. This automaton in turn allows us to
evaluate the timing and event ordering semantics resulting from the
composition of the underlying process models, including the effects
of preemption on the possible event orderings in the system.

Third, the quasi-cyclic structure must be extracted based on con-
straints on system execution that bound the possible event struc-
tures. In Section 4.3 we focus specifically on how different con-
straints produce quasi-cyclic projections that can reduce the com-
plexity of verification for systems like those in Section 3.

For clarity, throughout this section we illustrate key features of
our approach using only a pair of processes. However, the ap-
proach and equations presented here generalize to arbitrary num-
bers of processes. We also evaluate the approach with a case study
involving five processes, in Section 5.

4.1 Process Models
In this paper we use the term process to refer to any modular unit

of execution, such as a single thread or a group of related threads
(e.g, within a pipeline as shown in Figure 2 in Section 3). We start
by capturing key features of system processes as timed automata,
as is shown for two process in Figure 3. The transitions represent

Figure 3: Process Automata P1 and P2

distinct events in the system, the process models’ states (P1.0, P1.1,
P2.0, and P2.1) record execution times (x1 and x2), and the guards
on each transition and the invariants in each state represent mini-
mum and maximum bounds on the demand function [16] of each
process.

4.2 Time Domain Automaton
We use time domains to represent multiple automata sharing a

single resource and the resulting possible event structures and their
time boundaries. To compose the automata shown in Section 4.1
into the same time domain, τ , we now make use of their guards
and invariants. The composition of these two automata into the
same time domain generates a single infinite state timed automaton,
which for sake of discussion we call a time domain automaton.
This automaton represents every feasible ordering of events and



the invariants and guards that govern when, given the underlying
process structure, these events could occur. Figure 4 shows the first
states of the time domain automaton resulting from composing the
process automata shown in Figure 3.

Figure 4: P1‖P2 in a Single Time Domain τ

Each edge in the time domain automaton is an edge from one
of the composed process automata. Each state in a time domain
automaton is described by the set of states each process automaton
would be in and the possible values of the following variables: τ

(the system time) and pi (the relative time for process i). Because
τ is the sum of the values for the individual processes, the bounds
for τ can be calculated from the bounds on each pi as follows:

A1 ≤ p1 ≤ B1

...

Ak ≤ pk ≤ Bk

k
X

i=1

Ai ≤ τ ≤
k

X

i=1

Bi

The bounds on each pi are functions of the path from the initial
state to the current state in the time domain automaton. This path
can be projected onto the individual process models.

Intuitively, the minimum bound for pi is the minimum possible
computational resource needed for the process to make the progress
it has made. Mathematically, it is a function of the path taken in
the time domain automaton to the current state. A subset of the
edges in this path will correspond to an edge in process automaton
i, although the subset might be empty. Each edge in this subset is
associated with a guard in the process automaton. The minimum
bound is the sum of these associated guard values for each edge in
the subset.

Similarly, the maximum bound for pi is the maximum computa-
tional resource that could be granted to the process without guar-
anteeing it will move to a new state. It too is a function of the path

taken to the current state. Mathematically, it is the sum of the in-
variants for each state in the process model that the time domain
automaton has passed through, including the current state.

Despite having infinitely many states, this time domain automa-
ton can be treated as a normal timed automaton for the purposes
of composition with other timed automata. In addition, composi-
tion of separate time domain automata is trivial, because as can be
seen in Figure 4, the resulting automaton has no clock resets: after
composition time is still represented by a single variable.

Without a way of enforcing an equivalence partition over the
states in the time domain automaton, full exploration is impossi-
ble. However, full exploration to any finite τ is possible, but even
for these more limited searches, the state space grows exponentially
as time moves away from the origin. This is partially offset by the
fact that the time domain automaton is quasi-cyclic, as illustrated
by the rectangles around related states in Figure 4. Following [9],
the quasi-cyclic nature of time domain automata can be exploited
to reduce the space requirements dramatically for a state space ex-
ploration out to any given value of τ .

4.3 Constraints and Quasi-Cyclic Structures
Time domain automata capture the semantics of all possible sys-

tem event orderings, while constraints model system behaviors that
bound possible event orderings. As examples, we discuss three
forms of constraints: (1) fairness constraints, (2) bounded delay
constraints and (3) event based constraints.
Fairness constraints: In each state bounds exist for each process’
execution time as well as the total system execution time. The ratio
of process execution time to total system time represents the fair-
ness of the state, and its bounds can be calculated for a state as a
whole. To handle cases where the time domain automaton repre-
sents a resource partition of less than 100%, we introduce σmin

and σmax which represent the minimum and maximum resource
allocations, which in turn constrict the fairness values to the range
[0,σmax]. Equation 1 shows the fairness bounds for a state as a
whole.

σminAi

Ai − Bi +
k

P

j=1

Bj

≤
pi

τ
≤

σmaxBi

Bi − Ai +
k

P

j=1

Aj

(1)

The minimum and maximum fairness values are located at one of
the boundary points of the variable space that describes the state.
Because the variables take on only positive, real values, minimizing
the lower fairness bound simply requires minimizing all values that
appear only in the numerator while maximizing those that appear
only in the denominator. For most real systems a set of fairness
constraints must be satisfied, often taking the form of a conjunc-
tion of inequalities. As generated, each state in the time domain
automaton can be tested, and exploration can be stopped at any
state whose fairness values contradict the fairness constraints. The
remaining subset, while still potentially infinite, captures all event
structures that could achieve the fairness constraints.
Bounded delay constraints: Another kind of constraint commonly
imposed on real systems bounds the delay between two events.
Consider the constraint ’P1.1 transitions to P1.0 followed by P2.1
transitioning to P2.0 within 40 time units.’ To explore what event
structures are possible under this constraint, and thus to gauge its
effect on the full time domain automaton, we construct a new au-
tomaton, regions of which are untimed, and others which are gen-
erated like a time domain automata.

Until the system sees the first event covered by the constraint,
the possible timings of the events in the system are inconsequen-



tial. Once the event occurs, we generate states as we would for a
time domain automaton until one of two conditions occurs: (1) the
possible values of τ in the state and the constraint condition are in
contradiction (e.g. τ ≥ 44 and τ ≤ 40) or (2) the second event
covered by the constraint occurs and we return to the untimed re-
gion of the automaton. Each bounded delay constraint generates an
automaton, and these automata can be composed to create a single
automaton that represents the conjunction of all constraints.
Event based constraints: Another type of constraint can be ex-
pressed as an untimed finite state automaton, which captures al-
lowed event interleavings directly. Examples of this type of con-
straint and their effects are described next in Section 4.4. No mat-
ter what kind of constraint or set of constraints is applied, the result
is a state space that is a subset of the full time domain automa-
ton. These constraints result in a bounded time domain automaton
with an induced quasi-cyclic state space. Model checking of the
bounded time domain automaton can be done to any finite value
of τ to ensure that (1) its state space is non-empty, (2) it has sat-
isfying states that extend out to the given τ value, and (3) desired
properties within the state-space are maintained.

4.4 Fair Scheduling Example
To illustrate how the modeling approach described in Sections 4.1

through 4.3 applies to a real-world system, we now give a basic ex-
ample based on the system architecture and concurrency architec-
ture of the video processing pipeline system illustrated in Figures 1
and 2 in Section 3. Although for purposes of illustration we con-
centrate on the case of only two pipelines, the examples presented
here are the basis for the five pipeline example used in the evalua-
tion in Section 5.

We begin with a process model for each pipeline as shown in Fig-
ure 5. Each process i is a simple one state automaton whose upper
and lower execution times are bounded by αi and βi, respectively.

Figure 5: Video Pipeline Process Model

We then model a scheduling decision function (SDF) that en-
sures that each video pipeline publishes frames in lockstep, such
that their relative progress is kept within a specified bound of at
most one frame (where one frame is processed by each execution
of an entire pipeline). As in our previous work we will consider
the case where this bound is a single frame. A simple SDF can be
designed to enforce this behavior directly, by defining a constrain-
ing automaton (which we call the SDF automaton) over the frame
processing events. The SDF automaton for constraining the two
pipelines case is shown on the left side of Figure 6, and for pur-
poses of illustration the right side of Figure 6 also shows the SDF
automaton for the three pipelines case.

Each state in an SDF automaton is labeled with an array a (of
length equal to the number of pipelines) that shows the relative
frame progress of each pipeline. As pipeline i completes a frame
the SDF transitions to the state labeled with a 1 in the ith slot in
the array, or back to the origin if all other pipelines have com-
pleted their frame for the current iteration. For the general case

Figure 6: 2-Process and 3-Process SDFs

of k pipelines, the SDF automaton is a k-dimensional hyper-cube
with 2k − 1 distinct states (because the first and final states are
identical).

Using time domain automata we can examine the effects of ap-
plying this SDF to the running pipelines. For simplicity we first
look at the effect of the SDF on the 2 pipeline example, and then
extend it to arbitrary numbers of pipelines.

As we have seen before, the state space of the resulting time
domain automaton is quasi-cyclic. If we project a path in that time
domain automaton onto the 2 process SDF automaton in Figure 6,
the path cycles through the SDF automaton some number of times.
This value, which we call n, can be used to partition the states in
the time domain automaton. As is shown in Figure 7 the bounds
for pi in each state in a partition is a linear function of n. Because
we can write the bounds for pi as linear functions of n the same
holds true for the fairness bounds for process i. These equations
are shown in Figure 8, including their convergence as n approaches
infinity.

From the 2 pipeline example we can derive general equations for
k pipelines. As we saw earlier, each state is labeled with an array,
and the time domain automaton that results from applying the SDF
can be partitioned with the variable n. That means every state in the
time domain automaton can be uniquely identified by the value of n

and the array representing the current state in the SDF automaton.
General equations for pi can be written in terms of n and a[i], the
ith entry in the array labeling the state in the SDF automaton. This
is shown in Equation 2.

(n + a[i])αi ≤ pi ≤ (n + a[i])βi + βi (2)

We can also derive general fairness equations for the k pipeline
case by using the derived pi bounds in conjunction with the fairness
equation introduced previously (Equation 1). From these we can
derive general formulas for the fairness bounds as n approaches
infinity, shown as Equation 3.

σminαi

αi − βi +
k

P

j=1

βj

≤
pi

τ
≤

σmaxβi

βi − αi +
k

P

j=1

αj

(3)

Another interesting feature of this constraint automaton is that in
some states one or both the fairness bound equations are indepen-
dent of n and equal to the limit case fairness bound equation. These
states are described in Equations 4 and 5. The states described by
Equation 4 are states in which process i has just finished publish-
ing the first frame in the current iteration. The states described by
Equation 5 are states in which process i is the last pipeline not to



Figure 7: Relative Time Bounds for 2-Process Composition

Figure 8: Fairness Bounds for 2-Process Composition



have published its frame in the current iteration.
σminαi

αi − βi +
k

P

j=1

βj

≤
pi

τ
if a[j 6= i] = 0 and a[i] = 1 (4)

pi

τ
≤

σmaxβi

βi − αi +
k

P

j=1

αj

if a[j 6= i] = 1 and a[i] = 0 (5)

5. CASE STUDY
To evaluate the applicability of the modeling framework pre-

sented in Section 4 to the kinds of systems described in Section 3,
we now consider a case study consisting of five video pipelines run-
ning on a single CPU, scheduled according to the frame-progress
fair scheduling policy discussed in Section 4.4. Because the result-
ing quasi-cyclic structure has 31 distinct states we do not depict it,
but simply note that it is a 5-dimensional generalization of the cube
shown for three processes in Figure 6.

To illustrate the independence of the individual processes in the
quasi-cyclic structure, and to demonstrate the specificity of the schedul-
ing decision function, we assigned some common and some distinct
demand bounds to the processes: pipelines 1 and 3 used between
70 and 80 msec of execution each time one of them ran; pipelines 2
and 4 used between 80 and 90 msec of execution each time one of
them ran; pipeline 5 used between 100 and 110 msec of execution
each time it ran. The processing of each pipeline was triggered ev-
ery 500 msec, so the total utilization is thus between 80% and 90%,
i.e., reasonably heavily loaded but feasibly schedulable. Finally,
the actual demand for each execution of a pipeline was a normally
distributed random sample in the range from that pipeline’s lower
bound to its upper bound.

We used the processes’ execution time bounds directly as their
α and β parameters, as is summarized in Table 1. These param-

Table 1: Pipeline Progress Bounds
Pipeline α β

1 70 80
2 80 90
3 70 80
4 80 90
5 100 110

eters are used to compute minimal and maximal progress bounds
for each process over the state space, as follows. The first state
in the quasi-cyclic structure is labeled with array a = <0,0,0,0,0>.
The scheduler-enforced utilization is between 80% and 90%, so the
fairness bounds are calculated using .80 = σmin and .90 = σmax.
Using Equation 2, we calculate bounds for each pi.

70n ≤ p1 ≤ 80n + 80

80n ≤ p2 ≤ 90n + 90

70n ≤ p3 ≤ 80n + 80

80n ≤ p4 ≤ 90n + 90

100n ≤ p5 ≤ 110n + 110

With these bounds, σmin, σmax, and Equation 3 we calculate
the specified fairness bounds for the system.

.80(70n)

440n + 370
≤

p1

τ
≤

.90(80n + 80)

410n + 80

.80(80n)

440n + 360
≤

p2

τ
≤

.90(90n + 90)

410n + 90

.80(70n)

440n + 370
≤

p3

τ
≤

.90(80n + 80)

410n + 80

.80(80n)

440n + 360
≤

p4

τ
≤

.90(90n + 90)

410n + 90

.80(100n)

440n + 340
≤

p5

τ
≤

.90(110n + 100)

410n + 110

In practice, tighter bounds on the system execution may be avail-
able empirically. For instance, the observed utilization by the pipelines
in our experiments was 87.35%. Setting both σmin and σmax to
that value, we can derive empirical bounds, which are tighter than
the specified bounds. Note that the specified bounds are still neces-
sary for verification, because the empirical bounds may not reflect
the system’s worst case behavior.

We compared the derived bounds to the actual behavior of a 5-
pipeline system under middleware-based fair-progress group schedul-
ing control. For those experiments, we used the test application and
middleware-based group scheduling framework described in [2],
configured with a frame-progress-fair scheduling decision function,
run atop a Linux 2.6.12 kernel with the KURT-Linux and RT (ver-
sion 0.7.50-04) patches. Figure 9 shows both sets of bounds and
the measured progress of each process. Other than the points at
which the scheduler ensures that all pipelines have made consistent
progress, any particular pipeline may wait until the very last state
of the quasi-cyclic structure to make any progress, or may make its
entire progress in the first state of the quasi-cyclic structure. Thus,
the progress bounds are step functions with the maximal bound in-
creasing only in the first state of the quasi-cyclic structure, and the
minimal bound increasing only in the last state of the quasi-cyclic
structure. The observed behavior of the processes falls within these
analytical bounds, as expected.

Because the semantics of the particular scheduling decision func-
tion used in these experiments is to ensure that each pipeline com-
pletes processing of an image frame before any are allowed to begin
processing their next image frame, it is also useful to examine the
behavior of the system relative to the calculated bounds at those
enforced scheduling points. Figure 10 shows an abstraction of the
data presented in Figure 9 consisting only of the enforced schedul-
ing points. As Figure 9 shows, the progress within a given quasi-
cyclic structure need not be significantly constrained, other than by
coarse overall bounds, and thus model checking of the behavior
within each stage of a quasi-cyclic structure may be appropriate for
some systems. However, for systems that are more tolerant of mi-
nor variations in progress, the abstraction illustrated in Figure 10
may suffice, in which case the cost of verification is reduced to an
analysis of the bounds enforced by the scheduler (and possibly a
verification of the scheduler itself).



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  200  400  600  800  1000

C
P

U
 s

ha
re

 p
er

 p
ip

el
in

e

Total number of frames processed over all pipleines

Pipeline 1
Pipeline 2
Pipeline 3
Pipeline 4
Pipeline 5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  200  400  600  800  1000

C
P

U
 s

ha
re

 f
or

 p
ip

el
in

e 
1

Total number of frames processed over all pipleines

Specified Maximum
Empirical Maximum

Observed
Empirical Minimum
Specified Minimum

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  200  400  600  800  1000

C
P

U
 s

ha
re

 f
or

 p
ip

el
in

e 
2

Total number of frames processed over all pipleines

Specified Maximum
Empirical Maximum

Observed
Empirical Minimum
Specified Minimum

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  200  400  600  800  1000

C
P

U
 s

ha
re

 f
or

 p
ip

el
in

e 
3

Total number of frames processed over all pipleines

Specified Maximum
Empirical Maximum

Observed
Empirical Minimum
Specified Minimum

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  200  400  600  800  1000

C
P

U
 s

ha
re

 f
or

 p
ip

el
in

e 
4

Total number of frames processed over all pipleines

Specified Maximum
Empirical Maximum

Observed
Empirical Minimum
Specified Minimum

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  200  400  600  800  1000

C
P

U
 s

ha
re

 f
or

 p
ip

el
in

e 
5

Total number of frames processed over all pipleines

Specified Maximum
Empirical Maximum

Observed
Empirical Minimum
Specified Minimum

Figure 9: Total Progress and Calculated Bounds for all Processing Pipelines



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  200  400  600  800  1000

C
P

U
 s

ha
re

 p
er

 p
ip

el
in

e

Total number of frames processed over all pipleines

Pipeline 1
Pipeline 2
Pipeline 3
Pipeline 4
Pipeline 5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  200  400  600  800  1000

C
P

U
 s

ha
re

 f
or

 p
ip

el
in

e 
1

Total number of frames processed over all pipleines

Specified Maximum
Empirical Maximum

Observed
Empirical Minimum
Specified Minimum

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  200  400  600  800  1000

C
P

U
 s

ha
re

 f
or

 p
ip

el
in

e 
2

Total number of frames processed over all pipleines

Specified Maximum
Empirical Maximum

Observed
Empirical Minimum
Specified Minimum

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  200  400  600  800  1000

C
P

U
 s

ha
re

 f
or

 p
ip

el
in

e 
3

Total number of frames processed over all pipleines

Specified Maximum
Empirical Maximum

Observed
Empirical Minimum
Specified Minimum

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  200  400  600  800  1000

C
P

U
 s

ha
re

 f
or

 p
ip

el
in

e 
4

Total number of frames processed over all pipleines

Specified Maximum
Empirical Maximum

Observed
Empirical Minimum
Specified Minimum

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  200  400  600  800  1000

C
P

U
 s

ha
re

 f
or

 p
ip

el
in

e 
5

Total number of frames processed over all pipleines

Specified Maximum
Empirical Maximum

Observed
Empirical Minimum
Specified Minimum

Figure 10: Observed Progress and Calculated Bounds at Scheduling Points



6. CONCLUSIONS AND FUTURE WORK
In this paper we have discussed several ways in which quasi-

cyclic structures can be identified and exploited in preemptively
scheduled real-time systems. Our modeling approach presented in
Section 4 supports analysis based on a variety of different kinds
of constraints, including fairness constraints, bounded delay con-
straints, and event based constraints. Our case study in Section 5
showed how our approach can be applied to verification of a par-
ticular kind of system with a unique concurrency architecture and
scheduling semantics.

Our future work will focus on the nuances of state space explo-
ration under different kinds of domain-specific constraints. In par-
ticular, we will investigate (1) the semantics of different combina-
tions of fairness constraints, bounded delay constraints, and timing
constraints; and (2) how quasi-cyclic structures can be identified
and leveraged in verification of systems with different combina-
tions of those constraints.

Acknowledgments
We wish to thank Dr. Douglas Niehaus for developing the Group
Scheduling model, through which the progress-fair scheduling se-
mantics were enforced in our prior work [2], and in the evaluations
we presented in Section 5.

7. REFERENCES
[1] R. Alur and D. L. Dill. A theory of timed automata.

Theoretical Computer Science, 126(2):183–235, 1994.
[2] T. Aswathanarayana, V. Subramonian, D. Niehaus, and

C. Gill. Design and performance of configurable endsystem
scheduling mechanisms. In Proceedings of 11th IEEE
Real-time and Embedded Technology and Applications
Symposium (RTAS), 2005.

[3] G. Behrmann, A. David, and K. G. Larsen. A Tutorial on
Uppaal. In Formal Methods for the Design of Real-time
Systems (SFM 2004), pages 200–236. Springer-Verlag LNCS
3185, Sept. 2004.

[4] M. Bozga, S. Graf, I. Ober, I. Ober, and J. Sifakis. The IF
Toolset. In Formal Methods for the Design of Real-time
Systems (SFM 2004), pages 237–267. Springer-Verlag LNCS
3185, Sept. 2004.

[5] F. Cassez and K. G. Larsen. The impressive power of
stopwatches. In 11th International Conference on
Concurrency Theory (CONCUR 2000), pages 138–152, Aug.
2000.

[6] A. Chakrabarti, L. de Alfaro, T. Henzinger, and
M. Stoelinga. Resource interfaces. In Third ACM
International Conference on Embedded Software (EMSOFT
2003), pages 117–133, Oct. 2003.

[7] X. Deng, J. Lee, and Robby. Bogor/kiasan: A k-bounded
symbolic execution for checking strong heap properties of
open systems. Technical Report SAnToS-TR2006-1,
Laboratory for Specification, Analysis, and Transformation
of Software (SAnToS), Kansas State University, 2006.

[8] D. L. Dill. Timing assumptions and verification of finite-state
concurrent systems. In Proceedings of the international
workshop on Automatic verification methods for finite state
systems, pages 197–212. Springer-Verlag LNCS 407, 1990.

[9] M. B. Dwyer, Robby, X. Deng, and J. Hatcliff. Space
reductions for model checking quasi-cyclic systems. In Third
ACM International Conference on Embedded Software
(EMSOFT 2003), pages 173–189, Oct. 2003.

[10] C. Gill, D. C. Schmidt, and R. Cytron. Multi-Paradigm
Scheduling for Distributed Real-time Embedded Computing.
IEEE Proceedings, Special Issue on Modeling and Design of
Embedded Software, 91(1), Jan. 2003.

[11] C. D. Gill, J. M. Gossett, D. Corman, J. P. Loyall, R. E.
Schantz, M. Atighetchi, and D. C. Schmidt. Integrated
Adaptive QoS Management in Middleware: An Empirical
Case Study. Journal of Real-time Systems, 29(2–3):101–130,
2005.

[12] T. A. Henzinger, B. Horowitz, R. Majumdar, and
H. Wong-Toi. Beyond HYTECH: Hybrid systems analysis
using interval numerical methods. In Hybrid Systems:
Computation and Control (HSCC 2000), pages 130–144,
Mar. 2000.

[13] T. A. Henzinger and S. Matic. An interface algebra for
real-time components. In Proceedings of 12th IEEE
Real-time and Embedded Technology and Applications
Symposium (RTAS), Apr. 2006.

[14] Y. Kesten, A. Pnueli, J. Sifakis, and S. Yovine. Decidable
integration graphs. Information and Computation,
150(2):209–243, 1999.

[15] R. G. Lavender and D. C. Schmidt. Active Object: an Object
Behavioral Pattern for Concurrent Programming. In
Proceedings of the 2nd Annual Conference on the Pattern
Languages of Programs, pages 1–7, Monticello, Illinois,
Sept. 1995.

[16] I. Shin and I. Lee. Compositional Real-Time Scheduling
Framework. In The 25th IEEE Real-time Systems Symposium
(RTSS), Lisbon, Portugal, Dec. 2004.

[17] V. Subramonian, C. Gill, C. Sánchez, and H. B. Sipma.
Reusable models for timing and liveness analysis of
middleware for distributed real-time and embedded systems.
In Sixth ACM/IEEE International Conference on Embedded
Software (EMSOFT 2006), pages 252–261, Oct. 2006.

[18] X. Wang, H.-M. Huang, V. Subramonian, C. Lu, and C. Gill.
CAMRIT: Control-based Adaptive Middleware for
Real-time Image Transmission. In Proc. of the 10th IEEE
Real-time and Embedded Tech. and Applications Symp.
(RTAS), Toronto, Canada, May 2004.


	Scheduling Induced Bounds and the Verification of Preemptive Real-Time Systems
	Recommended Citation
	Scheduling Induced Bounds and the Verification of Preemptive Real-Time Systems

	tmp.1415913124.pdf.pL3_h

