
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2006-7

2006-01-01

Extending Byzantine Fault Tolerance to Replicated Clients Extending Byzantine Fault Tolerance to Replicated Clients

Ian Wehrman, Sajeeva L. Pallemulle, and Kenneth J. Goldman

Byzantine agreement protocols for replicated deterministic state machines guarantee that

externally requested operations continue to execute correctly even if a bounded number of

replicas fail in arbitrary ways. The state machines are passive, with clients responsible for any

active ongoing application behavior. However, the clients are unreplicated and outside the fault-

tolerance boundary. Consequently, agreement protocols for replicated state machines do not

guarantee continued correct execution of long-running client applications. Building on the

Castro and Liskov Byzantine Fault Tolerance protocol for unreplicated clients (CLBFT), we

present a practical algorithm for Byzantine fault-tolerant execution of long-running distributed

applications in which replicated... Read complete abstract on page 2. Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Wehrman, Ian; Pallemulle, Sajeeva L.; and Goldman, Kenneth J., "Extending Byzantine Fault Tolerance to
Replicated Clients" Report Number: WUCSE-2006-7 (2006). All Computer Science and Engineering
Research.
https://openscholarship.wustl.edu/cse_research/217

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Washington University St. Louis: Open Scholarship

https://core.ac.uk/display/233233839?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F217&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F217&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F217&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F217&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F217&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F217&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F217&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/217?utm_source=openscholarship.wustl.edu%2Fcse_research%2F217&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/217

Extending Byzantine Fault Tolerance to Replicated Clients Extending Byzantine Fault Tolerance to Replicated Clients

Ian Wehrman, Sajeeva L. Pallemulle, and Kenneth J. Goldman

Complete Abstract: Complete Abstract:

Byzantine agreement protocols for replicated deterministic state machines guarantee that externally
requested operations continue to execute correctly even if a bounded number of replicas fail in arbitrary
ways. The state machines are passive, with clients responsible for any active ongoing application
behavior. However, the clients are unreplicated and outside the fault-tolerance boundary. Consequently,
agreement protocols for replicated state machines do not guarantee continued correct execution of long-
running client applications. Building on the Castro and Liskov Byzantine Fault Tolerance protocol for
unreplicated clients (CLBFT), we present a practical algorithm for Byzantine fault-tolerant execution of
long-running distributed applications in which replicated deterministic clients invoke operations on
replicated deterministic servers. The algorithm scales well to large replica groups, with roughly double the
latency and message count when compared to CLBFT, which supports only unreplicated clients. The
algorithm supports both synchronous and asynchronous clients, provides fault isolation between client
and server groups with respect to both correctness and performance, and uses a novel architecture that
accommodates externally requested software upgrades for long-running evolvable client applications.

https://openscholarship.wustl.edu/cse_research/217?utm_source=openscholarship.wustl.edu%2Fcse_research%2F217&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/217?utm_source=openscholarship.wustl.edu%2Fcse_research%2F217&utm_medium=PDF&utm_campaign=PDFCoverPages

Department of Computer Science & Engineering

2006-7

Extending Byzantine Fault Tolerance to Replicated Clients

Authors: Ian Wehrman, Sajeeva L. Pallemulle, Kenneth J. Goldman

Corresponding Author: kjg@cse.wustl.edu

Abstract: Byzantine agreement protocols for replicated deterministic state machines guarantee that externally
requested operations continue to execute correctly even if a bounded number of replicas fail in arbitrary ways.
The state machines are passive, with clients responsible for any active ongoing application behavior. However,
the clients are unreplicated and outside the fault-tolerance boundary. Consequently, agreement protocols for
replicated state machines do not guarantee continued correct execution of long-running client applications.

Building on the Castro and Liskov Byzantine Fault Tolerance protocol for unreplicated clients (CLBFT), we
present a practical algorithm for Byzantine fault-tolerant execution of long-running distributed applications in
which replicated deterministic clients invoke operations on replicated deterministic servers. The algorithm
scales well to large replica groups, with roughly double the latency and message count when compared to
CLBFT, which supports only unreplicated clients. The algorithm supports both synchronous and asynchronous
clients, provides fault isolation between client and server groups with respect to both correctness and
performance, and uses a novel architecture that accommodates externally requested software upgrades for
long-running evolvable client applications.

Type of Report: Other

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160

Extending Byzantine Fault Tolerance to Replicated Clients

Ian Wehrman
iwehrman@cse.wustl.edu

Sajeeva L. Pallemulle
sajeeva@cse.wustl.edu

Computer Science and Engineering
Washington University in St. Louis

Kenneth J. Goldman
kjg@cse.wustl.edu

Abstract

Byzantine agreement protocols for replicated deterministic state machines guarantee that externally re-

quested operations continue to execute correctly even if a bounded number of replicas fail in arbitrary ways.

The state machines are passive, with clients responsible for any active ongoing application behavior. How-

ever, the clients are unreplicated and outside the fault-tolerance boundary. Consequently, agreement protocols

for replicated state machines do not guarantee continued correct execution of long-running client applications.

Building on the Castro and Liskov Byzantine Fault Tolerance protocol for unreplicated clients (CLBFT),

we present a practical algorithm for Byzantine fault-tolerant execution of long-running distributed applica-

tions in which replicated deterministic clients invoke operations on replicated deterministic servers. The

algorithm scales well to large replica groups, with roughly double the latency and message count when com-

pared to CLBFT, which supports only unreplicated clients. The algorithm supports both synchronous and

asynchronous clients, provides fault isolation between client and server groups with respect to both correctness

and performance, and uses a novel architecture that accommodates externally requested software upgrades

for long-running evolvable client applications.

Keywords: distributed algorithms, Byzantine agreement, fault-tolerance, replication, replicated clients

1 Introduction

This paper addresses the problem of Byzantine fault-tolerant (BFT) execution of long-running distributed

applications. Recent advances in distributed systems research have resulted in practical algorithms for con-

structing replicated data servers that continue to operate in the face of crashes, intermittent communication

failures, and malicious (Byzantine) attacks in which processes may collude or lie [7, 9]. These algorithms

support distributed applications in which client applications invoke operations on remote data servers with

the guarantee that the servers continue to respond correctly even if a bounded number of their replicas are

faulty or compromised. The fault-tolerant data servers are passive deterministic state machines that execute

operations only in response to external clients. Since the active portions of applications run outside the

system, on client hosts, the system cannot guarantee that applications continue to run.

This paper presents an algorithm for Byzantine fault-tolerant execution of replicated clients that access

remote data servers. To our knowledge, this is the first practical algorithm that supports Byzantine fault

tolerance for replicated clients that access replicated servers. The algorithm scales well, provides fault

isolation between the client and the server, and has a modular design. We envision this algorithm being

used in a shared infrastructure that supports the installation, evolution, and fault-tolerant execution of

long-running distributed applications [17].

We begin, in Section 2, with a brief description of the Castro and Liskov Byzantine Fault Tolerance

protocol for replicated deterministic state machines (CLBFT) [9], on which our protocol is based. Section 3

summarizes the contributions of the paper, including the key properties of our algorithm, and Section 4

discusses those properties in the context of related work. Section 5 presents a high-level overview of our

algorithm. Section 6 provides a brief review of the I/O automaton model [10], which is used in Section 7

to describe and reason about the correctness of our algorithm. Section 8 provides analysis of the time and

message complexity of the algorithm. Section 9 discusses optimizations, recovery, and garbage collection.

We conclude in Section 10 with a discussion of future work.

2 The CLBFT Protocol

Our algorithm builds upon CLBFT, a practical Byzantine agreement protocol for replicated deterministic

state machines. The CLBFT algorithm uses 3f +1 replicas, where at most f can be faulty. Messages can be

delayed, provided that the length of message delays does not increase faster than time (a weak assumption).

Cryptographic techniques [5, 14] are used to verify authenticity of messages, and message digests [15] are used

to reduce message size. The CLBFT algorithm for a mutating operation works roughly as follows. (Accessors

require less communication.) A client sends its request to a designated replica, called the primary, which

2

appends a sequence number and forwards it to the replicas in a pre-prepare message. Since the primary may

be faulty, the replicas multicast a corresponding prepare message to each other, to ensure that all were given

the same request and sequence number. Upon receiving 2f prepare messages matching the pre-prepare it

received from the primary, a replica multicasts a commit message to all the replicas. When it has matching

commit messages from 2f + 1 replicas (possibly including itself), a replica executes the requested operation

and sends the result to the client. Upon receiving f + 1 matching replies, the client accepts that return

value. If a client times out waiting for a reply (perhaps due to a faulty primary), it multicasts its original

request to all the replicas. The replica starts a progress timer if the operation has not yet proceeded to the

commit stage. Also, if the replica has not yet received a preprepare, it forwards the request to the primary.

When the operation completes, it replies to the client with the return value. If progress under the current

primary is unsatisfactory, the replicas switch to another primary in a view change operation. Since view

changes are expensive, progress timers adapt to prevent view changes from happening too often.

3 Contributions

We present a practical algorithm for Byzantine fault-tolerant execution of long-running distributed appli-

cations, in which replicated deterministic clients invoke operations on replicated deterministic servers. The

algorithm has the following desirable properties.

• Arbitrary long-running deterministic client applications continue to execute correctly provided that

the number of client replicas n is at least 3fc + 1, where fc is the maximum number of (possibly

Byzantine) faults to be tolerated in the client replica group.

• The algorithm uses CLBFT to guarantee that servers continue to execute operations correctly provided

that the number of server replicas m is at least 3fs + 1, where fs is the maximum number of (possibly

Byzantine) faults to be tolerated by the server replica group.

• The algorithm uses a designated responder in the server replica group to reduce the number of reply

messages sent from the server group to the client group.

• Faults are isolated between the client and server with respect to correctness. Servers continue to

execute correctly even if a client as a whole becomes faulty because the number of faulty client replicas

has exceeded fc. Similarly, non-faulty replicated clients continue to agree on their execution and make

progress even if more than fs server replicas are faulty.

• Faults are isolated with respect to performance. Even if the bounds on the number of faulty client

nodes are exceeded, faulty client replicas cannot force a view change at the server. Similarly, faulty

3

server nodes cannot force a view change at the client. Furthermore, the algorithm uses an inexpensive

protocol at the client replica group to select the designated responder, which is not necessarily the

server primary. This allows clients to select a new designated responder without incurring a view

change operation at either replica group.

• External operation requests can be executed on the client replica group, for example to perform logically

simultaneous software upgrades of long-running client applications.

• To support replicated clients, our algorithm incurs a modest amount of overhead when compared to

CLBFT for unreplicated clients: approximately twice the operation latency and number of messages

during normal operation. Clients groups of size one do not incur this overhead.

• The algorithm supports both synchronous and asynchronous clients, masking operation latency.

This is a difficult problem that does not lend itself to a simple solution. We use a modular architecture

which helps manage the complexity of the algorithm and simplifies reasoning about its correctness. A key

feature of this architecture is the use of CLBFT as a subroutine at both client and server. Our algorithm

“wraps” the CLBFT replicas, making it appear to them as if their clients are not replicated. Each client

replica is a twin, participating in an active group that encapsulates the behavior of the running application,

and a passive store that both accepts external requests for application upgrades and manages decisions that

are triggered asynchronously by the active portion. We reuse the server wrapper at the client store.

We use I/O automata [10] to describe and reason about our algorithm. We leverage the existing I/O

automaton description and proof for CLBFT [2] and use a proof technique [18] for modular reasoning about

distributed algorithms in terms of distributed subroutines. For performance, we piggyback information

on existing CLBFT messages, so we cannot treat CLBFT entirely as a black box. Instead, modularity is

achieved by reasoning about CLBFT in terms of well-formed sequences that characterize its behavior.

4 Related Work

Our work is concerned with Byzantine fault tolerance for replicated clients. Prior algorithms address

aspects of the problem, but none provide a complete practical solution to the problem of active replicated

clients that access passive replicated data servers.

Thema [11] provides a server wrapper for creating replicated BFT Web Services and an external service

wrapper that allows a replicated Web Service to access an external unreplicated Web Service safely. However,

Thema does not provide a mechanism for a replicated Web Service to access another replicated Web Service.

In the Byzantine fault-tolerant Domain Name Service (BFT-DNS) [1], each level in the BFT-DNS lookup

system is replicated, with replicated BFT clients invoking read operations on replicated BFT servers. The

4

primary at one level makes a call to the next level on behalf of its replicas. The replicas in the next level send

replies which are collected by the lower-level primary and forwarded to its peer replicas. A faulty replica

group can force a view change on the lower level by not replying to calls from the lower-level primary and

if the lower-level primary is also faulty it can collude with the server group to send quorums with different

result values to different replicas thereby producing replica inconsistency.

Fry and Reiter [6] presents a mechanism that allows replicated objects to invoke other potentially repli-

cated objects. They use quorum-based techniques instead of state machine replication. Client objects invoke

operations on a selected quorum of server objects. Clients refer to server objects using handles, which can

be passed in a call to another object. Certificates in the handle ensure that a quorum of handles is required

to invoke an operation. However, the dependance on client invocations to exchange state information on the

server side, as well as the exponential growth in the size of the certificates with each nesting step, drive up

the message complexity and the cost of certificate verification.

Immune [12] supports replicated clients that invoke operations on replicated servers. It uses a secure,

reliable, totally ordered multicast mechanism based on SecureRing [8] to ensure consistently ordered one-

time message delivery across replicas. This mechanism does not scale well to large replica groups since the

number of rounds of communication is proportional to the replica group size. Our algorithm uses only a

constant number of rounds of communication, so latency does not increase with the size of the replica group.

5 Overview

Our algorithm supports any number of client replica groups that access any number of shared replicated

servers. However, for ease of exposition, we describe the algorithm in terms of a single replicated client c

that invokes operations on a single replicated server s. We assume there are exactly m = 3fs +1 replicas for

s, named s1 . . . sm, and n = 3fc+1 replicas for c, named c1 . . . cn, where fs and fc are specified upper bounds

on the number of faulty replicas to be tolerated at the server and client, respectively. All assumptions made

in the system model of CLBFT [3] apply here, including the standard cryptographic assumptions and a

weak synchrony assumption that message delays do not grow faster than real time.

Each client replica ci is composed of an active client replica and a client store (or simply store) replica.

The active client has an oracle, a black box that captures the logic of the ongoing application. The store

acts as a passive data server that carries out agreement operations on behalf of the active client. Each active

client replica and its corresponding store replica reside on the same host.

The oracle models a deterministic application that requests operations on external servers and processes

their replies. The application may be synchronous (wait for the result of each request before issuing the next

5

request) or asynchronous (issue multiple operation requests before using their results). Since the oracle is

deterministic, we are guaranteed that if two non-faulty oracle replicas have experienced the same sequence

of requests and replies, then the next requests issued at both oracles will be the same. The reply to an

operation request may arrive from the server at different times at different client replicas, so a mechanism

is required to order the replies identically at each replica. Furthermore, since some nodes may be faulty

and the server may misbehave, it is necessary for the client replicas to agree on the reply value. Both of

these needs are met by the client store replica group, which agrees on the reply to each server operation and

places the result in a FIFO queue (in the execution order at the store) until it is consumed by the oracle

in a blocking operation. Since all oracles issue the same request sequence (including requests to dequeue

results), all non-faulty oracles receive the same results at the same points in their executions.

The algorithm is designed to minimize the number of messages between the client and server. Conse-

quently, we wish to avoid having all of the server replicas multicast replies to all of the client replicas. To this

end, the client group names a particular server replica as the designated responder (or simply, responder) for

each request. The responder is responsible for forwarding the reply from the server to all the client replicas.

The responder need not be the server primary, so a client group that deems the responder unsatisfactory

can select a new responder without forcing a view change at the server.

As an overview of the algorithm, we trace the execution of a request issued by the application. We begin

with normal operation, and then describe fault handling. Details are discussed in Section 7.

5.1 Normal Operation

When an application requests an operation on a remote server, its active client replica forwards the

request (with the identity of the current designated responder) to the primary of the server group. The

server primary waits for at least fc +1 matching requests, and then starts the CLBFT protocol at the server

by providing it with the (single) client request. The CLBFT protocol runs as a subroutine to execute the

operation. Then, rather than multicasting replies back to the 3fc + 1 client replicas, the server replicas

instead forward their replies to the designated responder. The responder waits for at least fs + 1 matching

replies and then sends to each of the active client replicas a single reply message that includes a bundle of

fs + 1 reply digest signatures as proof that the server group agreed on the reply.

When an active client replica receives a reply, it verifies the validity of the signature bundle and forwards

the reply to the client store, which uses CLBFT to agree upon the reply. Agreement on the reply is

necessary for fault isolation because a faulty server group could, for a given request, send different client

replicas “valid” replies containing different return values. Accepting those replies without agreement could

cause the behavior of non-faulty client applications to diverge. In the execute step of the CLBFT algorithm

6

at the store, each replica places its reply in a FIFO result queue for use by its application replica. When

the application (deterministically) decides to check for a reply to a previous request, it reads the first item

from the result queue, blocking if necessary until a result is available.

Since they reside on the same host, an active client replica and its corresponding store replica fail together.

Therefore, we do not multicast reply values back to the client replicas. Instead, each active client replica

trusts the reply in the result queue that was provided by its corresponding store replica.

5.2 Fault Handling

Each client replica starts a timer upon sending a request to a server primary. If the timer expires before

a reply is received, then there are three possible scenarios. (1) The server primary is faulty and discarded

the client requests; (2) The designated responder is faulty and did not send the response to some or all of

the active client replicas; or (3) The timeout value is too low for current network conditions.

When a client replica times out waiting for a reply, it resends the request to all m server replicas. If a

server replica receives at least fc +1 matching requests, the replica determines if agreement on the requested

operation has been started by the primary. If not, the server replica forwards the request bundle (including

the fc +1 matching requests) to the server primary. It also starts a view-change timer as defined in CLBFT.

If the replica has executed (or eventually executes) the operation under the current primary, it multicasts

the reply to all n client replicas.

If the number of faulty server replicas does not exceed fs, each active client replica eventually receives at

least fs + 1 matching replies, and the reply is then processed normally as described above.

5.3 Changing the Designated Responder

We wish to bound the additional traffic that could be caused by a slow or faulty designated responder. A

client replica can decide, at any time, that it is receiving poor service from the designated responder replica

si. When it makes this decision, it invokes an operation on the client store replica group to request a

designated responder change. When fc + 1 client replicas request a designated responder change, the client

store processes the request like any other, and places the reply in the result queue. When the reply comes

to the front of the queue, the active client replica consumes it and invokes future requests with the next

designated responder.

5.4 Faulty Server Groups

The number of faulty server replicas may exceed fs, in which case the server as a whole may exhibit faulty

behavior. A faulty server group may not provide a coherent response to a request, preventing the client

store from agreeing on the result. However, we cannot allow this to block the client application.

7

In the CLBFT protocol, an unreplicated client application is free to time out waiting for a response, handle

the exception, and ignore any future reply to that request. In our case, the client application is replicated.

Since we do not assume even loosely synchronized clocks, replicas may time out at different times. We cannot

allow client replicas to stop waiting for a reply solely on the basis of their local timers, because a delayed

reply may arrive after only some replicas have timed out, causing the behavior of non-faulty application

replicas to diverge. We handle the problem of faulty server groups as follows.

After issuing a request r to a server, a client replica may time out (or otherwise suspect that the server is

faulty) and wish to stop waiting for a reply to r. When this happens, the replica requests that a “suspect

faulty” operation be performed on the client store. If 2fc + 1 application replicas issue such requests, and if

the client store has not yet processed a reply for r, then the client store will agree to suspect the server as

faulty and inform the application replicas by placing a reply to the “suspect faulty” operation in the result

queue. All replicas will consume this result at the same point in their execution, handle the missing reply

as dictated by the application, and continue to exhibit identical behavior. Note that while all other store

operations can be processed with fc +1 matching requests, “suspect faulty” operations require 2fc +1. This

ensures that at least fc + 1 non-faulty replicas had sent r to the server, enough for the server to accept the

request and have a chance to execute the operation.

5.5 External Updates to Client State

Because we envision this algorithm being applied to critical long-running distributed applications, it is

important to accommodate upgrades to client programs without quiescing the system. These are accom-

plished as external operations on the client store, whose results become available to all application replicas

at the same point in their execution. Thus, behavior remains consistent across all non-faulty replicas. The

same mechanism can be used to inform applications of other events to which they may subscribe.

6 I/O Automata

We specify and reason about our algorithm using the I/O automaton model [10]. An I/O automaton a is

an (infinite) state machine, whose state transitions are called actions, denoted acts(a). These are partitioned

into input actions in(a), output actions out(a) and internal actions int(a). Input and output actions are

called external actions. Output and internal actions are called local actions and have preconditions defining

the sets of states in which they are enabled. Input actions are always enabled. An execution α is an

alternating sequence of states s and actions π such that each consecutive triple (s, π, s′) is in the transition

relation. The occurrence of an action is called an event. The trace of α, denoted trace(α), is the subsequence

consisting of all events for external actions. In this paper, we say that an execution α is fair if local actions

are given chances to execute infinitely often: if a local action remains enabled, eventually it will occur.

8

Automata a1 . . . ak may be composed to form an automaton a, provided each action is a local action of at

most one automaton ai. The states of a are the Cartesian product of the states of the component automata.

The actions of a are out(a) =
⋃

i∈I out(ai), int(a) =
⋃

i∈I int(ai) and in(a) =
⋃

i∈I in(ai) −
⋃

i∈I out(ai).

Component automata may share an action (e.g., as an output of one and an input of another). In the

composition, the component automata change state simultaneously, according to their individual transition

relations, when a shared action occurs. For Σ a set of actions, hideΣ(a) is an automaton identical to a except

that all actions in Σ are internal.

Given a trace α and a set of actions Σ, the projection of α on Σ, denoted α|Σ, is the subsequence of α

consisting of all events for actions in Σ. For automaton a, we use α|a as a shorthand for α|acts(a). Let a be

a composition of automata including ai. If s is a state of a, the projection s|ai is the state of ai in s. The

projection α|ai of execution α of a is the subsequence of α containing events in acts(ai) and their adjacent

states s projected on ai. It can be shown that traces (executions) of a composition yield traces (executions)

of the component automata when projected on those components.

7 The Algorithm

This section describes the algorithm in sufficient detail to reason more formally about its correctness.

Section 7.2 describes the actions that occur during normal execution of the protocol, and Section 7.3 discusses

actions for fault handling. In Section 7.4 reasons about the correctness of the algorithm as a whole. A

complete specification of the algorithm using the I/O automaton model is included the appendix.

The system consists of a non-faulty client group c, composed of n = 3fc + 1 replicas c1, . . . , cn, and a

non-faulty server-group s composed of m = 3fs + 1 replicas s1, . . . , sm. We model each server replica si as

the composition of a server back end sbei automaton that encapsulates the CLBFT protocol and a server

front end sfei automaton that implements our server protocol and wraps sbei. CLBFT actions are renamed

so that to sbei, it appears as if sfei is the network. Each client replica cj is composed of an active client

replica and a store replica. The active client replica is composed of automaton appj , which models the

application and encapsulates the oracle, and a client front end cfej automaton that implements our client

protocol. The store replica, like any other server, is composed of an sfej and a sbej automaton. The

cfe and sfe automata communicate over a message channel mc, which models the network. The system

S is the composition of these automata with mc. We take the liberty of using a replica and its identifier

interchangeably, and similarly for groups and group identifiers.

7.1 Communication Model

The automaton mc is an asynchronous multicast message channel. A message m is sent by replica i to

replicas in set X with action filter-to-channel(m,X)i, and m is delivered to replica j (or is received

9

by j) with action channel-to-filter(m)j . The message channel defines the former as an input, and the

latter as an output action; the sfe and cfe automata define the former as an output and latter as an input

action. We define the message channel so that, in a fair execution of S, a message is eventually delivered to

all non-faulty recipients intended by the sender (and possibly others). We say a message m is in transit to

replica i if either, for some X with i ∈ X, if it is waiting to be delivered or has been received by replica i

with action channel-to-filter(m)i.

7.2 Normal Operation

We consider the execution of a request from a non-faulty client group c to a non-faulty server group s.

7.2.1 Client Send Request

The application appi at each client replica i schedules requests to be executed with the output action

app-to-cfe(〈schedule, t, g, o〉)i for some timestamp t, server group g and operation o. The same input

action at cfei uses this information to create a CLBFT request r = 〈request, o, t, c〉σc , where c is the replica

group of i and σc the signature for the request using the client group’s shared private key. In addition, a

request bundle (or just bundle when context is clear) b = 〈d, ρ, i〉σi is created, where d is the digest of the

CLBFT request r and ρ is the designated responder for the server group g. The designated responder is

calculated deterministically using the set responder-seqi by the client replica as the remote replica that will

send replies on behalf of all replicas in the server group. (The operation of the responder is discussed in more

detail below in Section 7.2.2.) We define the pair 〈r, b〉 of CLBFT request and request bundle as an extended

request. Finally, app-to-cfe(〈schedule, t, g, o〉)i adds tuple 〈g, r, b〉 to requests-new i, the set of messages to

be sent out. Another internal action process-server-request(g, r, b)i adds the extended request to the set

channel-bufferi of outgoing channel messages to be delivered to primary k of g. It also adds the tuple 〈g, r, b〉

to the the set timer-bufferi of outgoing timer messages, and the set requests-currenti, used later to verify

the correctness of replies from the server. This causes the output action filter-to-channel(〈r, b〉, {k})i

to be enabled, which sends the message on the channel to k, and the action cfe-to-timer(g, r, b)i to be

enabled, which starts the timer for this request when executed. The following lemma asserts the correctness

of this process.

Lemma 1 (Application schedule to Extended Request). Let β = αα′ be a fair execution and

app-to-cfe(〈schedule, t, o, g〉)i be the final event of α, for some timestamp t, operation o, group g and non-

faulty replica i in group c. Then α′ contains the event filter-to-channel(〈〈request, o, t, c〉σc , 〈digest(m), ρ, i〉σi〉, {k}),

with k the primary of group g and ρ the responder for g.

A set of extended requests match if it contains identical CLBFT requests with bundles correctly signed

10

by distinct replicas and that all name the same designated responder. We assume that each client replica

begins execution with identical application state, and since the transition is deterministic, the sequence of

operations scheduled is the same at each replica. (In Section 7.2.3 we describe how consistent application

states across replicas are maintained during execution.) Consequently, there is some state in which a set

of 2fc + 1 matching extended requests for r is in transit to server primary k, one sent by each non-faulty

replica in group c.

7.2.2 Server Execution

The individual requests are eventually delivered to the primary by the action channel-to-filter(〈m =

〈request, o, t, c〉σc , 〈d, ρ, i〉σi〉)k where the request and bundle are added to the set requests-incomingk.

When fc + 1 matching requests have been received, request-confirm(〈request, o, t, g〉σg)k becomes en-

abled, which adds the matching set of bundles to the set requests-currentk and adds the CLBFT request to

the set sbe-bufferk of messages to be delivered to the local back-end sbei. Delivery by action sfe-to-sbe(m)k

starts the CLBFT operation in execution, and we expect a non-faulty primary to follow with a pre-prepare

message to the other replicas in the server group. The server wrapper intercepts this outgoing message with

action sbe-to-sfe(p = 〈pre-prepare, v, n,m〉, R)k and creates an extended pre-prepare 〈p, S〉, with S the

set of fc + 1 signed bundles saved in requests-currentk for m. These piggybacked bundles serve as proof to

other server replicas that at least one non-faulty client replica sent the request; without this, a single faulty

client replica could collude with a faulty primary to convince the server to execute incorrect requests.

Lemma 2 (Extended Requests to Extended Pre-prepares). Let β = αα′ be a fair execution and q be

the final state of α. If q is the first state in which fc + 1 matching extended requests are in transit to a non-

faulty server primary i, then α′ contains either the event filter-to-channel(p, X)i where p is the corre-

sponding extended pre-prepare and X the set of server group identifiers, or the event channel-to-filter(n)i

with n an extended new view message.

When wrappers at each replica receive the extended pre-prepare with action channel-to-filter(〈p, S〉)i,

the authenticity of the signed bundles S is verified and, if correct, they are saved in requests-currenti just

as at the primary. The replicas then forward the CLBFT pre-prepare message into their local back end.

In normal operation, the CLBFT protocol proceeds unmodified from here through the prepare and commit

stages. After the individual server replicas execute the operation, they send CLBFT reply messages to the

client. For later convenience, we assume replies are sent out in the order in which they are executed, a minor

change that does not affect the correctness of CLBFT.

11

Lemma 3 (Extended Pre-prepare to Reply). Let β = αα′ be a fair execution and q be the final state

of α. If q is the first state in which an extended pre-prepare p is in transit to a non-faulty server replica i,

then α′ contains the event sbe-to-sfe(r)i with r the corresponding CLBFT reply.

These replies are intercepted by the wrappers in action sbe-to-sfe(m = 〈reply, v, t, g, c, r〉)i and for-

warded to the designated responder (instead of the client, as intended by CLBFT) as extended replies

〈m, {〈i, σs〉}〉, consisting of the CLBFT reply along with a tuple consisting of the signature on the reply

and the replica’s own identifier. Information in the bundles saved in requests-currenti is used to determine

the agreed-upon responder. A set of extended replies match when the CLBFT replies are identical, the

signatures for each are correct, and the signers are distinct.

Lemma 4 (Reply to Extended Reply). Let β = αα′ be a fair execution and sbe-to-sfe(r)i be the final

event of α, for some reply r. If the group g that formed the request is not twini (a co-located cfe) then α′

contains the event filter-to-channel(m,X)i with m = 〈r, S〉 the corresponding extended reply and either

X is either {responder(m)} or the set of replicas in g.

The replies are received by the responder ρ with action channel-to-filter(m,S)ρ and added to the set

replies-incomingρ. The precondition for action reply-confirm(t, c, r)ρ becomes enabled when there exists

a set fs + 1 matching extended replies for the request for client group c with timestamp t with result r.

Upon executing, an extended reply forward is created to send to each of the client replicas, consisting of the

original CLBFT reply and the corresponding set of fs +1 signature–identifier pairs. This set serves as proof

of correct execution by the server group to each of the client replicas. The n extended reply forwards sent

by the designated responder avoid an m× n broadcast of the reply.

Lemma 5 (Extended Replies to Extended Reply Forwards). Let β = αα′ be a fair execution and q

be the final state of α. If q is the first state in which fc +1 matching extended replies are in transit to a non-

faulty server replica i, then α′ contains the event filter-to-channel(m,X)i, where m is the corresponding

extended reply forward and X is the set of client replicas in the group that formed the original request.

7.2.3 Client Receive Reply

After the responder sends an extended reply forward m = 〈r′, S〉 to a client replica i, that replica even-

tually receives the reply with input action channel-to-filter(m)i, which verifies the validity of the

signatures and adds the reply–signatures pairs to the set replies-incoming i. When at least fs + 1 pairs

are present in set replies-incoming i (which is immediate in case the responder is non-faulty) and when

a waiting request m = 〈g, r, b〉 is in requests-currenti that corresponds to the reply, the internal action

12

process-replies-incoming(m)i becomes enabled, whose execution removes the request from the waiting

set, constructs an extended request rµ (using the same timestamp as the reply) for the client store to apply

the result and adds it to the set of outgoing requests, requests-new i. The action process-server-request

(that also prepared the request for the remote server) then creates an apply-result request for the store

primary kµ, and filter-to-channel(rµ, {kµ})i sends it to kµ via the channel.

Lemma 6 (Extended Reply Forward to apply-result Extended Store Request). Let β = αα′ be

a fair execution and q be the final state of α. If q is the first state in which an extended reply forward r is

in transit to a non-faulty client replica i, then α′ contains the event filter-to-channel(rµ, {kµ})i, where

rµ is the apply-result extended request for r, with kµ the identifier of client store primary.

This sequence of actions takes place at each non-faulty client replica, so eventually there are at least fc +1

matching extended requests for an apply-result operation in transit to the store primary. Assuming that

the client group, and hence client store (i.e., the composition of server front-ends and back-end automata)

is non-faulty, we expect to receive a reply from the store that contains an agreed upon result for the prior

request. This result could either be the one proposed by client replica i or, in the case of a faulty server, an

abort message, as described in Section 7.3.3. However, since the client store replicas are co-located with

the client group replicas, cfei receives the store reply r
′
µ directly with action sfe-to-cfe(r

′
µ)i instead of

via the channel. As stated above, we assume a slightly modified CLBFT implementation that sends replies

in execution order. As the replies are delivered to the client front-end, they are appended to the end of the

queue store-repliesi and the corresponding request is removed from requests-currenti.

Lemma 7 (apply-result Extended Store Requests to Reply Queue). Let β = αα′ be a fair execution

and q be the final state of α. If q is the first state in which a set of fc + 1 matching extended requests with

operation o and tag(o,apply-result) are in transit to a non-faulty client store primary kµ, then α′ contains

the event sfe-to-cfe(r)i for all non-faulty replicas in the client group, where r is the corresponding extended

reply containing either the result proposed in o or 〈abort, t〉, with t the timestamp of the request.

Automaton appi schedules requests until it becomes blocked because it requires the result of some request

to make further progress. When it becomes blocked, the output action app-to-cfe(〈lookup〉)i can execute,

which causes lookup-pending i to be set at cfei. The output action cfe-to-app(m)i can then execute, where

m is the head of the reply queue. At this point, the application updates its state using the new result, and

can schedule further requests. The following lemma states that the results accepted by the application are

identical at each non-faulty replica. In the following,M is the universe of messages.

13

Lemma 8 (Determinacy of Application Input). Let β be the trace of a fair execution, and Ai =

{cfe-to-app(m)i | m ∈ M} and Aj = {cfe-to-app(m)j | m ∈ M} for non-faulty client replicas i and j.

Then the projections β|Ai and β|Aj are equal up to the renaming {cfe-to-app(m)i 7→ cfe-to-app(m)j | m ∈

M}.

7.3 Fault Handling

7.3.1 Unresponsive Designated Responder

If the designated responder is faulty or providing client replicas poor service, they may retransmit a request

to all server replicas, e.g. after having timed out waiting for a reply. If a reply is in response to a multicast

retransmission by the client replicas, then each server replica will respond directly to the client after receiving

fc + 1 matching requests. After a client replica i has received fs + 1 correct extended reply messages with

matching results, internal action process-incoming-replies creates a new store request to apply the result,

just as in Section 7.2.3.

The designated responder for a server group need not be the server primary, and changing the responder

does not require a view change. At any time, a client replica may vote to change the designated responder

at server group g by sending a request to the store with operation 〈responder-change, g〉. If it is ever the

case that fc + 1 requests to change the sender are received at the store from distinct clients, the store will

process the request to change the responder and notify all client replicas at the same logical time.

Lemma 9 (Extended Replies to Extended Store Request). Let β = αα′ be a fair execution and s

be the final state of α. If s is the first state in which fs + 1 matching extended replies 〈r, S〉 are in transit

to a non-faulty client replica i, then α′ contains the event filter-to-channel(rµ, {kµ})i, where rµ is the

subsequent extended request of r and kµ the identifier of client store primary.

7.3.2 Faulty Client Group

If the number of faulty client replicas exceeds the fc, we still want non-faulty server groups to to function

correctly, with consistent state at all non-faulty nodes. The sfe automata only change the CLBFT protocol

by requiring fc+1 matching client requests before processing an operation, so the case of a faulty client group

reduces to the case of a single faulty client in CLBFT, and safety is ensured. Information is piggybacked

on existing CLBFT messages, but messages to or from non-faulty clients are not dropped, so view changes

due to a faulty or slow primary are not hindered. One potential concern is a faulty client group sending

two matching sets of extended requests that contain identical CLBFT requests but different designated

responders. A faulty server primary could collude with the client group and distribute different sets of

14

signed bundles to different server replicas. In this case, the designated responder might not ever receive

enough extended reply forwards to achieve quorum on the server side to send the extended reply to the

client group. This does not affect correctness, though, because the client group is faulty to begin with.

7.3.3 Faulty Server Group

A faulty server group (in which the number of faulty replicas exceeds fs + 1) should not be able to cause

diverging application state at client replicas or prevent the client application from making progress. Client

replicas are individually satisfied with a reply from a server after receiving fs + 1 correct signatures for a

particular result, but a faulty server group could sign different results for different replicas. This is solved by

using the client store. Each client replica submits its result to the store primary as a request to write to the

store, and the request is executed only when the store primary has an fc + 1 quorum of matching requests.

In this way, the clients use the store for agreement on the result of the remote server request. However, it

could be the case that two quorums can be formed by the clients’ requests (e.g., if the faulty server gives

one answer to half of the replicas and another to the other half). In this case, the store primary makes

the decision about which value to commit (e.g., whichever quorum it receives first), and all replicas receive

that result in their incoming queue at the same logical time. All store requests that correspond to a given

server request use the same timestamp. If a second quorum of store requests arrives at the store primary

after it has started the operation for the first one, the store primary will assign it a sequence number and

process it, but as defined by CLBFT the second result will not execute at any of the store replicas, ensuring

consistency.

7.4 Correctness

Our correctness condition is specified as the composition of an application app (as described earlier) with

a single unreplicated server automaton server, whose external signature is as follows.

Input: app-to-cfe(〈schedule, t, g, o〉)i

app-to-cfe(〈suspect-faulty, t〉)i

app-to-cfe(〈lookup〉)i

Output: cfe-to-app(〈t, r〉)i

We refer to the composition of app and server as A. In S, the app automaton uses a cfe automaton as

a proxy to the server. In A, we strip away cfe and compose app directly with the server automaton. Note

that server is essentially the same as in [2], with the exception that it handles asynchronous client requests.

For our system S, however, the client falls within the fault-tolerance boundary, and so our correctness

condition must specifically address the operation of the application. The following theorem states that our

system S implements the system A.

15

Theorem 1 (Correctness). Let β be a fair execution of S in which the number of faulty server replicas does

not exceed fs and the number of faulty client replicas does not exceed fc. Let Σ =
⋃

i∈c (acts(appi)− {app-to-cfe(〈suspect-faulty, t〉)i | t ∈ T})

Then there exists a fair execution γ of A such that, for any non-faulty client replica i, (β|appi)|Σ = (γ|app)|Σ

up to renaming of identifier suffixes.

The execution γ can be constructed by induction on the length of β. Starting with A in its initial

state, we insert steps into its execution in order as we scan trace(β). For the external actions, we add

app-to-cfe(〈schedule, t, g, o〉) to γ after scanning the fc + 1 occurences of that action with (with dis-

tinct identifier suffix), app-to-cfe(〈suspect-faulty, t〉) after scanning 2fc + 1 occurences of that action,

and both app-to-cfe(〈lookup〉) and cfe-to-app(〈t, r〉) after scanning fc + 1 occurences of the latter.

For the internal actions, we add execute-result(t, g, o) after scanning fs + 1 occurences of the action

sbe-to-sfe(m = 〈reply, v, t, c, i, r〉σi), where m is the reply for request 〈request, o, t, c〉σc , and we add

execute-abort(t, g, o) after scanning fc + 1 occurences of cfe-to-app(〈t, 〈abort, t〉〉).

Moreover, a request is aborted by the client store only if at least fc + 1 non-faulty clients suspected the

server faulty. This implies that cfe-to-app(t, 〈abort, t〉) only appears in γ after the event app-to-cfe(〈suspect-faulty, t〉).

The following theorem states this formally.

Theorem 2 (abort Reply only from suspect-faulty Requests). Let β = αα′ be a fair execution of

S and let cfe-to-app(〈t, 〈abort, t〉〉)i be the first event of α′ for some timestamp t and non-faulty replica

i in client group c. Then α contains at least 2fc + 1 events app-to-cfe(〈suspect-faulty, t〉)j for distinct

replicas j in group c.

8 Complexity Analysis

We analyze the latency, message count, and total message size during normal operation in terms of the

client replica group size n = 3fc + 1 and server replica group size m = 3fs + 1. Let ` be the maximum

length of the application’s operation request and server’s return value. We build on CLBFT, which supports

only unreplicated clients and incurs 4 message delays (3 for reads), O(m2) messages and O(m2 + `m) total

message size. Analysis for each stage of our algorithm during normal operation is shown in the table below,

in which we assume message digests and digital signatures are of constant length.

Algorithm stage Latency (rounds) Message count Total message size
1. Send request to server 1 O(n) O(`n)
2. Server agreement (CLBFT) 4 (3 for reads) O(m2) O(m2 + mn + `m)
3. Responder to client group 1 O(n) O(mn + `n)
4. Forward reply to client store 1 O(n) O(`n)
5. Client store agreement (CLBFT) 3 (local reply) O(n2) O(n2 + `n)
Total 10 (9 for reads) O(m2 + n2) O(m2 + n2 + mn + `m + `n)

16

Taking constants into account, our algorithm incurs approximately twice the number of messages and

total message size as CLBFT, as shown in the Appendix. If we assume the replica groups are the same size

and additionally that requests and replies are of constant length, we have a latency of O(1), message count

of O(n2), and total message size of O(n2).

9 Discussion

This section discusses optimizations, checkpointing, recovery, and garbage collection.

9.1 Optimizations

For uniformity of the CLBFT wrappers, each active client replica forwards to its store primary the reply

received from the designated responder in order to carry out agreement on the reply value. However, since

fs + 1 server replicas sign the reply, the primary could safely begin the CLBFT agreement on the reply

without waiting for fc messages from its peers, so these messages need not be sent by a replica unless it

times out waiting for a pre-prepare. This reduces latency by eliminating stage four, shown in Section 8.

If the number of faulty server replicas exceeds fs, they could force the client group to run superfluous

agreements by sending different valid reply bundles to different client replicas. To avoid this extra commu-

nication, the sfe for each store wrapper could check reply and pre-prepare messages for conflicting bundles,

which would constitute proof that the server is faulty. In such cases, a replica could initiate a “suspect

faulty” operation and participate only in a “suspect faulty” agreement for that timestamp value.

A faulty server primary can force its replicas to multicast their replies by delaying the preprepare. We

believe these extra messages can be bounded without giving a faulty client group the opportunity to force a

view change. Suspicious clients could give server replicas, in turn, the opportunity time the responsiveness

of the primary by funnelling each initial request through a different server replica. Server replicas would

gossip about primary responsiveness and, when sufficiently many agree, perform a view change.

Applications are deterministic, but replicas may run at different speeds. If fewer than fc + 1 applications

run far enough ahead, they may time out waiting for a reply from the server because too few of their peers

have issued requests in time. The fast replicas would then multicast their requests to the server replicas,

causing unnecessary message traffic. In practice, we expect client replicas to be kept sufficiently synchronized

by occasionally consuming replies from their result queues in blocking operations. However, it is conceivable

that if an application issues many asynchronous requests before blocking on a reply, some applications may

run significantly ahead. Byzantine fault-tolerant clock synchronization [4] within the active client replica

group could be used to overcome this problem by more closely aligning time-out periods for requests.

A short time-out period may cause a replica to multicast requests unneccessarily. To adapt to network

conditions, our operation timer can double the timeout period whenever a timeout occurs. Since message

17

delays do not grow faster than time, the value will eventually stabilize. Timeout values can be reset as part

of the proactive recovery mechanism, as in CLBFT.

9.2 Recovery

The checkpoint and recovery mechanism of the CLBFT algorithm can be leveraged to preserve the state

of the additional components on both client and server sides. By synchronizing on the consumption of the

result queue to a particular store operation sequence number, we can ensure that each checkpoint done by

the store contains consistent state information for all replicas, including the state of the cfe and the app.

9.3 Garbage collection

Our formal algorithm description assumes unbounded space at each replica. This section describes how

to bound the space required at each replica for non-faulty cfe and sfe replicas.

At the cfe, the only source of garbage is the reply buffer that accepts extended-replies from the channel.

One could imagine having the cfe accept replies only to requests that it sent earlier. However, the replica

may have fallen behind the other client replicas, in which case it could eventually make the request and

then time out due to the lack of a reply (which it had earlier discarded) and multicast the request to all the

server replicas. Therefore, we need a mechanism that bounds the space required by the reply buffer while

minimizing the risk of discarding valid replies to requests the cfe may make in the future.

To this end, we use a high watermark and low watermark for timestamps. The low watermark of a

replica is the lowest timestamp among the outstanding requests. The high watermark is some constant W

greater than the low watermark. The app will only send requests with timestamps in the range between the

watermarks. The cfe will discard any replies that fall outside the range between the two watermarks. If

the cfe buffers only one extended-reply for a given timestamp from a given replica, we can bound the size

of the reply buffer as the product of W and the number of known replicas. By tuning W , one can trade off

space usage against the risk of an unnecessary time-out and multicast.

At the sfe there are two potential sources of garbage. The first is the set requests-incoming i that collects

incoming requests. To bound this, the sfe can keep a separate incoming queue of a maximum size Lg for

each known replica in group g. The constant Lg will be known by client replicas and non-faulty client

replicas will ensure that no more than Lg incomplete requests to that server exist at any given time in

their execution. This bounds the total number of elements in the incoming queues for each client group.

The second source of garbage at the sfe is the set replies-incoming i that holds extended reply messages

from other server replicas. If a sfe replica only accepts replies to a known request that stipulated it as the

designated responder, it runs the risk that it didn’t know about the request since it has fallen behind the

other replicas. (It can still act as the responder if it forms a quorum of replies.) However, if a replica keeps

18

all replies, then faulty replicas could swamp the cfe with replies to requests that were never made, disguised

as replies to future requests. Buffering only a fixed number of replies from each of the other server replicas

places an upper bound on space. Various heuristics could be used to selectively purge old replies for best

performance. Since the responder is only an optimization, discarding old replies does not affect correctness.

10 Future Work

We plan to implement our algorithm using CORBA [13] and the BASE [16] library. We will first imple-

ment a version without any of the stated optimizations and gradually incorporate each optimization in a

configurable manner. This implementation will be used to conduct a comprehensive performance analysis,

verify the practicality of our algorithm, and measure the impact of each optimization.

References

[1] S. Ahmed. A Scalable Byzantine Fault Tolerant Secure Domain Name System, 2001. Master’s thesis,

M.I.T.

[2] Miguel Castro and Barbara Liskov. A Correctness Proof for a Practical Byzantine-Fault-Tolerant

Replication Algorithm. Technical Report MIT-LCS-TM-597, M.I.T., Cambridge, MA, USA, 1999.

[3] Miguel Castro and Barbara Liskov. Practical Byzantine Fault Tolerance. In Third Symposium on Op-

erating Systems Design and Implementation (OSDI), New Orleans, Louisiana, February 1999. USENIX

Association, Co-sponsored by IEEE TCOS and ACM SIGOPS.

[4] Ariel Daliot, Danny Dolev, and Hanna Parnas. Linear Time Byzantine Self-Stabilizing Clock Syn-

chronization. In Proceedings of the 7th International Conference on Principles of Distributed Systems

(OPODIS-2003), La Martinique, France, December 2003.

[5] Whitfield Diffie and Martin E. Hellman. New Directions in Cryptography. IEEE Transactions on

Information Theory, IT-22(6):644–654, 1976.

[6] Charles Fry and Michael Reiter. Nested Objects in a Byzantine Quorum-Replicated System. In 23rd

International Symposium on Reliable Distributed Systems (SRDS), pages 79–89. IEEE, 2004.

[7] Garth R. Goodson, Jay J. Wylie, Gregory R. Ganger, and Michael K. Reiter. Efficient Byzantine-

Tolerant Erasure-Coded Storage. In Proceedings of the 2004 International Conference on Dependable

Systems and Networks (DSN’04), pages 135–144. IEEE, 2004.

19

[8] Kim Potter Kihlstrom, L. E. Moser, and P. M. Melliar-Smith. The SecureRing group communication

system. ACM Trans. Inf. Syst. Secur., 4(4):371–406, 2001.

[9] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine Generals Problem. ACM Trans-

actions on Programming Languages and Systems, 4(3):382–401, 1982.

[10] Nancy Lynch and Mark Tuttle. An Introduction to Input/Output Automata. CWI Quarterly, 2(3):219–

246, September 1989.

[11] M. G. Merideth, A. Iyengar, T. Mikalsen, S. Tai, I. Rouvellou, and P. Narasimhan. Thema: Byzantine-

Fault-Tolerant Middleware forWeb-Service Applications. In Proceedings of the 15th Annual 24th IEEE

Symposium on Reliable Distributed Systems, 2005.

[12] Priya Narasimhan, Kim Potter Kihlstrom, Louise E. Moser, and P. M. Melliar-Smith. Providing Sup-

port for Survivable CORBA Applications with the Immune System. In International Conference on

Distributed Computing Systems, pages 507–516, 1999.

[13] Object Management Group. The Common Object Request Broker: Architecture and Specification, 2.5

edition, September 2001.

[14] Bart Preneel and Paul C. van Oorschot. MDx-MAC and building fast MACs from hash functions.

Lecture Notes in Computer Science, 963:1–14, 1995.

[15] R. Rivest. The MD5 Message-Digest Algorithm, 1992.

[16] Rodrigo Rodrigues, Miguel Castro, and Barbara Liskov. BASE: Using Abstraction to Improve Fault

Tolerance. In SOSP ’01: Proceedings of the eighteenth ACM symposium on Operating systems principles,

pages 15–28, New York, NY, USA, 2001. ACM Press.

[17] Haraldur D. Thorvaldsson and Kenneth J. Goldman. Architecture and execution model for a surviv-

able workflow transaction infrastructure. Technical Report WUCSE-2005-61, Department of Computer

Science and Engineering, Washington University in St. Louis, December 2005.

[18] Jennifer L. Welch and Nancy A. Lynch. A modular drinking philosophers algorithm. Distributed

Computing, 6(4):233–244, 1993.

20

A Background Theory and Notation

A background theory (i.e., uninterpreted function symbols and axioms constraining their values) is as-
sumed in the automata definitions, defined below.

1. A choice operator ε is used to select an arbitrary element of a set. The result is defined only if the
set is non-empty, and if the set contains only one element, then the result of the choice is just that
element.

(a) ∀X. ∃x. x ∈ X ⇒ ∃y. y ∈ X ∧ y = εX

(b) ∀X. ∃x. X = {x} ⇒ x = εX

2. A collision-free message digest is assumed.

(a) ∀m,m′. digest(m) = digest(m′)⇔ m = m′

3. The set of possible digital signatures of message m by signer c does not overlap with the signatures of
any other message or responder.

(a) ∀m,m′, c, c′. ¬(m = m′ ∧ c = c′)⇒ signature(m, c) ∩ signature(m′, c′) = ∅

4. Construction and destruction of queues.

(a) ∀x. head(append(∅, x)) = x

(b) ∀`. ∀x, y. head(`, x) = x⇒ head(append(`, y)) = x

(c) ∀x. tail(append(∅, x)) = ∅
(d) ∀`,m. ∀x, y. tail(`) = m⇒ tail(append(`, y)) = append(m, y)

5. A scaling function scale() which returns a replica identifier given a group identifier and natural number.
This is used instead of mod to calculate the primary from a given view number and designated responder
from a sequence number because we do not assume identifiers in N.

6. Application behavior is encapsulated in two oracle functions: oracle-update() updates the application
state based on the result of a request, and oracle-requests() produces a set of requests to be scheduled
asynchronously and another.

7. The function apply() executes an operation at the server and updates a state variable. It is identical
to the function g in [2].

Variable names in the automata definitions are selected to coincide with their domain: o ∈ O, the
set of operations; t ∈ T , the set of timestamps; g ∈ G, the set of group identifiers; c, i, j, ρ ∈ R and
X ⊆ R, the set of replica identifiers; v ∈ V , the set of view numbers; n ∈ N, the set of sequence numbers;
m, r ∈ M, the universe of messages; σ ∈ S, the set of digital signatures; d ∈ D, the set of message digests;
S ∈ D×R×R×S, the signed digests. For a message m and replica c, the notation mσc is defined as 〈m,σ〉,
with σ ∈ signature(m, c).

Free variables in set comprehensions are implicitly existentially quantified.

21

B CLBFT Characterization

We adopt a version of the CLBFT protocol that allows a given client to issue concurrent requests (with
different timestamps) to the same server, where the server may commit the concurrent requests in any order.
In other words, we allow the CLBFT protocol to commit requests in an order that differs from the timestamp
order assigned by the client.

We characterize the behavior of the CLBFT protocol as the set of allowable sequences of input and output
actions that may occur in fair executions.

Lemma 10 (CLBFT Operational Characterization). Let β = αα′ be the projection of a fair execution
of the CLBFT protocol onto non-faulty server replica i, and let π be the final event of α. Assume that in the
final state of α, viewi = v and primary(v) = k, and that R is the set replica identifiers in the replica group.
Then the following propositions hold for β:

1. If π = sfe-to-sbe(〈request, o, t, c〉σc)i, and i 6= k, then α′ contains the event
sbe-to-sfe(〈request, o, t, c〉σi , {k})i.

2. If π = sfe-to-sbe(m = 〈request, o, t, c〉σc)i, and i = k, then α′ contains either the event
sbe-to-sfe(〈pre-prepare, v′, n,m〉σi , R− {i})i for some v′ ≥ v and n, or the event
sfe-to-sbe(〈new-view, v + 1,V,O〉σj)i for some V and O.

3. If π = sbe-to-sfe(〈pre-prepare, v, n,m〉σi , R− {i})i and m = 〈request, o, t, c〉σc, then α′ contains
contains the event sbe-to-sfe(〈reply, v′, t, c, i, r〉σi , {c})i, for some v′ ≥ v and r.

4. If π = sfe-to-sbe(〈pre-prepare, v, n,m〉σk
)i and m = 〈request, o, t, c〉σc, then α′ contains the

event sbe-to-sfe(〈reply, v′, t, c, i, r〉σi , {c})i, for some v′ ≥ v and r.

5. If π = sfe-to-sbe(〈new-view, v′,V,O〉σj)i, then for each m = 〈request, o, t, c〉σc and
p = 〈pre-prepare, v′, n,m〉σk

∈ O, then α′ contains the event sbe-to-sfe(〈reply, v′, t, c, i, r〉σi , {c})i,
for some v′ > v and r.

6. If π = sbe-to-sfe(〈view-change, v +1,P, j〉σj , R−{i})i, then for each m = 〈request, o, t, c〉σc and
p = 〈pre-prepare, v, n,m〉σk

∈ P, then α contains either the event sfe-to-sbe(m)i, the event
sfe-to-sbe(p)i, or the event sfe-to-sbe(〈view-change, v+1,P, j〉σj)i for some j and P with p ∈ P.

7. If π = sbe-to-sfe(〈new-view, v + 1,V,O〉σj , R − {i})i, then for each m = 〈request, o, t, c〉σc and
p = 〈pre-prepare, v, n,m〉σk

∈ O, then α contains either the event sfe-to-sbe(m)i, the event
sfe-to-sbe(p)i, or the event sfe-to-sbe(〈view-change, v+1,P, j〉σj)i for some j and P with p ∈ P.

C I/O Automata Definitions

This appendix contains complete I/O automaton specifications for the Unreplicated Correct Server (server),
Client Application (app), Client Front End (cfe), Server Front End (sfe), and Message Channel (mc) au-
tomata.

C.1 Unreplicated Correct Server: server

This automaton specification captures the behavior of a correct unreplicated server.

22

Signature

Input: app-to-cfe(〈schedule, t, o, g〉)i

app-to-cfe(〈suspect-faulty, t〉)i

app-to-cfe(〈lookup〉)i

Internal: execute-result(〈t, g, o〉)i

execute-abort(〈t, g, o〉)i

Output: cfe-to-app(〈t, r〉)i

State

The state of the server.
val ∈ V

Set when the app wants a reply.
lookup-pending i ∈ Bool, initially false

Incoming request set.
ini ⊂M

Outgoing reply set.
outi ⊂M

Executed operation set.
executedi ⊂M

Aborted operation set.
abortedi ⊂M

Input Transitions

This input action executes when the app that represents a correct unreplicated client makes a request to the
server by scheduling the operation o with the timestamp t. Group g must be the id of the current group.
app-to-cfe(〈schedule, t, g, o〉)i

Eff:
ini ← ini ∪ {〈t, g, o〉}

A client application tells the server that it suspects that it is faulty. The unreplicated server ignores this.
app-to-cfe(〈suspect-faulty, t〉)i

Eff:

A client application requests the result of some request it has previously made.
app-to-cfe(〈lookup〉)i

Eff:
lookup-pending i ← true

23

Internal Transitions

The server executes the operation found in a request and returns the value.
execute-result(t, g, o)i

Pre:
〈t, g, o〉 ∈ ini

Eff:
ini ← ini − {〈t, g, o〉}
if t /∈ executedi

executedi ← executedi ∪ {t}
〈r, val〉 ← apply(i, o, val)
outi ← outi ∪ {〈t, g, r〉}

The server chooses not to execute the operation in a request, and instead returns an abort message.
execute-abort(t, g, o)i

Pre:
〈t, g, o〉 ∈ ini ∨ t ∈ abortedi

Eff:
ini ← ini − {〈t, g, o〉}
if t /∈ abortedi

abortedi ← abortedi ∪ {t}
r ← 〈abort, t〉
outi ← outi ∪ {〈t, g, r〉}

Output Transitions

The server replies to a client application with the result of its execution.
cfe-to-app(〈t, r〉)i

Pre:
lookup-pending i ∧ 〈t, r〉 = head(outi)

Eff:
lookup-pending i ← false
outi ← tail(outi)

C.2 Application Automaton: appi

This automaton specification captures the behavior of the client application.

Signature

Input: cfe-to-app(〈t, r〉)i

Output: app-to-cfe(〈lookup〉)i

app-to-cfe(〈schedule, t, g, o〉)i

app-to-cfe(〈suspect-faulty, t〉)i

State

The state of the oracle.

24

statei ∈M

Whether the oracle is blocked waiting for a reply.
blockedi ∈ Bool, initially false

Scheduled requests.
scheduledi ⊆M, initially oracle-requests(statei)

Requests that have been sent, but lack a result.
pending i ⊆M, initially ∅

Input Transitions

When this action fires the app receives a reply to a previous request (or an upgrade). It uses this information
to update its state and schedule the next set of operations. The action then clears theblockedi flag to enable
the newly scheduled actions to be sent out.

cfe-to-app(m = 〈t, r〉)i

Eff:
statei ← oracle-update(statei,m)
scheduledi ← append(scheduledi, oracle-requests(statei))
pending i ← pending i − {t}
blockedi ← false

Output Transitions

This output action fires when there is nothing scheduled to be sent to the cfe. It sets the blockedi flag to
true to signal that the app is waiting to consume a reply/upgrade.

app-to-cfe(〈lookup〉)i

Pre:
scheduledi = ∅ ∧ ¬blockedi

Eff:
blockedi ← true

This output action fires when there is something in the scheduledi queue to be sent to the cfe. It sends the
operation o at the head of the queue to the cfe to be requested from group g with the timestamp t.

app-to-cfe(〈schedule, t, g, o〉)i

Pre:
〈t, g, o〉 = head(scheduledi)

Eff:
scheduledi ← tail(scheduledi, {〈t, g, o〉})
pending i ← pending i ∪ {t}

This output action fires to signal the cfe to send a suspect-faulty request for timestamp t. This captures
the mechanism for possibly aborting operations.

app-to-cfe(〈suspect-faulty, t〉)i

25

Pre:
t ∈ pending i

C.3 Client Front End Automaton: cfei

This automaton specification captures the Client Front End behavior.

Signature

Input: app-to-cfe(〈schedule, t, o, g〉)i

app-to-cfe(〈suspect-faulty, t〉)i

app-to-cfe(〈lookup〉)i

timer-to-cfe(g, r, b)i

channel-to-filter(〈〈reply, v, t, g′, g, r〉σg , S〉)i

sfe-to-cfe(〈reply, vstore, t, g, gstore, result〉σgstore
)i

Internal: process-server-request(g, r, b)i

initiate-responder-change(g)i

process-replies-incoming(〈〈request, o, t, g〉σg , 〈d, ρg′ , i〉, g′〉)i

process-responder-change(〈responder-change, t, 〈τ, g′〉, vstore〉)i

Output: filter-to-channel(m,X)i

cfe-to-app(t, r)i

cfe-to-timer(g, r, b)i

State

A functional relation between replicas and replica groups. A group must have at least one member to be
recognized as a valid replica group. The contents of the relation are left unspecified; it is assumed that it is
non-empty and that contents do not change over time.
groupi ⊆ R×G

A functional relation between replica groups and their fault tolerance requirement (FTR). A The contents
of the relation are left unspecified with the stipulation that it contains an entry for each unique group id in
groupi. Contents do not change over time.
ftri ⊆ G× N

A functional relation between replica groups and their primaries. The contents of the relation are left un-
specified with the stipulation that it contains an entry for each unique group id in groupi. Contents may
change over time.
primary i ⊆ G×R

A functional relation between replica groups and the number of times the responder has been changed for
each group.The contents of the relation are left unspecified with the stipulation that it initially contains an
entry for each unique group id g in groupi with a sequence value between zero and —replicas(g)—. Contents
may change over time and the responder id for each group is the sequence value modulo group size.
responder-seqi ⊆ G× N

The group id of the client store. Must be initially set and does not change.

26

storei ∈ G

The set of group ids for which cfe hs requested a responder change that has not been completed.
responder-change-pending i ⊆ G initially ∅

This set contains elements of the form 〈g, r, b〉, where g is the destination group id, r is the CLBFT request,
and b is the request bundle. Each element represents a request that has not yet been sent out by the cfe.
requests-new i ⊆ G×M×M initially ∅

This set contains elements of the form 〈g, r, b〉, where g is the destination group id, r is the CLBFT request,
and b is the request bundle. Each element represents an extended request that has been sent and is currently
pending, i.e. a valid quorum of extended replies (or a single client store reply) has not been received for any
r contained in an element of this set.
requests-currenti ⊆ G×M×M initially ∅

This set contains elements of the form 〈r, j, σ〉 where r is the reply message, j is the sender, and σ is the
valid signature of j for message r. Each element represents an extended reply received by the cfe.
replies-incoming i ⊆M×R× S initially ∅

This fifo queue contains replies received from the client store.
store-repliesi ⊆M initially ∅

This set contains elements of the form 〈m,X〉 where m is the extended request and X contains the replica
ids of all the recipients. Each element represents a message to be sent out on the message channel to other
replicas.
channel-bufferi ⊆M×PR, initially ∅

This set contains elements of the form 〈g, r, b〉, where g is the destination group id, r is the CLBFT request,
and b is the request bundle. Each element represents a request for which a timer should be started by the
TIMER.
timer-bufferi ⊆ G×M×M, initially ∅

Auxiliary Functions

Returns a tuple that represents a request message for operation o with timestamp t. g is the id of the receiving
group for this request.
server-request(t, o, g) =
〈g, r = 〈request, o, t, groupi(i)〉σgroupi(i)

, 〈digest(r), scale(responder-seqi(g), g), i〉σi〉

Returns a tuple that represents a request message for a responder-change operation for group. The
sender of the request for a responder change for group g is the logical group groupi(i).g. The client store
(sfe) knows about the existence of the logical groups. Using this notation enables the use of the responder
sequence n for a group as the timestamp for a responder change request. Since n is incremented in unison
by the client group this enables each cfe to send responder change requests and expect the other replicas to
send matching requests eventually.

responder-change-request(g) =
〈storei, r = 〈request, 〈responder-change, g〉, responder-seqi(g), groupi(i).g〉σgroupi(i)

, 〈digest(r), ∅, i.g〉σi〉

27

Returns a tuple that represents a request message to be sent to the client store. Operation o could be a
suspect-faulty or apply-result.
store-request(t, o) =
server-request(t, o, storei)

Returns the set of request tuples in requests-currenti that have a timestamp matching t.
requests-for(t) =
{x | ∃b, o, g, g′. 〈g′, r = 〈request, o, t, g〉σgroupi(i)

, b〉 ∈ requests-currenti}

Returns a set of replies contained in the replies-incomingi buffer containing the reply messages for the given
request, where the result and server group view contained in each reply are equal to the result and view
specified in the parameters.
replies-for-result(〈request, o, t, g〉σg , g

′, result, v′) =
{x ∈ replies-incoming i | ∃j. x = 〈〈reply, v′, t, g, g′, result〉σg′ , j, σj〉}

Returns ids of all the replicas that belong to the given group.
replicas(g) =
{x | 〈x, g〉 ∈ known-replica-groupsi}

Auxiliary Predicates

Holds iff the first element of a message tuple m is the symbol τ .
tag(m, τ) ⇔
∃m′. m = 〈τ,m′〉

Holds iff σ is a correct signature of m signed by the key of g, a group.
valid-group-sig(σ,m, g) ⇔
σ ∈ signature(m, g) ∧ ∃c. 〈c, g〉 ∈ groupi

Holds iff σ is a correct signature of m signed by the key of i, a replica, that is a member of group g.
valid-replica-sig(σ,m, i, g) ⇔
σ ∈ signature(m, i) ∧ 〈i, g〉 ∈ groupi

Holds iff a reply with a timestamp t exists in the incoming queue from the client store.

reply-received(t) ⇔
∃τ, r, v, g. 〈τ, t, r, v, g〉 ∈ store-repliesi

Holds iff the given reply was sent by a known replica j of a known group g′ that received a request from the
group g that must include the current replica i.
valid-server-reply(signed = 〈unsigned = 〈reply, v′, t, g, g′, result〉, σg′〉, σj , j) ⇔
valid-group-sig(σg′ , unsigned, g′) ∧ valid-replica-sig(σj , signed, j, g′) ∧ groupi(i) = g

Holds iff the given group id was the same as the group id of the current node or if the given group id was
a concatenation of the group id of the current node with the id of a known group. The second case occurs
during responder changes.

28

same-group(g) ⇔
g = groupi(i) ∨ (∃g′. known-group(g′) ∧ g = groupi(i).g′)

Holds iff the given group is a known group.
known-group(g) ⇔
∃c. 〈c, g〉 ∈ known-replica-groupsi

Input Transitions

This input action is used by the app inform the cfe of scheduled operations. Each operation will have a
unique timestamp t operation specification o, and the group id g of the server group that this operation should
be invoked on. cfe takes this information, and if a reply to this request has not already been received from
the client store (if the current replica had fallen behind) constructs an outgoing extended request, and puts
it in it’s requests-newi set to be sent out.

app-to-cfe(〈schedule, t, o, g〉)i

Eff:
if ¬reply-received(t)

requests-new i ← requests-new i ∪ {server-request(t, o, g)}

This input action is used by the app to ”give up” on an operation it has already requested. The parameter
includes the timestamp of that operation. cfe then takes the corresponding extended request out of the
requests-currenti set (to stop waiting for the operation result), and if a reply to this request has not already
been received from the client store (if the current replica had fallen behind) constructs an extended request
to be sent to the client store with the suspect-faulty operation with the given timestamp. The same
timestamp is used to ensure that either the operation result (obtained by the client store through other cfe
replicas) or the suspect-faulty ack is adopted by the client store, but not both. (CLBFT will execute only
one operation for a given timestamp, even if several are committed.

app-to-cfe(〈suspect-faulty, t〉)i

Eff:
if ¬reply-received(t)

if ∃g, o, b. 〈g, r = 〈request, o, t, groupi(i)〉σgroupi(i)
, b〉 ∈ requests-currenti

requests-currenti ← requests-currenti − {〈g, r, b〉}
requests-new i ← requests-new i∪ {store-request(t, 〈suspect-faulty, t〉)}

This action is used by the scheduler to ask the cfe for the next result in the queue.

app-to-cfe(〈lookup〉)i

Eff:
lookup-pending i ← true

This action is used by the operation timer to signal the cfe that the extended request, The extended request
should be multicast to all the group members of the group g with the change that the designated responder
slot should be set to ∅ to signal a retransmission to the server group and to request a direct response from
server replicas.

timer-to-cfe(g, r, b = 〈d, ρ, id〉)i

29

Eff:
if 〈g, r, b〉 ∈ requests-currenti

channel-bufferi ← channel-bufferi ∪ {〈〈r, 〈d, ∅, id〉〉, replicas(g)〉}

This action fires when there is a incoming extended reply message or a extended reply forward to the cfe.
The set S may contain one (if the reply comes directly from a server group replica) or more (if the reply is a
forwrded extended request from the responder) signatures. We validate each signature, construct a tuple with
the reply and signature for each valid signature, and put that tuple in the replies-incomingi set for further
processing.

channel-to-filter(〈m = 〈reply, v, t, g′, g, r〉σg , S〉)i

Eff:
for all 〈j, σj〉 ∈ S do

if valid-server-reply(m, j, σj)
replies-incoming i ← replies-incoming i ∪ {〈m, j, σj〉}

This action is used by the local store replica to inform cfe of an agreed upon result of an operation re-
quest. The parameter is a regular CLBFT reply message that was generated at the local client store
replica. Since the output action of the sfe at the client store replica fires in the execution order of the
embedded CLBFT replica, this action fires in that same deterministic order. We remove the matching
extended server request(s) (if any) from requests-currenti, categorize the result value contained in the re-
ply to responder-change,operation-reply, andupdate-reply, and include that classification in the
store-repliesi FIFO for further processing.

sfe-to-cfe(〈reply, vstore, t, g, gstore, result〉σgstore
)i

Eff:
if same-group(g, groupi(i))

requests-currenti ← requests-currenti − {requests-for(t)}
if tag(result,responder-change)

store-repliesi ← append(store-repliesi, 〈responder-change, t, result, vstore〉)
else

store-repliesi ← append(store-repliesi, 〈operation-reply, t, result, vstore〉)
else

store-repliesi ← append(store-repliesi, 〈update-reply, ∅, result, vstore〉)

Internal Transitions

This internal action checks the requests-newi bucket for new extended requests. If found, that extended
request is removed from the requests-newi bucket and sent to both the operation timer as well to the primary
of the destination group g.

process-server-request(g, r, b)i

Pre:
sr = 〈g, r, b〉 ∈ requests-new i

Eff:
channel-bufferi ← channel-bufferi ∪ {〈〈r, b〉, primary(g)〉}
timer-bufferi ← timer-bufferi ∪ {sr}
requests-currenti ← requests-currenti ∪ {sr}
requests-new i ← requests-new i − {sr};

30

This internal action can fire any time for a known replica group g provided that a responder change operation
is not pending for that group. A new extended request to the client store is created with the special group
id (composition of the current group id and g) and put in the requests-newi bucket to be sent out using the
regular mechanism. The group id g is added to the pending set to disable further responder change operations
until a response to the new extended request is received.

initiate-responder-change(g)i

Pre:
known-group(g) ∧ g /∈ responder-change-pending i

Eff:
requests-new i ← requests-new i ∪ {responder-change-request(g)}
responder-change-pending i ← responder-change-pending i ∪ {g}

This internal action checks for the presence of matching reply sets of size fs + 1 that corresponds to a
pending current request. If such a reply set and request are found, a new extended request encapsulating the
result values is constructed and put in requests-newi to be sent to the client store using the regular request
mechanism. The primaryi(g) functional relation is also updated using the server view seen in the reply set.
Finally, the matching request is removed from the requests-currenti set.

process-replies-incoming(sr = 〈m = 〈request, o, t, g〉σg , 〈d, ρg′ , i〉, g′〉)i

Pre:
sr ∈ requests-currenti ∧ ∃r, v′. |replies-for-result(m, g′, r, v′)| ≥ ftr(g′) + 1

Eff:
requests-new i ← requests-new i ∪ {store-request(t, 〈apply-result, t, r〉)}
requests-currenti ← requests-currenti − {sr}
primary i(g′)← scale(v′, g′)

This internal action fires when the element at the head of the store-repliesi queue is a responder-change
reply and there is a pending app lookup as indicated by lookup-pendingi. cfe uses the provided information
to change increment the responder sequence number. The primary id for the client store is also updated.
Finally, we dequeue responder-change from store-repliesi and leave the lookup-pendingi set to true since
we did not return anything to the app.

process-responder-change(m = 〈responder-change, t, 〈τ, g′〉, vstore〉)i

Pre:
lookup-pending i ∧m = head(store-repliesi)

Eff:
primary i(storei)← scale(vstore, storei)
responder-seqi(g′)← responder-seqi(g′) + 1
responder-change-pending i ← responder-change-pending i − {g′}
store-repliesi ← tail(store-repliesi)

Output Transitions

The output action to put items into the channel.

filter-to-channel(m,X)i

Pre:

31

〈m, X〉 ∈ channel-bufferi

Eff:
channel-bufferi ← channel-bufferi − {〈m,X〉}

This output action fires when the element at the head of the store-repliesi queue is not a responder-change
reply and there is a pending scheduler lookup as indicated by lookup-pendingi. We simply dequeue the head
element from store-repliesi and set the lookup-pendingi set to false so that no items are dequeued from
store-repliesi until a new lookup is issued. The primary id in the for the client store is also updated.

cfe-to-app(t, r)i

Pre:
lookup-pending i ∧ ∃τ, v. 〈τ, t, r, v〉 = head(store-repliesi) ∧ τ 6= responder-change

Eff:
primary i(storei)← scale(v, storei)
lookup-pending i ← false
store-repliesi ← tail(store-repliesi)

The output action to pass extended request tuples to the timer.

cfe-to-timer(g, r, b)i

Pre:
〈g, r, b〉 = head(timer-bufferi)

Eff:
timer-bufferi ← timer-bufferi − {〈g, r, b〉}

C.4 Server Front End Automaton: sfei

The sfe automaton coordinates communication between a CLBFT sbe automaton and a replicated client
group.

32

Signature

Input: sbe-to-sfe(〈request, o, t, g〉σg , X)i

channel-to-filter(〈〈request, o, t, g〉σg , 〈d, ρ, c〉σc〉)i

channel-to-filter(〈forward, 〈request, o, t, g〉σg , S〉)i

sbe-to-sfe(〈pre-prepare, v, n,m〉σi , X)i

channel-to-filter(〈〈pre-prepare, v, n,m〉σj , S〉)i

sbe-to-sfe(〈view-change, v + 1, n, C,P, i〉σi , X)i

channel-to-filter(〈〈view-change, v + 1, n, C,P, j〉σj ,S〉)i

sbe-to-sfe(〈new-view, v + 1,V,O〉σi , X)i

channel-to-filter(〈〈new-view, v + 1,V,O〉σj ,S〉)i

sbe-to-sfe(〈reply, v, t, g, i, r〉, X)i

channel-to-filter(〈〈reply, v, t, g, g′, r〉σj , {〈j, σj〉}〉)i

sbe-to-sfe(m,X)i

channel-to-filter(m)i

Internal: request-confirm(〈request, o, t, g〉σg)i

reply-confirm(t, g, r)i

Output: sfe-to-sbe(m)i

sfe-to-cfe(m)i

filter-to-channel(m,X)i

State

The set of messages to be sent out on the message channel.
channel-bufferi ⊆M×PR, initially ∅

The set of messages to be sent in to the BFT node.
sbe-bufferi ⊆M, initially ∅

The set of messages to be sent out to a co-located CFE node.
cfe-bufferi ⊆M, initially ∅

The set of pairs of requests and signed digest bundles received from the message channel. These are originally
from client replicas, but could also arrive indirectly from other replicas in the server group.
requests-incoming i ⊆M×M, initially ∅

The set of pairs of requests and signed digest bundles received that correspond to operations currently in
progress. There is at most one unique request in the set for each triple 〈t, g, o〉 (but the request appears
multiple times, paired with different signed digest bundles).
requests-currenti ⊆M, initially ∅

This set stores group, operation, timestamp tuples to remember requests that were already sent to sbe. This
is used to prevent the same request from being forwarded into sbe more than once.
processed-reqi ⊆ G×O × T , initially G×O × {−∞}

The set of replies from other server replicas, sent to the designated responder. This state is only used at the
designated responder for a given operation.
replies-incoming i ⊆M, initially ∅

33

The timestamps of the replies to be sent by the designated responder out to the client group. This is used to
prevent the same reply from being forwarded out to the client group more than once. This state is only used
at the designated responder for a given operation.
replies-from-responderi ⊆ G× T , initially G× {−∞}

The timestamps of the replies to be sent to the designated responder. This is used to prevent replies from
being forwarded out to the designated responder more than once.
replies-to-responderi ⊆ G× T , initially G× {−∞}

A functional relation between replicas and replica groups. A group must have at least one member to be
recognized as a valid replica group. The contents of the relation are left unspecified; it is assumed that it is
non-empty.
groupi ⊆ R×G

A functional relation between replica groups and their fault-tolerance requirements (FTR). The contents of
the relation are left unspecified; it is assumed that it is initially non-empty.
ftri ⊆ G× N

The group id of the client cfe-twin.
twini ∈ G

Auxiliary Functions

Returns the set of signed digest bundles corresponding to a particular request and designated responder. This
set is drawn from the set of all incoming requests.
incoming-bundles(r = 〈request, o, t, g〉σg , ρ) =
{x | 〈r, x = 〈d, ρ, c〉σc〉 ∈ requests-incoming i}

Returns the set of signed digest bundles corresponding to a request currently executing. This set is drawn
from the set of current requests.
current-bundles(r = 〈request, o, t, g〉σg) =
{x | 〈r, x = 〈d, ρ, c〉σc〉 ∈ requests-currenti}

Returns the replica id of the designated responder for a current request being processed.
responder(〈reply, v, t, g, g′, r〉) =
ε{ρ | 〈〈request, o, t, g〉σg , 〈d, ρ, c〉σc〉 ∈ requests-currenti}

Returns the set of digital signatures found with replies sent to the designated responder from other server
replicas. This state is only used at the designated responder for a given operation.
reply-signatures(t, g, r) =
{〈j, σj〉 | 〈〈reply, v, t, g, g′, r〉σj , j〉 ∈ replies-incoming i}

Returns the set of replica identifiers that are known to belong to the group g. Server replicas use this
information to verify the authenticity of signatures and to know where to send replies.
replicas(g) =
{x | 〈x, g〉 ∈ groupi}

34

Auxiliary Predicates

Holds iff the first element of a message tuple m is the symbol τ .
tag(m, τ) ⇔
∃m′. m = 〈τ,m′〉

Holds iff d is the message digest of m.
valid-digest(d, m) ⇔
d = digest(m)

Holds iff σ is a correct signature of m signed by the key of g, a group.
valid-group-sig(σ,m, g) ⇔
σ ∈ signature(m, g) ∧ ∃c. 〈c, g〉 ∈ groupi

Holds iff σ is a correct signature of m signed by the key of j, a replica, that is a member of group g.
valid-replica-sig(σ,m, j, g) ⇔
σ ∈ signature(m, j) ∧ 〈j, g〉 ∈ groupi

Holds iff 〈r, b〉 is a valid request, viz. that the digest d is correct for the request r, the signature σg on r is
correct, and the signature σc on b is correct and by a member of group g.
valid-request(r = 〈request, o, t, g〉σg , b = 〈d, ρ, c〉σc) ⇔
valid-digest(d, r) ∧ valid-group-sig(σg, r, g) ∧ valid-replica-sig(σc, b, c, g)

Holds iff the set of signed digest bundles S is correct w.r.t. a request r, viz. that S has at least fc + 1 signed
digest bundles, and there is some consistent designated responder ρ for which each request and signed digest
bundle is individually correct.
valid-request-bundles(r = 〈request, o, t, g〉σg , S) ⇔
|S| ≥ ftri(g) + 1 ∧ (tag(o, suspect-faulty) ⇒ |S| ≥ 2ftri(g) + 1 ∧ g = twini) ∧ (∃ρ. ∀b ∈ S. ∃c. b =
〈digest(r), ρ, c〉 ∧ valid-request(r, b) ∧ (∃b′ ∈ S. b′ = 〈digest(r), ρ, c〉 ⇒ b = b′))

Holds iff the set of signed digest bundles S is correct w.r.t. a request r, viz. that S has at least fc + 1 signed
digest bundles, and there is some consistent designated responder ρ for which each request and signed digest
bundle is individually correct.
valid-reply-signatures(S) ⇔
|S| ≥ ftri(groupi(i)) + 1

Holds iff the signature is correct.
valid-reply(m = 〈reply, v, t, g, g′, r〉, j, σj) ⇔
g′ = groupi(i) ∧ valid-replica-sig(σj ,m, j, g′)

Input Transitions

A request forwarded to another server replica. We attach the set of signed digests for the request and add the
tuple to the outgoing message channel set. The set of signed digests must exist because, in order to have a
request to send, the automaton must first have received the request from fc +1 clients and saved their signed
digests in requests-currenti.
sbe-to-sfe(r = 〈request, o, t, g〉σi , X)i

35

Eff:
m← 〈forward, r, current-bundles(r)〉
channel-bufferi ← channel-bufferi ∪ {〈m,X〉}

A request is received from a client replica, along with a signed digest bundle corresponding to the request.
The pair of message and bundle are saved in the requests-incomingi set
channel-to-filter(〈r = 〈request, o, t, g〉σg , b = 〈d, ρ, c〉σc〉)i

Eff:
if valid-request(r, b)

requests-incoming i ← requests-incoming i ∪ {〈r, b〉}

A request is received from the message channel, along with a set of signed digest bundles corresponding to
this request. The request is forwarded from another server replica. The set contains the signed digest bundles
from fc + 1 clients that correspond to fc + 1 requests received at that server replica. The message–bundle
pairs are saved in the requests-currenti set.
channel-to-filter(〈forward,m = 〈request, o, t, g〉σg , S〉)i

Eff:
if valid-request-bundles(m,S) ∧ ¬∃d, c. 〈d, ∅, c〉 ∈ current-bundles(m)

for all b ∈ current-bundles(m) do
requests-currenti ← requests-currenti − {〈m, b〉}

for all b ∈ S do
requests-currenti ← requests-currenti ∪ {〈m, b〉}

sbe-bufferi ← sbe-bufferi ∪ {m}

The local BFT node sends a pre-prepare message to other server replicas. We attach a set of fc + 1 signed
digest bundles to corresponding to the request piggybacked within the pre-prepare. We know such a set exists
for reasons similar to the sbe-to-sfe(request)i case.
sbe-to-sfe(p = 〈pre-prepare, v, n,m〉σi , X)i

Eff:
channel-bufferi ← channel-bufferi ∪ {〈〈p, current-bundles(m)〉, X〉}

A pre-prepare message and set of signed digest bundles is received from the message channel, sent by a server
replica. If all of the digests are valid (including that there are fc + 1), then this piggybacked message and
digests becomes the current request for this group and operation, and the messages and bundles are added to
requests-currenti after removing the old set for this group. The pre-prepare message is then added to the set
of messages to be sent into the local BFT node.
channel-to-filter(〈〈pre-prepare, v, n,m〉σj , S〉)i

Eff:
if valid-request-bundles(m,S) ∧ ¬∃d, c. 〈d, ∅, c〉 ∈ current-bundles(m)

for all b ∈ current-bundles(m) do
requests-currenti ← requests-currenti − {〈m, b〉}

for all b ∈ S do
requests-currenti ← requests-currenti ∪ {〈m, b〉}

sbe-bufferi ← sbe-bufferi ∪ {〈pre-prepare, v, n,m〉σj}

A view-change message is sent out from the local BFT node to other server replicas via the message channel.
We append a set of sets of signed digests bundles corresponding to the request piggybacked in each pre-prepare
in the set P and add it to the set of messages to be sent on the channel. We know we have these sets of

36

digests for reasons similar to the sbe-to-sfe(request)i case.
sbe-to-sfe(V = 〈view-change, v + 1, n, C,P, i〉σi , X)i

Eff:
S ←

⋃
〈pre-prepare,v,n,m〉∈P{current-bundles(m)}

channel-bufferi ← channel-bufferi ∪ {〈〈V,S〉, {primary(v)}〉}
channel-bufferi ← channel-bufferi ∪ {〈〈V, ∅〉, replicas(i)− {primary(v)}〉}

A view-change message and set of sets of signed digest bundles is received from another server replica via
the message channel. If for each request piggybacked on the pre-prepares in P there is a valid set of signed
digest bundles S ∈ S, and if S contains nothing else, then the sets of digest bundles are added with their
corresponding requests as the current requests for each group. The view-change message is added to the set
of messages to be sent to the local BFT node. If this node is the primary, the signed digest bundles will be
used as proof that the requests were made to be sent in the new-view messages.
channel-to-filter(〈V = 〈view-change, v, n, C,P, j〉σj ,S〉)i

Eff:
if primary(v) 6= i ∨ (|S| = |P| ∧ ∀〈pre-prepare, v, n,m〉 ∈ P. ∃S ∈ S.
valid-request-bundles(m,S))

for all 〈pre-prepare, v, n,m〉 ∈ P do
if ∃S ∈ S. valid-request-bundles(m,S) ∧ ¬∃d, c. 〈d, ∅, c〉 ∈ current-bundles(m)

for all b ∈ current-bundles(m) do
requests-currenti ← requests-currenti − {〈m, b〉}

for all b ∈ S do
requests-currenti ← requests-currenti ∪ {〈m, b〉}

sbe-bufferi ← sbe-bufferi ∪ {V }

A new-view message is sent by the local BFT node to other server replicas. For each pre-prepare in O, a
set of signed digest bundles is attached, similar to the sbe-to-sfe(view-change)i case. Here, however, we
omit certificates for the special null messages. We know the signed digest bundles exist for similar reasons
to the sbe-to-sfe(view-change)i case. The new-view message and set of sets of digest bundles is added
to the set of messages outgoing on the message channel.
sbe-to-sfe(N = 〈new-view, v + 1,V,O〉σi , X)i

Eff:
S ←

⋃
〈pre-prepare,v,n,m〉∈P{current-bundles(m)}

channel-bufferi ← channel-bufferi ∪ {〈〈N,S〉, X〉}

A new-view message and set of sets of signed digests bundles is received from a server replica via the message
channel. This case is nearly identical to the channel-to-filter(view-change)i case.
channel-to-filter(〈N = 〈new-view, v + 1,V,O〉σj ,S〉)i

Eff:
if ∀〈pre-prepare, v, n,m〉 ∈ O. m 6= ∅ ⇒ ∃S ∈ S.
valid-request-bundles(m,S)

for all 〈pre-prepare, v, n,m〉 ∈ P do
if m 6= ∅ ∧ ∃S ∈ S. valid-request-bundles(m,S) ∧ ¬∃d, c. 〈d, ∅, c〉 ∈ current-bundles(m)

for all b ∈ current-bundles(m) do
requests-currenti ← requests-currenti − {〈m, b〉}

for all b ∈ S do
requests-currenti ← requests-currenti ∪ {〈m, b〉}

sbe-bufferi ← sbe-bufferi ∪ {N}

37

A reply is sent from the local BFT node to the client. We forward everything to the cfe twin’s scheduler
queue. If the destination is not the twini, then we if we haven’t already sent a reply for this request and the
responder is not ∅, the message is sent to the designated responder. Otherwise, the message is sent directly
to all the clients in the replica group.
sbe-to-sfe(m = 〈reply, v, t, g, i, r〉σi , {g})i

Eff:
cfe-bufferi ← append(cfe-bufferi,m)
if g 6= twini

m′ ← 〈reply, v, t, g, groupi(i), r〉σi

S ← {〈i, σi〉}
if 〈g, t〉 /∈ replies-to-responderi ∧ responder(m′) 6= ∅

replies-to-responderi ← replies-to-responderi ∪ {〈g, t〉}
channel-bufferi ← channel-bufferi ∪ {〈〈m′, S〉, {responder(m′)}〉}

else
channel-bufferi ← channel-bufferi ∪ {〈〈m′, S〉, replicas(g)〉}

A reply is received from another server replica. If the reply is valid, then the reply is added to replies-incomingi.
channel-to-filter(〈m = 〈reply, v, t, g, g′, r〉σj , {〈j, σj〉}〉)i

Eff:
if valid-reply(m, i, j)

replies-incoming i ← replies-incoming i ∪ {〈m, j〉}

A message with tag other than those previously handled is sent. The message is directly added to the set of
messages outgoing via the message channel.
sbe-to-sfe(m,X)i

Eff:
if ¬(tag(m,request) ∨ tag(m,pre-prepare) ∨ tag(m,view-change) ∨
tag(m,new-view) ∨ tag(m,reply))

channel-bufferi ← channel-bufferi ∪ {〈m,X〉}

A message with tag other than those previously handled is received from the channel. The message is directly
added to the set of messages outgoing local BFT node.
channel-to-filter(m)i

Eff:
if ¬(tag(m,request) ∨ tag(m,pre-prepare) ∨ tag(m,view-change) ∨
tag(m,new-view) ∨ tag(m,reply))

sbe-bufferi ← sbe-bufferi ∪ {m}

Internal Transitions

A set of fc +1 valid requests exists, and we prepare to send the request into the local BFT node. We only do
so if a set of sufficient size exists and we haven’t already processed this request (which we know is the case if the
last request time is less than the timestamp on this message). Similar to the channel-to-filter(pre-prepare)i

case, the last request timestamp is updated and the request is added to the set of messages outgoing to the
local BFT node.
request-confirm(m = 〈request, o, t, g〉σg)i

38

Pre:
∃ρ. ρ 6= ∅ ∧ valid-request-bundles(m, incoming-bundles(m, ρ)) ∧ 〈g, o, t〉 /∈ processed-reqi

Eff:
processed-reqi ← processed-reqi ∪ {〈g, o, t〉}
for all b ∈ current-bundles(m) do

requests-currenti ← requests-currenti − {〈m, b〉}
for all b ∈ incoming-bundles(m, ρ) do

requests-currenti ← requests-currenti ∪ {〈m, b〉}
sbe-bufferi ← sbe-bufferi ∪ {m}

A set of fs + 1 valid replies exists, and we prepare to send the reply to the set of client replicas. A set of
digital signatures is attached that were originally sent with the replies from the server replicas. The last reply
time is updated so that the reply is not sent again. (If the client times out and sends the requests again,
server replicas will sent their reply directly, and not through the designated responder.)
reply-confirm(t, g, r)i

Pre:
S ← reply-signatures(t, g, r)
valid-reply-signatures(S) ∧ 〈g, t〉 /∈ replies-from-responderi

Eff:
m← 〈reply, v, t, g, groupi(i), r〉σi

replies-from-responderi ← replies-from-responderi ∪ {〈g, t〉}
channel-bufferi ← channel-bufferi ∪ {〈〈m,S〉, replicas(g)〉}

Output Transitions

This output action is used in passing messages to the sbe.

sfe-to-sbe(m)i

Pre:
m ∈ sbe-bufferi

Eff:
sbe-bufferi ← sbe-bufferi − {m}

This output action is used in sending messages to cfe when this replica is part of the client store for some
client group.

sfe-to-cfe(m)i

Pre:
m = head(cfe-bufferi)

Eff:
cfe-bufferi ← tail(cfe-bufferi)

This output action is used in sending messages to other replicas using the message channel.

filter-to-channel(m,X)i

Pre:
〈m, X〉 ∈ channel-bufferi

Eff:
channel-bufferi ← channel-bufferi − {〈m,X〉}

39

C.5 Message Channel Automaton:mc

This automaton specification captures the message channel.

Signature

Input: filter-to-channel(m,X)i

Internal: misbehave(m,X,X ′)
Output: channel-to-filter(m)i

State

wire ⊆M×PR, initially ∅

Input Transitions

Replica i multicasts message m to all replicas j ∈ X

filter-to-channel(m, X)i

Eff:
wire ← wire ∪ {〈m,X〉}

Internal Transitions

The channel misbehaves by sending messages to replicas other than those intended by the sender, but we
assume that it eventually delivers to all intended recipients.
misbehave(m,X,X ′)i

Pre: 〈m,X〉 ∈ wire
Eff: wire ← wire − {〈m,X〉} ∪ {〈m,X ∪X ′〉}

Output Transitions

Message m is delivered to replica i

channel-to-filter(m)i

Pre: ∃〈m,X〉 ∈ wire . i ∈ X
Eff: wire ← wire − {〈m,X〉} ∪ {〈m,X − {i}〉}

D Exact Complexity Analysis

We count, for each communication step in the algorithm, the number of messages at that step, the number of
application data payloads (requests or replies), the number of message digests, and the number of signatures.
In the column headings, U (for unreplicated) represents CLBFT, which supports only unreplicated clients
and replicated servers, and R (for replicated) represents our algorithm, which supports replicated clients
and servers. Complexity is counted as the sum of ` times the number of application data payloads, d times
the number of digests and s times the number of signatures. (Each message contains at least one signature.)
The asymtotic complexity is calculated assuming s and d are constant size, but not `.

40

Messages App Data Digests Signatures
Step U R U R U R U R
1. client request to server 1 n 1 n 0 n 1 n
2. server pre-prepare m m m m 0 fc + 1 m m(fc + 2)
3. server prepare m2 m2 0 0 m2 m2 m2 m2

4. server commit m2 m2 0 0 m2 m2 m2 m2

5. server to responder 0 m 0 m 0 0 0 m
6. responder to client m n m n 0 0 m n(fs + 1)
7. forward reply to store 0 n 0 n 0 0 0 n
8. store pre-prepare 0 n 0 n 0 0 0 n
9. store prepare 0 n2 0 0 0 n2 0 n2

10. store commit 0 n2 0 0 0 n2 0 n2

Figure 1. Message count and complexity, itemized by data type for each round

Totals U (CLBFT) R (Our algorithm)
Messages 2(m2 + m) + 1 2(n2 + 2n + m2 + m)
App Data 2m + 1 2(m + 2n)
Digests 2m2 2(n2 + m2) + n + fc + 1
Complexity `(2m + 1) + d(2m2) + s(2(m2 + m) + 1) `(2(m + 2n)) + d(2(n2 + m2) + n + fc + 1) + s(2(n2 + m2) + m(fc + 2) + n(fs + 1) + 3n + m)

Figure 2. Total Message Complexity

41

	Extending Byzantine Fault Tolerance to Replicated Clients
	Recommended Citation
	Extending Byzantine Fault Tolerance to Replicated Clients

	tmp.1418149444.pdf.vP1me

