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A network of adaptive processing elements has been developed that transforms

and fuses video captured from multiple sensors. Unlike systems that rely on end-

systems to process data, this system distributes the computation throughout the

network in order to reduce overall network bandwidth. The network architecture is

scalable because it uses a hierarchy of processing engines to perform signal processing.

Nodes within the network can be dynamically reprogrammed in order to compose

video from multiple sources, digitally transform camera perspectives, and adapt the

video format to meet the needs of specific applications.

A prototype has been developed using reconfigurable hardware that collects

and processes real-time, streaming video of an urban environment. Multiple video



cameras gather data from different perspectives and fuse that data into a unified,

top-down view. The hardware exploits both the spatial and temporal parallelism of

the video streams and the regular processing when applying the transforms. Recon-

figurable hardware allows for the functions at nodes to be reprogrammed for dynamic

changes in topology. Hardware-based video processors also consume less power than

high frequency software-based solutions. Performance and scalability are compared

to a distributed software-based implementation.

The reconfigurable hardware design is coded in VHDL and prototyped using

Washington University’s Field Programmable Port Extender (FPX) platform. The

transform engine circuit utilizes approximately 34 percent of the resources of a Xilinx

Virtex 2000E FPGA, and can be clocked at frequencies up to 48 MHz. The com-

position engine circuit utilizes approximately 39 percent of the resources of a Xilinx

Virtex 2000E FPGA, and can be clocked at frequencies up to 45 MHz.
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Chapter 1

Introduction

1.1 Overview

Future sensor networks can take advantage of reconfigurable hardware to perform

local processing in ways that save power, consume less network bandwidth, and enable

advanced video applications. For applications like distributed video surveillance, data

fusion can be performed to filter redundancy and reduce the number of transmissions.

It is difficult however to perform this function using the microprocessors found on

today’s sensor networks because they lack the computational capability to process full

frame rate video. Reconfigurable hardware can enable computations to be performed

in real-time, at lower clock frequencies, using less power. This project report presents

an architectural framework for transforming and fusing video captured from many

sensors and discusses some advantages of using reconfigurable hardware.

The functions performed by sensor network nodes are evolving from simply

passing sensor data to include local processing of data. Early sensor network archi-

tectures concentrated data transmission to centralized nodes that provided bulks of
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computational resources [4]. More emphasis is now placed on distributed architec-

tures because centralized architectures have not scaled well for networks containing

hundreds or thousands of nodes, as those centralized nodes quickly became the bot-

tleneck links. While much sensor network research is currently exploring ways to

optimize ad-hoc routing, and minimize power consumption of sensor networks, an-

other related area of research is to determine reasonable ways to perform data fusion

within the sensor network. The goal of this project is to design and implement a

scalable system that fuses multiple video streams, using distributed processing in the

network.

1.1.1 Video Data Fusion

Figure 1.1: Video sensor network performs data fusion for surveillance application.

A video surveillance application might monitor road conditions for an entire

city. Video sensors would be positioned above traffic intersections, roads, and high-

ways. The sensing radius of each camera would overlap to include complete coverage–

in an ideal deployment they would be evenly spaced. There could be large numbers

of displays accessing the network, perhaps one display for every vehicle. Displays
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in close proximity might need to access the same overhead view; others might need

larger views of the city. Fusing video streams creates views that are not restricted

to single camera positions and also allows for the view to include larger scope from

multiple cameras, as illustrated in Figure 1.1. Any magnification of any location in

the environment could be accessible to any display.

The application described here is nontraditional for discussion as a sensor net-

work because video is expensive in both communication bandwidth (1-10Mbps com-

pressed, 100Mbs uncompressed) and power consumption, which defeats plans for

implementing this application using conventional sensor network platforms that are

energy-constrained. Most sensor networks that are described in literature have very

explicit design constraints for low power, limited bandwidth, and limited computa-

tional resources in order to be categorized as a sensor network [4].

The advantages of performing data fusion in the network are many: reduced

network bandwidth, energy savings for wireless transmission, increased scalability-

because the overhead per node becomes distributed, and generation of higher-level

information[4]. Some of the disadvantages include: increased computational require-

ments placed on every node, the configuration must either be calibrated or coordi-

nated, and sometimes there is added latency. From the Wireless Integrated Network

Sensors (WINS) project Pottie and Kaiser write, ”if the application and infrastruc-

ture permit it pays to process the data locally to reduce traffic volume and make use

of multihop routing and advanced communication techniques to reduce energy costs”

[15]. As the processing capabilities at nodes improve, computational-bound latencies

should become less of an issue.
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1.1.2 Reconfigurable Hardware Advantages

Distributed data fusion on video requires that each node have a reasonably fast proces-

sor that is capable of processing the high bit rate video streams. Application-specific

integrated circuits (ASICs) can be designed to run at slower clock speeds, use less pre-

cision, and therefore can consume several orders of magnitude less energy than digital

signal processors (DSPs) [15]. However ASICs are somewhat inflexible in terms of pro-

grammability and have much higher costs compared to DSPs. Field-programmable

gate arrays (FPGAs) offer a viable compromise in terms of performance and cost.

FPGAs offer a reprogrammable fabric containing millions of gate equivalents and in

some cases integrated microprocessors. Like ASICs, FPGAs can be used to imple-

ment circuits that run at lower clock speeds using custom precision, and the functions

can be later reprogrammed like a processor.

1.1.3 FPX Platform

Washington University’s Field-programmable Port Extender (FPX) platform is an

advanced platform for prototyping network applications using FPGA reconfigurable

hardware [8]. The FPX, shown in Figure 1.2, contains a large reprogrammable ap-

plication device (RAD), implemented using a Xilinx VirtexE 2000E, and fast gigabit

network interfaces (2.4Gbps). The RAD supports applications to perform processing

on both the ingress and egress data paths[9]. There is a set of Layered Protocol

Wrappers that has been developed to provide abstract interfaces for Internet proto-

col (IP) packets [1][16]. Although present day Internet protocols were not designed

with the need to conserve energy [15], IP is a very commonly used protocol and IP

hardware is both low cost and widely available. More details about the FPX device

and configuration are presented in Appendix A.
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Figure 1.2: Field-programmable port extender device.

1.1.4 Java Media Framework

Since it can take a long time to specify a full-featured design at the register transfer

level, a Java prototype was first implemented using the Java Media Framework. The

Java software language provides libraries that can enable rapid application prototyp-

ing and development. The Java Media Framework API provides interfaces for captur-

ing, processing, transporting, and presenting time-sensitive multimedia streams, see

Figure 1.3 [6]. This includes applying special effects, transcoding media formats, and

transmitting multimedia streams using the real-time protocol (RTP) over universal

datagram protocol (UDP) packetizers.

Figure 1.3: JMF API layers
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1.2 Contributions

An architecture for performing data fusion on surveillance video is presented. Two

versions of a video fusion project have been and implemented and are compared—

hardware modules that run on the FPX platform and software applications that

execute on top of the Java Media Framework. This video surveillance application

demonstrates distributed, cooperative processing of sensor data by nodes throughout

the network, which can be efficient for large numbers of displays. The processing that

is performed in the network allows for computational resources at end systems to be

conserved to support higher-level tasks. Configuration, tools, and methodology, are

also described in this report.

1.3 Related work

Related research has explored: frameworks for data fusion applications[7], topologies

and hierarchies for sensor networks[21], and sensor networks used for motion tracking

using background subtraction from video[13]. Nguyen [13] implemented the motion

tracking algorithms in software at camera nodes but anticipated better performance

using FPGAs. Pless et. al [14] solved for homography transforms to track aerial

camera movement.

Kumar [7] presented a similar architecture for general, distributed data fusion

called DFuse. DFuse is a multi-threaded runtime system targeted for deployment in

heterogeneous ad hoc sensor network environments. This video project is similar to

the video collage application they use to motivate their system architecture. Kumar

measures transmission costs of module placement between iPAQ processing nodes.
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1.4 Organization of Rest of Project Report

Chapter 2 describes an architecture for video fusion that could support large num-

bers of sensors and displays. Specifically, this chapter discusses: components of this

architecture and a hierarchy for directed data fusion. Chapter 3 details the full

prototype software implementation that uses the Java Media Framework, which in-

cludes the following applications: a simple video capture, TransformEngine, and

CompositionEngine. Chapter 4 details the designs of the hardware modules for the

FPX that implement the transform engine and the composition engine of this ar-

chitecture. Chapter 5 describes performance evaluations and compares latency and

throughput between the implementations. Chapter 6 concludes and suggests future

work for extending and improving the design.
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Chapter 2

Video Sensor Network

Architecture

This chapter describes the architecture for performing data fusion between multiple

video streams that is designed to support large numbers of sensors and displays1. In

a realistic environment, video from multiple cameras requires some processing before

it can be combined. It is unlikely to assume that large numbers of video sensors could

be deployed without the need for alignment. So, image transforms can be used to

passively align video sensors. After transformation, multiple videos will fit roughly in

the same coordinate system and the best view of overlapping regions can be selected

for display.

The approach described above was used to partition the application require-

ments into subtasks so the solution could be implemented as separate modular com-

ponents. The first subtask is to transform the views from each cameras, so that views

are roughly the same scale and of the same viewing plane. The second subtask is to

align and stitch multiple transformed views together as one ”seamless” view. This

1This architecture was co-developed with Christopher K. Zuver in the summer of 2003 as a project
for Rockwell Collins
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second subtask, the composition step, can be recursively repeated to build a hierarchy

of views at various magnifications. Other requirements that were considered during

the design process: the need for a flexible deployment and coordination between com-

ponents; and also the desire to push processing into the network as a way to reduce

data transmission.

2.1 Motivation for Performing Video Processing

in the Network

After defining the goals for each subtask, the challenge becomes to determine where

the processing for each subtask should take place. The task assignment throughout

the network and at end systems has the potential to limit the performance of the

system. For example, it might seem obvious to correct for problems like camera lens

distortion at the camera, itself, because otherwise every display that accesses that

camera would need to perform the same type of correction.

This form of reasoning can be extended to construct a larger argument. Assume

that each display is given the flexibility to select from a set of cameras, and assume

that the sensing task at-hand requires displays to cooperate on some task. Then,

the selected subsets might have popular subsets of intersection. For those popular

intersections, processing might be done at the end systems connected to the cameras

to avoid redundant processing at every display.

Now assume that there are two major tasks at hand that are popular, but

they require conflicting use of the same sensors. It would be practical to perform

the processing before transmitting to the displays, but since they tasks depend on

the same sensors it might make sense to add a “third party” nodes that perform
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the processing on behalf of the displays before the transmitting to large numbers of

displays. When expanding this argument to a much larger network that has multiple

popular applications that are needed concurrently, there exists a reasonable argument

that processing could be applied to video throughout the network to efficiently utilize

resources.

Figure 2.1: Video sensors arranged to monitor traffic conditions of an urban model

Sensor networks might monitor traffic conditions, and require overhead views

as discussed in the previous chapter. Besides those overhead views, applications

such as fire fighting might also need to share the sensors to access the views that

show the sides of a certain building. Although one application might have higher

priority, if processing is performed in the network, then the sensors can satisfy multiple

applications.

2.2 Architecture

Our video sensor network can be modeled as a directed graph. At the edge of the

graph are the cameras, which collect the source data. Within the graph are format

engines, transform engines, and composition engines. Each of these components sinks
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one or more incoming video streams and outputs only one video stream, which can

be multicast to groups.

Figure 2.2: Logical components and connection diagram

A diagram of the data paths between sensors and displays for an example

sensor configuration is shown in Figure 2.2. Data is collected from the cameras at the

left, flows through the format, transform, composition, and multicast, format engines,

and then is displayed on an end-system device.

In general, video is sent by the capture device to a format engine (FE). The

format engine adapts the video data from the device specific format of the capture

device to the network format. The FE directs the video stream to a transform engine

(TE), where the video is transformed. The TE streams to a composition engine (CE).

The CE outputs a fused video stream consisting of combination of stitched regions
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from the input streams. The fused stream from a CE is transmitted to either another

CE or a display.

The control path for now is only concerned with programming the subtasks

at each node. Logically there is one a subtask performed at every node. Task can

be performed either in hardware or software. Nodes can be programmed based on

popular demand to perform another subtask.

2.2.1 Transform Engine

Transform engines warp a video show to another selected view. Traditional methods

for rectifying and aligning photographs were reviewed [5]. These methods included

perspective correction based on vanishing points, radial correction, and scaling and

rotation. The transform engines apply multiple transforms using a lookup table,

which has a nice property that transforms can be combined in a way that there is no

additional run-time penalty. Some transformed views are shown in Figure 2.3.

Figure 2.3: Example transformed views (clockwise): (a) original, (b) view of street,
(c) view of rear building, (d) view of side building
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2.2.2 Composition Engine

The top-down view will combine pixels from multiple cameras together into a common

video frame, as shown in Figure 2.4. For the sake of simplicity, this application is

currently only concerned with combining video views that show planar surfaces.

Figure 2.4: Example composite view formed from three cameras

2.3 Side discussions

In the architecture, video sensors could be addressed based on their position in terms

of longitude and latitude coordinates. Hopefully close regions of overlap will exist

between neighbors and sensors can be ranked in priority based on the value of their

location and the quality of samples that they provide to the network applications.

Avoiding redundant sampling at regions with overlap can reduce the number of trans-

missions and extend the life of the sensor network. Alternating periods of activity

between close neighbors can also extend the life of the network. If one sensor is lost,

then neighbors from overlapping regions could become candidates to replace those

portions of the view.
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In general, the architecture might be applied to other types of sensing devices

such as thermal, vibrational, or acoustic sensors. In the case of video, there are

other characteristics that might need transformation besides alignment. These might

include need to correct for lens aberrations and/or changes in color and lighting.
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Chapter 3

Software Implementation

This chapter describes the software implementation of the modular components of the

video sensor network, which run on top of the Java Media Framework (JMF). JMF

provides an extensible API for processing and presenting time-based media[12][6].

The JMF website provides documentation and sample code that was adapted to im-

plement a simple video capture application, the transform engine application, and

the composition engine application. The simple capture application is a reduced ver-

sion of AVTransmit.java, which is one of the JMF guides for creating a Processor.

Processors control the processing performed on an input media stream. The trans-

form engine and composition engine applications extend the basic Processor using

Effect plug-ins to perform custom processing on media streams.

3.1 Simple capture application

The simple capture application initializes a specified capture device as a DataSource,

creates a JPEG/RTP transmitter as a DataSink, and installs a Processor in the

intermediate data path. The purpose of the simple capture application is to stream
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Figure 3.1: Class diagram for the simple capture application

raw video from the capture device to a transform engine, and so the Processor is

passive for this particular application. The class hierarchy for the simple capture

application, shown in Figure 3.1, shows the relation of the capture application class

to other JMF classes. The Processor is actually a descendent of the Player that

can modify the content of a media stream, with an input DataSource and output

DataSource. Since Players and Processors extend from the Controller class,

which manages some of the time-sensitive functions of the media streams, the capture

application must implement the ControlListener interface to allow it to respond to

control events.

The capture application, with class description shown in Figure 3.2:(a), accepts

two command line arguments: an input MediaLocator and an output MediaLocator.

The input MediaLocator is in the format of a video for windows (vfw) device driver

reference, such as vfw://0 or vfw://1 (the number depends on the assigned number
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Figure 3.2: Class diagrams for applications: (a) simple capture application, (b) trans-
form engine, (c) composition engine, (d) transform renderer

of the device driver). The output MediaLocator is in the format of an RTP URL

address, such as rtp://host address:port. Traffic on the specified output port will

contain video and also bidirectional control information including the type of media,

number of tracks, and connection status. JMF requires that the specified port number

to be even.

The capture application sets up the media stream as described in this para-

graph. The function captureMedia() supplies the input MediaLocator to the default

JMF Manager, which then returns a handle to a new DataSource from the cap-

ture device. Next, the function creates and configures the Processor. The output

format of the processor is set to JPEG/RTP with the default compression quality.

An RTP transmitter is created to transmit to the address specified by the output

MediaLocator. The RTP transmitter is connected to the output of the processor,

and then the method realize() is called on the Processor. Once the Processor enters

the realized state, the video stream begins and transmits to the specified URL of

the transform engine.



18

3.2 Transform Engine

The code for the transform engine, for the most part, is similar to the simple capture

application with the main exception being that the Processor actively processes the

video stream using the TransformRenderer plug-in, see Figure 3.3 . The transform

engine takes in three command line arguments: input and output MediaLocators and

a lookup table filename. The open() function performs most of the same operations

that the captureMedia() function did in the simple capture application. As part of

the configuration step for the Processor, the TransformRenderer is specified as part

of the codec chain. The lookup table filename is passed to the TransformRenderer

plug-in as one of the class constructor parameters.

Figure 3.3: Data flow diagram for the transform engine application

The TransformRenderer plug-in begins by initializing the lookupX, lookupY,

and lookupC (camera) arrays, which are 2D arrays of doubles, from the values

stored in the lookup table file. The TransformEngine passes in the value 0 for

the camera number. A separate application for generating the lookup table speci-

fication file for the transform engine is described in Appendix B. The code for the

TransformRenderer mainly sits in a tight loop over the process() function. Pseudo-

code for the process() is shown in Table 3.1.
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Table 3.1: TransformRenderer::process(), for single camera function

–Called on every frame
output index = 0;
for each y in lookupY do

for each x in lookupX do
...
input index = width*y + x*pixel size;
– set R, G, B values for each pixel

outputbuffer[output index++] = inputbuffer[input index++]
outputbuffer[output index++] = inputbuffer[input index++]
outputbuffer[output index++] = inputbuffer[input index++]
. . .

end for
end for

The transform described by the lookup table is applied to every frame of the

live video. The screenshots in Figure 3.4 are from a JMF player connecting to the

output RTP stream from the transform engine.

Figure 3.4: Sample screenshots: (a) original, (b) transformed

3.3 Composition Engine

The code for the CompositionEngine is likewise similar to the transform engine, but

there is another level of added complexity involving multiple threads and a shared
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frame buffer. The composition engine begins by taking the following command line

arguments: three (3) input MediaLocators, an output MediaLocator, and a lookup

table filename. Three instances of the composition engine class are created as separate

threads, one for each of the input MediaLocators, as shown in Figure 3.5. A camera

number is also passed in as an argument with the MediaLocators, which is based

on the order of the input arguments. This order needs to be consistent with the

ordering in the lookup table specification. Details of the tool to generate the alignment

lookup table appear in Appendix C. The open() method performs the same steps and

initializes the TransformRenderer, similar to before, but now also passes a pointer

to the shared frame buffer. Pseudo-code for the TransformRenderer, shown in Table

3.2, is provided below with added sections relevant to the multiple cameras of the

composition engine.

Figure 3.5: Data flow diagram for the composition engine application
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Table 3.2: TransformRenderer::process(), for multiple cameras function

–Called on every frame
output index = 0;
for each y in lookupY do

for each x in lookupX do
input index = width*y + x*pixel size;
if c == 0 then

–set R, G, B values for each pixel
outputbuffer[output index++] = inputbuffer[input index++]
outputbuffer[output index++] = inputbuffer[input index++]
outputbuffer[output index++] = inputbuffer[input index++]

else if lookupC ==c then
–if not the main output stream,
–then just copy to the shared frame buffer

sharedframebuffer[output index++] = inputbuffer[input index++]
sharedframebuffer[output index++] = inputbuffer[input index++]
sharedframebuffer[output index++] = inputbuffer[input index++]

else
output index += 3

end if
end for

end for
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3.4 Remarks

There’s the potential to perform synchronization between the multiple video streams

based on the RTP timestamp. This has not yet been implemented, but it might be

as simple as comparing the timestamp to a global timestamp variable in the process

function. The global variable might be protected by a mutex and updated to the

largest timestamp value received. Video regions would be copied into the shared

frame buffer only if the current timestamp was greater or equal to the global value.
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Chapter 4

Hardware Implementation

4.1 Transform Engine

4.1.1 Overview

The transform engine is a circuit that was designed to be tested in the reprogrammable

application device (RAD) FPGA of the FPX platform, which has previously been

programmed to perform string matching[17][3], IP lookup[20], video transcoding[11],

and the functions of an Internet firewall[10]. This chapter discusses the two versions

of the hardware transform engine that were implemented, one to process a single

video stream and the other to process two video streams concurrently. The single

video stream transform engine outputs pixels in the order specified by a transform

lookup table. The dual video stream transform engine applies separate transform

lookup tables to each video stream.

For this design, the video streams consist of uncompressed, 32-bit RGB video

because it is simple to work with, but a system that needs to save on transmissions

would probably employ video compression. Still-image compression could be applied

to each video frame using Motion-JPEG (MJPEG) or MJPEG-2000 algorithms to
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provide an order of magnitude savings in the amount of data to be transmitted. An

estimate is that the 70Mbps rate for uncompressed 320x240 video could be compressed

to approximately 1-2 Mbps using MJPEG and still retain reasonable quality. Further,

compression algorithms that account for motion prediction can improve upon this by

another order of magnitude. The author was unaware of any freely available hardware

cores to perform the video compression and decompression at the time of this design.

For that reason and the additional design complexity and time that would have been

needed to design and debug the circuit, a decision was made not to support MJPEG

for this version of the hardware transform engine.

Figure 4.1: Block diagram of transform engine shows major components and data
flow

A block diagram of the single video stream transform engine is shown in Figure

4.1. Traffic from the RAD line card interface enters into the Layered Protocol wrap-

pers on the left. Only Internet protocol (IP) packets will pass through all the layers of

the wrappers to the application inside; other types of traffic will be routed around the

application by the wrappers. On the left inner side of the wrappers packets are de-

multiplexed by the ingress control block. Packets are classified as video data; lookup

table entries; or bypass traffic, based on the destination port number contained in
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the UDP header, see Table 4.1. The ingress control block writes packets into the

FIFO buffers according to type. The application includes three finite state machines

(FSMs): store video, store lookup, and output video that process data contained in

the packet payloads.

Table 4.1: Packet types used by the hardware modules

Packet type UDP Port

Video stream 1 900

Video stream 2 901

Lookup table 1 entry 916

Lookup table 2 entry 917

Figure 4.2: Internal packet formats, 32-bit words: (a) Video packet, (b) lookup table
info packet

To allow for some design reuse, packets that contain video and packets that

contain lookup table entries were formatted to be similar. The internal format of both

video packets and lookup info packets are shown in Figure 4.2. For historic reasons

the FPX uses asynchronous transfer mode (ATM) cell-based formats internally, and
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so these diagrams also show the ATM header and AAL5 trailer. The first four words,

shaded in light green, constitute the IP header. The destination address is set to the

IP address of the GigE line card. The next two words, shaded in darker green, make

up the UDP portion of the header, which includes the field for the destination port

number. Intentionally, the first two words of the payload have a prefix in the top

byte (bits 31 downto 24) that distinguishes them as control words. The first word of

the payload in both formats specifies a base address in SRAM, where the first data

value should be written. The second word of the payload instructs the state machines

how many values are contained in the control packet. The remaining portion of the

payload contains either pixels or lookup table entries.

4.1.2 Store Video FSM

The store video FSM basically reads packets from video FIFO and writes the pixel

values to SRAM, see Figures 4.3. Similarly, the store lookup FSM, which is another

instantiation of the store video FSM, writes the lookup table entries to SRAM. Video

data is stored in the lower address range (0x000000-0x01FFFF) of SRAM, and the

lookup table is stored in the upper address range (0x200000-0x02FFFFF).

The operation of the store video FSM is fairly simple, see Figure 4.4. When the

video buffer FIFO becomes non-empty, then store video requests control of SRAM.

Store video reads the first two words of the packet payload containing the base address

and number of pixels. Store video then transitions to the state s read pix, where

it reads the remaining packet payload from the FIFO and outputs the pixel values

on the mod d out bus. Meanwhile, store video performs a burst write to store those

values in SRAM using a concatenation of row and column as the offset address. The

upper bits of data are padded with zeros to fill the 36 bit width. The waveform
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Figure 4.3: Block diagram illustrates store video FSM interfaces to memory compo-
nents

in Figure 4.5 shows that after the FIFO became non-empty, the first two control

words are processed by the state machine and the first value is written to the SRAM

interface.

The dual transform engine circuit contains two instances of the store video

circuit and consumes an additional memory for another frame buffer and lookup table.

The second store video FSM also requires an added FIFO and the FSM interfaces

to SRAM bank 2, module 1. There are four module interfaces on the extended

SRAM controller interface. The second store lookup FSM interfaces to SRAM bank

2, module 3.

4.1.3 Output Video FSM

The output video FSM, or read video FSM, reads the lookup table and video frame

buffer and then outputs full frames of video at an evenly paced rate, shown in Figure

4.6. At the beginning of each frame, the output video FSM steps through the list

of addresses stored in the transform lookup table. For each address, it reads the
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Figure 4.4: Abbreviated state machine for store video

corresponding pixel and writes it to the egress video buffer FIFO. It was decided to use

separate request interfaces to memory for the lookup table and video frame, to allow

for a future implementation in which the lookup table would be stored in SDRAM.

The available SRAM controller infrastructure was extended from 2 interfaces to now

support 4 interfaces for this design.

The output video state machine is also simple, it basically waits for a timer

and then performs scores of memory reads, see Figure 4.7. The frame timer is ac-

tive whenever there is a transmit enable signal and no TCA backpressure, shown

in Figure 4.8. The timer counts to some maximum value, currently a user-defined

constant in the VHDL code, and then pulses the frame timer signal, see cursor 1 in

4.9. Once this happens, the state machines transitions idle to reset internal counters

and request SRAM in order to read the lookup table, see cursor 2 in Figure 4.9. The
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Figure 4.5: Waveform shows store FSM writing value to SRAM interface

output video FSM reads the lookup table at the address created by concatenating

the row and column counters to fetch the address of the pixel from the frame buffer,

see cursor 3 in Figure 4.9. Then, that pixel address from the lookup is buffered, and

the memory interface to the frame buffer is requested. Bit 19 of the address selects

between banks 1 and 2. The pixel is read from memory and the internal counters are

updated. The pixel is written to the egress video FIFO, see cursor 4 in Figure 4.9.

The state machine loops back to request the lookup table again until it has read a

complete video frame. Afterwards, the state machine returns to idle and the timer is

reset. The regularly paced output of multiple video frames is shown in Figure 4.10.

There are a couple aspects of the design for the output video FSM that were

intentionally simplified but could later be extended or further optimized. The read

operations can be optimized for efficiency by adjusting the read order and performing

burst reads. Much time is currently spent requesting memory between the lookup

table and again for each pixel read. Reordering the reads could provide more memory

cycles and improve support for higher resolution video. An extension that could
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Figure 4.6: Block diagram illustrates output video FSM interfaces to memory com-
ponents

enhance the quality would be to perform bilinear interpolation. Currently, the lookup

table is rounded to the nearest neighbor at the time it is generated. The motivation

for currently constructing the address by concatenating the row and column was to

make it easier to later go back and add bilinear interpolation. Under this scheme, the

addresses for four neighboring pixels can be determined easily, requiring only addition

and subtraction operations. There is an important design note in section 4.3.1 that

would affect designs that perform bilinear interpolation.

4.1.4 Egress Control Block

While the output video FSM stores pixels in the egress FIFO, the egress control block

forms the packets for transmission. The egress rdy cntr signals to the egress control

block when the number of pixels stored in the FIFO is enough for an output packet.

There is a constant for this, which is set to 160 pixels. The egress control block uses

stored packet header from the ingress control block. Currently, the source address
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Figure 4.7: Abbreviated state machine for output video

Figure 4.8: Waveform shows output video responding to transmit en

from the incoming video stream is used as the destination address. It was planned

that the bypass buffer could exert a backpressure signal when it becomes non-empty,

which would pause the output video FSM. The egress control block would give the

bypass packet priority for transmission. This has not been fully implemented, but it

could be useful to keep the buffers from overflowing.

The dual transform engine has modifications to the egress half of the design.

It has an additional egress video buffer FIFO and another instantiation of the output
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Figure 4.9: Waveform shows output video when timer expires

video FSM. The egress control block selects between outputting the two video streams

and the bypass traffic.

4.2 Composition Engine

The composition engine design for two cameras is implemented as a hybrid between

the single transform engine (TE) and dual TE because it takes two input video streams

and outputs one fused video stream. From the block diagram, shown in Figure 4.11,

the ingress side is similar to the dual TE, and the egress side is similar to the single

TE. The major modification is performed when creating the lookup table entries, in

this case bit 19 of the address toggles between video streams. The store video and

store lookup state machines have the same behavior as discussed earlier.
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Figure 4.10: Waveform shows output video reading multiple frames

4.3 Support Applications

4.3.1 Video Sender

The video sender application was written to capture and send video from a Windows

capture device. It is based on two example applications from the Microsoft DirectX

9.0 SDK, playcap.cpp and stillcap.cpp. In short, the program configures the network

socket, initializes a capture graph, and then displays and transmits the video.

The network socket is configured using the WinSock API. The destination

address and destination port are set at compile time, using compiler macros.

The setup for the capture graph requires connecting to the device and specify-

ing connecting components for the data flow. The capture graph for the video sender,

shown in Figure 4.12, shows the following connections: device driver, connected to a

demultiplexor, connected to format adapter, connected to frame grabber, connected
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Figure 4.11: Block diagram of composition engine shows major components and data
flow

Figure 4.12: Video Sender capture graph screenshot from GraphEdit DX9.0 SDK tool

to the renderer display. The device driver can be any non-DVI capture device, for

example USB cameras should work. The smart tee is a software demultiplexor for the

device driver to provide a set of capture pins and preview pins to the DirectX API.

Some device drivers have this capability built in. The color space converter adapts

the video format from the native 24bpp to 32bpp, so the video format is consistent

with the hardware designs. The sample grabber, sets up the call back function, which

is actually done by creating a semi-COM object in the example. The callback func-

tion copies the frame to a frame buffer, segments the frame, and transmits small 160

pixel UDP packets. The renderer uses DirectDraw to scale and display the live video,

see Figure 4.13. After the graph is complete, the application begins displaying and

transmitting the video.
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Figure 4.13: Video Sender previews and transmits live video

An important note is that there was a design oversight in this application that

involved the differences in byte ordering between the Intel-based host and the network

order. The video capture callback function returns a pointer to the frame buffer, and

then a plain memcpy() is performed to copy data from the pointer address to an

address within the outgoing packet’s buffer. That is why the byte ordering of pixels

from VideoSender application is actually reversed from the intended format, but as

far as the hardware is currently concerned pixels are 32-bit values written to and read

from memory. If the hardware design is modified to process video data, then it should

take this into account, either in software or hardware.

4.3.2 Video Receiver

The video receiver is an even simpler application that listens to a UDP socket and

displays the received video. The program initializes an empty frame buffer and con-

figures the network socket. The Winsock select function WSAAsyncSelect is used

to listen for read and write events (FD READ | FD WRITE) to the socket descriptor.

On an event the rcv packet() function is called that copies the pixels to the frame

buffer. The display is currently updated, by declaring the window region invalid and
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calling SetDIBitsToDevice to copy the frame buffer to the window region, whenever

packets with base address set to zero are received.

4.3.3 LookupSender

A simple program was written to create control packets and program the lookup

table. This program was used to generate input packets for simulation and later

modified to transmit packets these packets to control the actual hardware. Unlike

the VideoSender, the LookupSender formats the packets in correct network byte

order.

4.4 Remarks

Both the transform engine and composition engine are circuits that were designed to

be tested in the RAD FPGA of the FPX platform, but they could be deployed in

future FPGA platforms. The FPX was chosen as the development platform because of

its existing UDP protocol wrappers and SRAM controller infrastructure. At outset of

development there was discussion that a small, lightweight version of the FPX, called

the wireless access sensor pod (WASP), might eventually be implemented to serve as

the platform for the sensor network processing nodes. This transform engine design

could later be deployed in a WASP environment, provided that the WASP provides

similar interfaces to supporting infrastructure.

In another video project, the author implemented a hardware-based video

transcoder for the FPX to process MJPEG video. The video transcoder module

throttles the bandwidth of MJPEG video by selectively discarding high frequency

coefficients, which can be useful to perform during network congestion. The module

decodes the DCT frequency coefficients from the Huffman entropy-encoded segment.
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Tile-size regions of the video frame can selectively retain their high frequency detail

based on a user-defined 8x8 image map. Alternatively, the DC coefficient of each

8x8 pixel blocks can be used instead to preserve the detail within the regions con-

taining particular colors of interest. Adding MJPEG support and also some of the

functions from the video transcoder like filtering regions of disinterest might fit well

in a future version of the designs. The video-compression-related details of that de-

sign made it more complex than the simple circuits described here, so any hardware

projects requiring video compression should budget a major amount of time for just

the compression details.
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Chapter 5

Tests and Performance Results

This chapter describes the relative advantage of each system, since the hardware and

software versions were designed to support different features. The Java applications

support three cameras, employ video compression, and relied on shared execution

environments. The hardware modules supported two cameras, did not support com-

pression, and the design requires dedicated hardware to be available. Keeping in mind

what aspects of the designs worked well for each system, latency and throughput are

compared.

5.1 JMF Software

5.1.1 Configuration

The system that was implemented for the JMF tests combine video from three web-

cams. The physical configuration included a dual processor Athlon 2800 MP system,

a dual processor Xeon 2.0 GHz system, and two Athlon workstations-all connected

by 100Mbps Ethernet, as shown in Figure 5.1. Color-coded symbols are used in the

Figure 5.1 to match the input streams to their source. USB webcams were connected
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Figure 5.1: JMF software physical connection diagram (symbols left of text are inputs;
right are outputs)

to each workstation. Host3 ran a separate instance of the TransformEngine for each

of the input streams. Host2 ran the CompositionEngine, which turned out to be a

surprisingly computationally intense task to fuse these transformed video streams.

5.1.2 Performance

Table 5.1: JMF Application Performance (values are approximate)

Frame Rate Latency Output Bandwidth

frames-per-sec seconds Mbps

VideoCapture 24-27 less than 1 2.5*(2*instances)

TransformEngine 20 1 2.5*(2*instances)

CompositionEngine 10-20 2-4 2.5

As Table 5.1 shows, the output video streams of each of the TransformEngines

was better than the combined output video of the CompositionEngine in terms

of latency. The output of the CompositionEngine lagged by a few seconds. It is

estimated that the cause of this latency was due to the overhead at each stage related
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to video compression, which occurs several times, as illustrated in Figure 5.2. This

figure shows that operations to encode and decode JPEG/RTP were performed at

each of these three transmission stages. Even though Host2 and Host3 had heavy

loads because they executed multiple applications in this configuration, it must be

taken into account that those machines had much greater processing capability than

the typical sensor mote platform. Due to the current granularity of this code design

and the disappointing performance of the CompositionEngine, it is estimated that

adding machines would not cause much improvement in latency.

Aside from latency, the overall quality of the video was good and the band-

width requirements were reasonably low. Each stream had a variable bit rate of

approximately 2.5 Mbps, using typical compression quality.

Figure 5.2: The multiple stages of encoding and decoding the video streams con-
tributed to overall latency
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5.2 Hardware Modules

5.2.1 Design resources

After coding and simulating the designs for the transform engine and composition

engine, the designs were mapped to actual hardware. The VHDL code was compiled

and synthesized using the Synplify Pro tool by Synplicity. This mapped the behavioral

and structural code to an EDIF description of the required hardware resources on the

FPGA. Sythesis results are shown in Table 5.2. To continue this topic of resource

utilization, Table 5.3 shows the amount of off-chip SRAM utilized by the hardware

modules. Xilinx ISE 6.2 CAD tools were used to place and route the EDIF files

and generate the binary FPGA program configuration. Timing information from the

place and route results is shown in Table 5.41.

Table 5.2: Synthesis Results – XCV2000E Resource Utilization

# LUTs % LUTs # BlockRAM % BlockRAM

Single video TE 820 2 55 34

Dual video TE 1230 3 79 49

Composition engine 1032 2 63 39

Table 5.3: SRAM Utilization

Frame Buffer Lookup Table

MB MB

Single video TE 0.5 0.5

Dual video TE 1.0 1.0

Composition engine 1.0 0.5
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Table 5.4: Place and Route Timing Results

Timing

MHz

Single video TE 48.6

Dual video TE 49.6

Composition engine 45.4

Figure 5.3: Hardware tests physical connection diagram

5.2.2 Configuration

Each of the hardware modules was developed and tested separately for functionality,

rather than demonstrating the combined application. The test configuration, shown

in Figure 5.3, consists of a laptop connected to an FPX gigabit Ethernet system. The

operation of the single video TE, dual video TE, and composition was tested indi-

vidually. The VideoSender transmits a video stream to the FPX GigE system. The

hardware modules currently swap the source address to be the destination address,

when generating the output video streams.

1The BlockRAM results were adjusted to subtract the BlockRAMs used by the Xilinx Chipscope
analyzer, however, the timing results were not altered
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5.2.3 Performance

Approximate performance results are shown in Table 5.5. At the moment the quality

appears to be limited to some extent by the software applications running on the

host. The transmission between VideoSender and VideoReceiver applications is

one of the current bottlenecks. Tests show that these applications running on the

same host will produce packet loss when trying to send full frame rate video, which is

most likely due to the high data rate of the uncompressed video 70Mbps per stream.

Since packets contain 160 pixel chunks, packet loss produces almost a scanline type

of visual effect.

There were also occasions when a few random pixels appeared with a noticeably

different color in some frames. The current estimate for why this happens is that a

memory-request bug in the output video FSM caused it to skip the s mem req state.

This bug has recently been fixed.

This design does well, however, in terms of having low latency. Testing revealed

that there was no major latency, even when combining two video streams using the

hardware composition engine.

Table 5.5: Hardware Module Performance (values are approximate)

Frame Ratea Latency Total Bandwidthb

frames-per-sec seconds Mbps

Single video TE 30 less than 1 80

CompositionEngine 30 less than 1 125

aThere was packet loss between just the VideoSender and VideoReceiver, and so there were
noticeable gaps of pixels in frames

bThis was not accurately measured; these are the observed rates from Windows task manager
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5.3 Some Lessons Learned

There is obviously much less overhead in the simple hardware designs, without video

compression, but even if there was compression, a hardware-accelerated transcoder

could be designed that would only add a few milliseconds of latency per frame for

encode and decode operations. This hardware assist could be designed as a plug in to

support different codecs and implemented in an FPGA, or it could be implemented

as a low power ASIC, provided that there was a common video format.

If we take a moment to revisit the motivation for using distributed processing

nodes for this design, it was expected that using distributed processing nodes would

lead us to more scalable design than one with a centralized processing core. Since the

number of sensors used in the test environments was so small, however, the cost of

the additional processing overhead from video compression was increased because the

distributed design has more transmission stages between nodes. This increased cost

for the small environment appears to outweigh the benefit of distributing the load. So,

it seems like some cost function could be used to determine an appropriate distribution

strategy. It might be good to note that the cost for some video compression algorithms

in hardware can be lower than the relative cost that it might have in software.

Right now, it is not clear when applying transforms and performing composi-

tion at separate nodes becomes the right level of granularity to use as an architecture

to solve this problem. A small configuration, consisting of three video sensors and

a single host, provided the host uses one lookup table that mapped 3 frame buffers,

could possibly outperform a system that requires extra stages of transmission and

compression overhead. To characterize this trade-off in future experiments, simula-

tions are needed.
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Chapter 6

Conclusions

Hardware and software have been implemented to perform a video surveillance appli-

cation for a video sensor network. The services of this application include a Transform

Engine (TE) and Composition Engine (CE), which exist as modules that can be pro-

grammed into processing nodes that are distributed throughout a network. This

paper describes how data from multiple live video sensors can be processed and then

fused to generate custom views that are not restricted to actual camera position.

The functions that alter perspective, correct radial distortion, zoom, and rotate are

performed off-line to calculate lookup tables that are stored and applied at nodes.

Data in the network is transmitted as UDP Internet Protocol (IP) packets.

The reconfigurable hardware modules were coded in VHDL and have been pro-

totyped using Washington University’s Field Programmable Port Extender (FPX)

platform. The transform engine circuit utilizes approximately 34 percent of the re-

sources of a Xilinx Virtex 2000E FPGA, and can be clocked at frequencies up to

48 MHz. The composition engine circuit utilizes approximately 39 percent of the

resources of a Xilinx Virtex 2000E FPGA, and can be clocked at frequencies up to

45 MHz.
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6.1 Future Work

One aspect of the design that is currently sore, and appears to have the most po-

tential for improving performance, is the lack of any hardware-accelerated support

for video compression. This change could dramatically improve network performance

and reduce throughput for the hardware modules. Good candidates for compression

algorithms include MJPEG and MJPEG-2000. If MJPEG-2000 were selected, then

this design could take advantage of region of interest coding and the special data

ordering of high frequency coefficients.

Another good area of work would be to extend the hardware modules to imple-

ment a homography-based transform engine1 that would store information about the

transform in the form of functions rather than in the form of large lookup tables. The

terms of the lookup table could be calculated at run-time based on the coefficients of

the homography transform matrix.

It would be possible to implement software or additional logic to automate

the alignment between videos as a way to compensate for sensor movement. Not to

mention, this could also greatly simplify the basic configuration. Hardware or software

could try to minimize a cost function to locate pairs of correspondence points between

images. The homography transform coefficients could be periodically solved for, and

used to generate and upload new transform lookup tables. This might be a good

area of research because there are potentially many of ways to approach solving this

problem.

A simple extension to the project would be to add bilinear interpolation. The

current address scheme was chosen to make the implementation of bilinear easier.

1The homography-based tranform engine was suggested by Pless
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This could slightly improve the quality of the transformed video, especially in regions

near vanishing points.
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Appendix A

Configuration Details for the FPX

A.1 Routes

The configuration details necessary to repeat testing of the hardware modules are

described in this appendix. The single video tranform engine (TE), dual video TE,

and composition engine modules were implemented on the line card interface of the

reprogrammable application device (RAD) FPGA of the FPX. The following infor-

mation is used to route traffic through the circuit for an “FPX-in-a-box” Gigabit

Ethernet system, described in [18].

The combination of two FPXs, each with stacked Gigabit Ethernet line cards,

is used as the test platform for each network node. The Gigabit Ethernet line cards

provide physical connection interfaces to pass traffic from a gigabit Ethernet source

through one FPX application device.

The configuration for routing traffic through an FPX is updated using the

NCHARGE control software[19]. The network interface device (NID) FPGA of the

FPX routes traffic between the line card and switch physical connection interfaces and

rad lc and rad sw interfaces on the card. The following NCHARGE script configures
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the NID routing appropriately to pass traffic through the line card interface of the

RAD. The VideoSender application transmits to the IP address of the GigE card, so

that the packets are routed through the FPX as control messages.

#defaults

print "./basic_send 1.0 t 0 32 1 0 0 0";

print ‘./basic_send 1.0 t 0 32 1 0 0 0‘;

print ‘./basic_send 1.0 t 0 33 1 0 0 0‘;

print ‘./basic_send 1.0 t 80 32 1 0 0 0‘;

print ‘./basic_send 1.0 t 80 33 1 0 0 0‘;

# This is the bitfile for the composition engine

print ‘./basic_send 0.1 c comp_eng.bit‘;

# Route only control messages VCI=50 or 0x32 through rad_lc

print ‘./basic_send 1.0 t 80 32 0 0 0 1‘;

print ‘./basic_send 1.0 t 0 32 0 2 3 1‘;

A.2 VidSender and VidReceiver Notes

VidSender and VidReceiver are designed to run under Windows 2000/XP and their

options are configured at compile time. In VidSender, the destination IP address

should be set to the address of the GigE line card before compile time. The hardware

circuits are currently programmed to swap the source address of the packets to use

as the destination for outgoing video to return video to VidReciever.
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Appendix B

Transform Tool

The transform tool1 calculates the lookup table necessary for the transform engine to

transform the camera perspective. The tool can be used to calculate the location of

vanishing points and calculate the coordinates of source pixels that would rectify the

view. The tool can apply radial correction to adjust for barrel distortion caused by the

camera lens. This program is written in Java and extends JMStudio. The program

is loaded by the snapshot function (Ctrl-S) in a modified version of JMStudio called

JMStudioUpdated2.

B.1 Vanishing point geometry

Perspective correction enables fine control over the tilt of the picture plane so that

the target plane can appear perpendicular to the viewer. The vanishing points are

determined by specifying pairs of non-parallel lines that and then calculating their

intersection. Typically, the corners of a quadrilateral are specified as the four points

that are used to solve for two vanishing point intersections. From the intersection

1This program was also coauthored by David Barnett and Christopher Zuver
2The code for this application is specified in ImageProcess.java
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points, a transform is calculated that would rectify the lines to parallel. The function

for calculating the lookup table sets one vanishing point as the x-axis and the other

vanishing point as the new y-axis, and during the intermediate calculation rotates

and translates the coordinates, in order to produce an output view that is centered

in the frame and vanishes along the display’s x axis and y axis.

The user specifies whether there are one or two vanishing points that they

wish to correct, a screenshot of the interface is shown in Figure B.1. Two vanishing

point geometry is sufficient to transform views of planar surfaces. For one vanishing

point the user identifies four points that define a pair of vanishing lines. For two

vanishing points the user identifies eight points that define two pairs of vanishing

lines. The intersection of each pair is calculated to identify two vanishing points in

the original view. Translation, scaling, rotation, and radial correction parameters are

applied at the time the transformation table is generated. The program writes the

transformation lookup table to disk, which contains two arrays of x coordinates and

y coordinates of the source pixel addresses. The display is updated to preview the

transformation on a static image, shown in Figure B.2.

B.2 Radial correction

Radial correction adjusts for lens aberrations, such as barrel or pincushion distortions.

The amount of radial distortion is specific to the lens of the camera, so each camera is

first placed in front of a test pattern of straight lines. Using control points to measure

the distortion, a polynomial function is determined to construct a lookup table that

corrects the distorted radial distance to map to a predetermined radial distance B.3.

The same parameters can be applied to correct other images taken using that camera

lens[2].
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Figure B.1: Transform tool interface with original perspective

Figure B.2: Transform tool interface with rectified perspective
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Figure B.3: Radial correction (a) original distorted image, (b) rectified image

Figure B.4: Relationship between distorted radius and expected radius for this ex-
ample can be modeled as 3rd order polynomial, which is used to calculate the inverse
transformation
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Appendix C

Alignment Tool

The composition tool1, written by David Barnett, is a simple, stand-alone application

used to specify the alignment of the video feeds after perspective correction. Up to

three views can be manually scaled, rotated, and positioned until their alignment

overlaps. The views currently overlap as an ordered stack of images. Then, regions

of interest can be manually defined by cutting away sections from overlapped regions

to view the underlying images. The graphical interface is shown in Figure C.1 with

an example alignment of three views2. A lookup table that specifies camera, x co-

ordinates, and y coordinates is generated as output, containing a mapping of pixels

from the multiple views to the composite view. Figure C.2 shows the contribution

from each camera by shading regions according to camera number3.

1The code for this application is specified in MoveImage.java
2The composition was aligned by Christopher Zuver
3Specify the value 21 as the cut pixels parameter to show camera regions
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Figure C.1: Applet interface shows the composition of three views

Figure C.2: Applet interface shades the regions based on camera number
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Appendix D

Archive of Source Files

D.1 Source code

This section describes the files that have been archived for this project. The Java

implementation, hardware modules implementation, and support tools are contained

in this archive. This archive has been put into the CVS tree at the following location:

cvsroot/FPX ROOT/RAD/MODULES/VIDFUSION. Also, a tarball copy of the files has

been placed in /project/fpx/vidfusion on the network drive.

D.2 Java implementation and tools

The Java source and files are contained in a main subfolder jmf apps, which is shown

in Figure D.1. A Makefile has been provided to show examples of how to compile

the applications. The Java SDK v1.4 or later and the Java Media Framework (JMF)

v2.1.1e or later are needed for this process. README files have been created to describe

the important files and brief notes in some of the directories. Example scripts for

running the applications are included as batch (.bat) files in the shortcuts directory.
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Figure D.1: Abbreviated list of files for JMF applications

The transmit directory contains the simple capture application. The xform

directory contains the TranformEngine, CompositionEngine, and TransformRenderer.

The alignment tool directory contains the modified JMStudio source code. It can be

run as shown below:

> cd \transform_tool\JMStudioUpdated\jmapps\lib

> java JMStudioUpdated [input_media_locator]
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’Ctrl-S’ will capture a screenshot and load the transform interface. Output

.bit files will be written to this directory. The .bit file should be passed in as a

command-line argument to TransformEngine.

D.3 DirectX support applications

The source for the DirectX applications are contained in the dx9 apps subfolder.

These applications require Visual Studio.NET to compile. The parameters are cur-

rently set at compile time. The important files are listed in Figure D.2.

Figure D.2: Abbreviated list of files for DirectX video tools

D.4 FPX modules

The fpx apps directory contains the VHDL hardware description and project files for

the composition engine, dual transform engine, and single transform engine designs.
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The ce, te double, and te single directories are set up as projects for the Xilinx

ISE Foundation 6.2 tools.

Simultations should be run by typing ‘make sim’ from the command line in

the respective Xilnx project directory. This was a work around to simulate with the

source code version of the protocol wrappers, without having to include those files in

my project.

That Makefile in the project directory will need to be updated accordingly as

changes are made.

Note that some of the files contain Chipscope debug cores (VIO, ICA, ILA) in

wrapper module.vhd. These components need to be commented out in order to run

ModelSim simulations.

Figure D.3: Abbreviated list of files for FPX hardware modules
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