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Abstract—Open soft real-time systems, such as mobile robots,
must respond adaptively to varying operating conditions, while
balancing the need to perform multiple mission specific tasks
against the requirement that those tasks complete in a timely
manner. Setting and enforcing a utilization target for shared
resources is a key mechanism for achieving this behavior.
However, because of the uncertainty and non-preemptability of
some tasks, key assumptions of classical scheduling approaches
do not hold. In previous work we presented foundational methods
for generating task scheduling policies to enforce proportional
resource utilization for open soft real-time systems with these
properties. However, these methods scale exponentially in the
number of tasks, limiting their practical applicability.

In this paper, we present a novel parameterized scheduling
policy that scales our technique to a much wider range of systems.
These policies can represent geometric features of the scheduling
policies produced by our earlier methods, but only require a
number of parameters that is quadratic in the number of tasks.
We provide empirical evidence that the best of these policies are
competitive with exact solution methods in small problems, and
significantly outperform heuristic methods in larger ones.

I. INTRODUCTION

Open soft real-time systems, such as mobile robots, must

respond adaptively to varying operating conditions. Effective

operation of these systems requires that sensing and actuation

tasks are performed in a timely manner. In addition, execution

of mission specific tasks such as imaging a room must be

balanced against the need to perform more general tasks such

as obstacle avoidance. Setting and enforcing a utilization target

for shared resources is a key mechanism for striking this

balance while ensuring timely execution of tasks.

Classical scheduling approaches are inapplicable to impor-

tant tasks in the domains we consider. There are two reasons

for this. First, some tasks are not efficiently preemptable;

for instance an actuation task may involve moving a shared

physical resource, such as a robotic arm or pan-tilt unit.

Restoring the actuator state after a preemption would be

equivalent to just restarting that task. For this reason, once

a job of a task acquires the resource, it should retain it until

it completes.

Second, the duration for which a task holds the resource

may be stochastic, though we assume it obeys some known

This research has been supported in part by NSF grants CNS-0716764
(Cybertrust) and CCF-0448562 (CAREER).

underlying distribution. Behaving optimally under these con-

ditions requires that the system exploit this uncertainty by

anticipating common events while reacting to early availability

of the resource and hedging against delays.

In previous work [1] we presented methods for generating

task scheduling policies for open soft real-time systems with

these properties. However, the inherent complexity of gener-

ating these policies limits the usefulness of that approach to

problem instances with a small number of tasks. In this paper

we present a parameterized policy approach that allows us to

compute policies for a significantly wider range of problem

instances.

The paper is organized as follows: In Sections II and III

we summarize our system and task models and our solution

approach based on solving Markov decision processes (MDPs)

as in [1]. As that approach can not directly solve problems

involving a large number of tasks, in Section IV we propose

alternative strategies for addressing these limitations. In Sec-

tion V we introduce a new parameterized policy approach,

which is the main contribution of this work. In Section VI

we discuss experiments comparing our parameterized policy

approach to heuristic policies and for small numbers of tasks

to policies derived by solving our MDP model directly. Finally,

in Section VII we present our conclusions and future work.

II. SYSTEM MODEL

In previous work [1], [2], we proposed an abstract system

model in which n tasks (Ti)n
i=1 require mutually exclusive

use of a single common resource. Each task Ti consists of an

infinite sequences of jobs (Ji,j)∞j=0; Ji,0 is available at time

0, and each job Ji,(j+1) becomes available immediately upon

completion of Ji,j . Jobs can not be preempted; whenever a job

is granted the resource, it occupies that resource for a finite,

bounded, stochastic duration.

We make two simplifying assumptions regarding the distri-

bution of each job’s durations:

(A1) Inter-task durations are independently distributed.

(A2) Intra-task durations are independently and identically

distributed.

When Assumption (A1) holds, the duration of job Ji,j always

obeys the same distribution regardless what jobs preceded it.

This means that we do not need to know the system history

in order to predict the behavior of a particular job. When



Assumption (A2) holds, consecutive jobs of the same task

obey the same distribution. Thus, every task Ti has a duration
distribution Pi from which the duration of every job of Ti is

drawn.
In addition to the assumptions stated above, we require that

each duration distribution has bounded support on the positive

integers: that is, every task Ti has a worst-case execution time

Wi such that
∑Wi

t=1 Pi(t) = 1.
Our goal is to schedule jobs dynamically in order to preserve

temporal isolation [3] among tasks. We specify some target

utilization ui for each task that describes its intended resource

share at any temporal resolution. More specifically, let xi(t)
denote the number of quanta during which task Ti held the

resource in the interval [0, t). Our objective is to keep

|(t′ − t)ui − (xi(t′)− xi(t))|
as small as possible over every time interval [t, t′). We require

that each task’s utilization target ui is rational, and further,

that the resource is completely divided among all tasks, so

that
∑n

i=1 ui = 1.
This objective is similar to the Pfair scheduling criterion [4],

which enforces proportional fairness of tasks by requiring that

each task is always within a fixed quantum of its weight. Pfair

is concerned with the scheduling of deterministic, periodic or

sporadic task systems [5], so the weight of a task is the ratio

of its duration, abstracted as its worst-case execution time Wi,

to its period pi. Thus the Pfair condition can be stated as

|tWi/pi − xi(t)| < 1.

In general, maintaining this criterion for tasks with duration

longer than a single quantum requires preemption. For re-

sources, such as actuators, that do not allow preemption, we

must instead focus on minimizing this deviation from the target

utilization at coarser temporal resolution. Since in our system

model durations are stochastic and tasks are aperiodic, we

allow utilization targets to be specified independently of the

duration and period.

III. MDP MODEL FORMULATION

In previous work we proposed a stochastic dynamic pro-

gramming approach to modeling and solving the scheduling

problem described in the previous section [1], [6]. This was

achieved by modeling the problem as a Markov decision

process (MDP) [7]. An MDP has a set of states X , a set

of actions A, a transition system P , and a cost function

C. At each decision epoch k ∈ N, a controller observes

the current state xk of the MDP and selects an action ik
from A. Then the MDP transitions to state xk+1 according

to the conditional distribution P (xk+1 = y|xk = x, ik = i)
(abbreviated as P (y|x, i)), and accrues cost ck = C(xk+1).

A solution to an MDP is a policy π that maps states

to actions; given a discount factor γ ∈ [0, 1), the value
of a policy, written V π , is the expected sum of long-term,

discounted costs obtained while following that policy:

V π(x) = E

{ ∞∑
k=0

γkck

∣∣∣∣∣x0 = x, ik = π(xk)

}
. (1)

Fig. 1. The utilization state model for a two-task problem instance with
utilization target u = (1, 2)�/3. Task one (grey, open arrowheads) stochas-
tically transitions to the right, while task two (black, closed arrowheads)
deterministically transitions upward. The dashed ray corresponds to the
utilization target.

We assume costs are never positive; thus an optimal policy

π∗ maximizes V π∗
in every state. It is well-known that if any

optimal policy exists, then a deterministic optimal policy must

exist [7]. This is satisfied, for example, when there are only

finitely many states and actions, and costs are bounded.

We modeled this task scheduling problem as an MDP

over a set of utilization states X = N
n with each action i

corresponding to the decision to dispatch task Ti. Each state

x is an n-vector x = (x1, . . . , xn)� such that component xi is

the total number of quanta during which task Ti occupied the

shared resource since system initialization at decision epoch

k = 0. We denote the total elapsed time in state x by the

function

τ(x) =
n∑

i=1

xi. (2)

Transitions in this MDP are determined according to the

duration distribution of each task, so that

P (y|x, i) =

{
Pi(t) y = x + tΔi

0 otherwise
(3)

where Δi is a column vector of all zeroes except that compo-

nent i is equal to one. We define the cost function in terms of

the target utilization criterion

C(x) = −
n∑

i=1

|xi − τ(x)ui| , (4)

which encourages policies that maintain the MDP state near

the target share for each task over time. Since costs are never

positive, better policies have value closer to 0 in this model.

Figure 1 illustrates the utilization state model for an example

problem with two tasks and a target utilization u = (1, 2)�/3
– that is, task T1 should receive 1/3 of the processor, and

task T2 should receive the rest. The target utilization defines a

target utilization ray {λu : λ ≥ 0}. When the components of

u are rational, this ray will periodically pass through utilization

states. This can be seen in Figure 1, where the utilization ray

(the dashed arrow) passes through both (0, 0) and (1, 2); if



Fig. 2. The wrapped state model for the problem instance in Figure 1.

we continued the figure, the utilization ray would pass through

every integer multiple of (1, 2). Every state on this ray has zero

cost, while states off this ray have non-zero cost. Any pair of

states with the same displacement from the target utilization

ray have equal cost.

We have demonstrated that there is an optimal policy for this

MDP [1], and that we can formulate this MDP more compactly

by taking advantage of a periodicity condition over the state

space. Let u be the vector of utilization targets for each task.

Then we can define equivalence classes over states,

{x + λu ∈ X : λ ∈ R}.
We say that a function f : X → R is periodic iff

f(x + λu) = f(x) for any state x; in other words, f is

periodic iff it is homogenous over each equivalence class. For

example, the cost function is homogenous. Further, because

each task’s utilization target ui is in the interval (0, 1), the

probability of transitioning between equivalence classes is

homogenous. That is,

P (x + λu + tΔi|x + λu, i) = Pi(t) = P (x + tΔi|x, i);

less formally, if we can move from x to y with probability

p, then we have the same probability of transitioning from

x + λu to y + λu for any λ.

We are able to infer that any periodic policy has periodic

value, and that there is an optimal, deterministic, periodic

policy for this problem. Thus, using a stochastic bisimulation-

style argument [8], [9], we are able to obtain a more compact

MDP representation of the scheduling problem that represents

each equivalence class as a state. We refer to this compact

model as a wrapped state model, since we can interpret it as

wrapping the state space into a tube so that all of the states

that share an equivalence class map to a single point. Figure 2

demonstrates this wrapped state model using the example from

Figure 1. We have replaced all states that share an equivalence

class with a single exemplar state, and adjusted the transition

graph by mapping transitions between non-exemplars to their

corresponding exemplar states.

This wrapped model reduction removes infinitely many

states from the utilization state model. Although it still has

infinitely many states (since every state tΔi for t ∈ N is in

a different equivalence class), for any bound there are only

finitely many states with cost that exceed that bound [6].

Intuitively, a good scheduling policy will only visit states

with costs relatively close to zero, assuming we initialize the

system in the state x = 0. These policies thus can only visit

finitely many states. Using this intuition, we have proposed

methods for approximating the optimal policy using a bounded

subset of the wrapped model state space [1], and an algorithm

that iteratively constructs minimal state spaces necessary to

evaluate and improve policies that are guaranteed to visit only

finitely many states [6].

Although the wrapped state model provides a foundation

for establishing finite state approximation methods, those

algorithms rely on enumerating a portion of the state space that

grows exponentially with the number of tasks. This restricts

their usefulness to problem instances with only a few tasks. In

Sections IV and V we examine this scalability issue in detail

and propose a parameterized class of scheduling policies,

called conic policies, that can be represented and evaluated

efficiently even for large numbers of tasks.

IV. SCALING UP MDP-BASED SCHEDULING

In general, techniques for computing the optimal policy

of a discrete MDP rely on explicit enumeration of the state

space as a lookup table [7]. The wrapping approach described

in Section III performs state aggregation by reducing each

equivalence class of states to a single exemplar state while

retaining the optimal policy. State aggregation is a useful tool

for decreasing the representational and computational cost.

However, the amount of aggregation that can be achieved

without sacrificing optimality is fundamentally limited [10].

It appears unlikely that we can perform any additional ag-

gregation (as defined in Sections II and III) while preserving

optimality.

Three approaches appear promising to increase the scala-

bility of MDP-based scheduling; we discuss two of them in

this paper. The first is to use heuristic scheduling policies

that make decisions based on short-term statistics of task

behavior. Though efficient to compute, these heuristic policies

may perform poorly, as our evaluations show in Section VI.

Another approach is to perform aggregation at a higher level

of abstraction by grouping tasks together. While this method

is beyond the scope of the current work, it represents an

important direction for future research. The third approach, to

develop a class of policies that can be represented compactly

using a set of parameters that grows polynomially with the

number of tasks, is the main contribution of this work.

In problems with a small number of tasks, we can compare

the performance of parameterized scheduling policies to those

obtained using the explicit state enumeration techniques of the

previous section. When the number of tasks grows larger, how-

ever, we must instead compare the parameterized policies to

heuristic scheduling policies, since approximating the optimal

policy becomes intractable.

We consider two heuristic scheduling policies for com-

parison: a utilization-based scheduling policy that always



dispatches the task that is farthest behind its target utilization,

and a greedy policy that chooses the action that yields the best

immediate cost in expectation.

In a utilization state (or wrapped state) x, we say task

Ti is underutilized iff xi < τ(x)ui and is overutilized iff

xi > τ(x)ui. The task is on time if it is neither underutilized

nor overutilized. The utilization-based policy πu always runs

the most underutilized task,

πu(x) = argmin
i=1,...,n

{τ(x)ui − xi}. (5)

The greedy policy πg myopically chooses the action that

puts the system closest to the target utilization in expectation.

This is equivalent to choosing the task that gives the best

expected cost from x, and is defined

πg(x) = argmax
i=1,...,n

{Et∼Pi
{C(x + tΔi)}} (6)

= argmax
i=1,...,n

{
Wi∑
t=1

Pi(t)C(x + tΔi)

}
.

V. CONIC SCHEDULING POLICIES

The main contribution of this paper is the development

of a class of compactly parameterized policies for the uti-

lization state model. This approach circumvents the major

limitation of the MDP formulations, the explicit enumeration

of exponentially growing state spaces, while retaining the

ability to evaluate and compare policies in the value-based

framework described in Section III. In this section, we describe

a family of conic policies that can be defined using just Θ(n2)
parameters, where n is the number of tasks. This class contains

stable scheduling policies that tend to outperform the heuristic

approaches described in Section IV in problems with large

numbers of tasks, and for problems with small numbers of

tasks, are competitive with scheduling policies found using

the finite state approximation techniques.

One well-known approach for scaling up stochastic planning

and reinforcement learning to high-dimensional state spaces is

to restrict solutions to some compactly parameterizable policy

class [11], [12]. These methods trade off optimality guarantees

in favor of good practical performance, and so are able to

address problems that are much larger than can be solved

using methods that require state enumeration. Choosing an

appropriate policy class is admittedly more art than science,

and requires understanding the application domain and the

properties of good policies. With this in mind, we first

illustrate examples of scheduling policy behavior observed

using the finite state approximation techniques described in

Section III.

Figure 3 shows an approximation to the optimal scheduling

policy for a problem instance with two tasks, restricted to

states near the initial state x = 0 (lower left corner). Each

point denotes a state in the wrapped state space. The target

utilization ray is shown as a dashed ray labeled λu, and

corresponds to a target utilization of u = (7, 5)�/12. Each

task has a different duration distribution supported on the

interval (0, 8]. Task T1 advances along the horizontal axis,

Fig. 3. The scheduling policy for this two-task problem can be defined by
partitioning the state space along a ray parallel to the utilization ray λu.

and task T2 advances along the vertical axis. The scheduling

policy selects task T1 in states denoted by closed circles, and

task T2 in those denoted by closed squares. Notice that the

decision boundary – the surface separating regions of state

space where the policy is homogenous – can be described

using a ray parallel to the utilization ray. This is illustrated by

the dashed ray labeled λu + d. We will describe the offset d
below.

It is more difficult to illustrate the policy in three-task prob-

lems, since the state space is three dimensional. To establish

an intuition for what is occurring in three-space, consider the

set of utilization states that the system may reach after exactly

t time quanta have elapsed:

Ht = {x ∈ X : τ(x) = t}.
We call Ht a time horizon, and it consists of all of the

utilization states (i.e., integral points) in a (n − 1)-simplex

with vertices {tΔi : i = 1, . . . , n}. In two dimensions, Ht is

the set of states that lie on the line segment joining (t, 0) and

(0, t). In three dimensions, Ht is the set of states contained

in the equilateral triangle with vertices (t, 0, 0), (0, t, 0), and

(0, 0, t). The target utilization at time t is tu, and is the ideal
point that the system should be near in Ht.

Figure 4 illustrates an approximation to the optimal schedul-

ing policy for a problem instance with three tasks. The policy

is illustrated by plotting it at three different time horizons, H10,

H20, and H30. The target utilization is u = (6, 8, 9)�/23, and

corresponds to a point in each horizon, shown as an open box.

Tasks are non-identical, but each has duration supported on the

interval (0, 8]. The policy executes T1 in closed circle states,

T2 in open circle states, and T3 in closed square states.

As in the two task case, the policy partitions each time hori-

zon into one homogenous region for each task. This appears

to be representative behavior. Together with the observation

of periodicity from Section III, this gives us two criteria for

designing a parametric class of scheduling policies: (1) the

policy should be periodic, so that it chooses the same action

at x and every utilization state along x+λu; and (2) the policy

should divide each time horizon into n homogenous regions.

This now leads to our formulation of conic policies.



(a) H10

(b) H20

(c) H30

Fig. 4. Near-optimal scheduling policies for a three task problem, shown at
time horizons H10, H20, and H30. The leftmost state in each is (t, 0, 0), the
rightmost is (0, t, 0), and the topmost is (0, 0, t).

A. Conic Policies

We define two types of parameters for conic policies. The

first n parameters describe a decision offset vector d; this is

a vector perpendicular to 1, the vector of all ones, (i.e., d is

parallel to each time horizon) that roots the partition relative

to the utilization target.

The remaining n2 parameters define a collection of action
vectors A = [a1 . . . an] that are used to determine the regions

where each action is taken. For each task Ti, the action vector

ai is an n-vector perpendicular1 to 1. We use the decision

1Since we constrain the decision offset d and each action vector ai to
be parallel to the time horizons, they actually lie in an (n− 1)-dimensional
space and could be parameterized using (n−1)-vectors instead of n-vectors.
We adopt the higher-dimensional representation here for expository purposes,
since it can be communicated more concisely.

offset and action vectors to partition each time horizon into

homogenous regions as follows.

Informally, a conic policy selects a task to dispatch in state

x by determining which action vector most points towards x
from the decision offset. More formally, τ(x)u is the ideal

utilization point at time τ(x). We root the policy decision

boundaries on the decision ray λu+d at that time, τ(x)u+d.

Let

z(x) = x− τ(x)u− d (7)

be the displacement vector from the offset of the ideal uti-

lization point to x. Then we choose to run the task Ti if its

action vector is well-aligned with z(x) – that is, if the response
a�i z(x) is maximal among all action vectors. We state this

formally in the following definition.

Definition 1. The conic policy π(·;d,A) with decision offset
d and a matrix of action vectors A chooses actions in each
utilization state x according to

π(x;d,A) ∈ argmax
i=1,...,n

{a�i z(x)}

Notice that it is possible for multiple action vectors to

have the same response at x. We recommend breaking ties

uniformly at random in this case. Under this tie breaking

convention, the conic policy degenerates to a uniform random

scheduling policy whenever all of the action vectors are equal.

Figure 5 illustrates this policy in the state space of two- and

three-task problems. Figure 5(a) shows an example policy for

a two-task problem instance. The decision offset d shifts the

decision boundary parallel to the target utilization ray, while

the action vectors determine the policy action on either side of

the decision boundary. In two dimensions, the action vectors

are not strictly necessary, since any policy that runs task T2

above the decision boundary and T1 below it will diverge,

reaching states with arbitrarily negative costs, since this policy

eventually dispatches the same task repeatedly.

The action vectors are necessary when there are three or

more tasks. This is illustrated in Figures 5(b) and 5(c). In

Figure 5(b), we show the time horizon Ht situated in three-

space. The action vectors are shown in the plane. Figure 5(c)

shows the perpendicular projection of the time horizon onto

the plane; the decision boundaries for each action are shown,

and consist of the region where the offset between a state and

tu + d is well-aligned with one of the action vectors. Notice

that the policy breaks this simplex into three conic regions

emanating from tu + d.

For any number of tasks n, the decision offset and action

vectors act to partition each time horizon Ht into n distinct

cones whenever the action vectors are distinct. We demonstrate

this formally in the proof of Lemma 1.

Lemma 1. For any decision offset d, action vectors A, time
horizon Ht, and task Ti, the set of states

Λt,i = {x ∈ Ht : i ∈ argmaxj{a�j z(x)}}
is a cone with apex tu + d.



(a) two tasks (b) three tasks (c) three task horizon Ht

Fig. 5. Illustration of conic policies in two dimensions (Figure 5(a)) and three dimensions (Figures 5(b) and 5(c)). Figure 5(c) shows the time horizon Ht

from Figure 5(b) with decision boundaries between regions where the policy is homogenous.

Proof: A set Y is a cone with apex v iff Y is convex and

for any y ∈ Y , any y′ on the ray from v through y is also in

Y . We demonstrate below that these two properties hold for

Λt,i relative to tu + d. We make use of the fact that for any

real-valued n-vector v, τ(v) ≡ v�1 is a linear map.

Convexity: Suppose that x and x′ are states in Λt,i and that

y = αx + βx′ is a utilization state for some α ∈ [0, 1] and

β = 1− α. z(·) is convex, i.e.,

z(αx + βx′) = αx + βx′ − τ(αx + βx′)u− d

= αx + βx′ − ατ(x)u− βτ(x′)u− αd− βd

= αz(x) + βz(x′),

therefore

A�z(y) = αA�z(x) + βA�z(x′).

Since ai maximizes each term in the right-hand side, it also

maximizes the left-hand side, implying that y is in Λt,i.

Homogeniety: For any x in Λt,i, a state y in Ht is along

the ray through x from tu + d iff y = λz(x) + tu + d for

some λ > 0. Since z(x) and d are perpendicular to 1,

τ(z(x)) = τ(d) = 0. Therefore,

z(y) = z(λz(x) + tu + d)
= λz(x) + tu + d− τ(λz(x) + tu + d)u− d

= λz(x) + tu + d− λτ(z(x))u− tu− τ(d)u− d

= λz(x),

and so

A�z(y) = λA�z(x).

It follows that if ai maximizes A�z(x), it also maximizes

A�z(y), and so y is in Λt,i.

Above, in the statement of Lemma 1 we define the cone

Λt,i as the set of states in the horizon where ai has maximal

response. It might appear more natural to define Λt,i as the

set of states in horizon Ht where the parameterized policy

dispatches task Ti. However, this latter definition breaks down

at the decision boundaries, since if we use a nondeterministic

tie breaking procedure, the policy may not be homogenous

along these boundaries.

Conic policies select among the tasks whose action vectors

yield the greatest response in any given state. Our proof

of Lemma 2 formalizes periodicity of the conic policy by

showing that the set of action vectors that gives the greatest

response x also yields the greatest response at any utilization

state along the ray {x + λu : λ ≥ 0}.
Lemma 2. For any decision offset d, action vectors A, and
utilization state x, if Ti maximizes a�i z(x) among all tasks,
then Ti maximizes a�i z(x + λu) for any real scalar λ.

Proof: Since

z(x + λu) = x + λu− τ(x + λu)u− d

= x + λu− τ(x)u− λu− d

= z(x),

so for any task Ti,

a�i z(x) = a�i z(x + λu),

and so if a�i z(x) is maximal among all tasks, then it also

maximizes a�i z(x + λu).
The example policy shown in Figure 4 is periodic but not

conic: in order for the partition induced by the policy to be

conic, we would need to be able to represent the decision

boundary by exactly three rays emanating from a common

point. Thus, the conic partition of the parameterized policy

is not optimal in general. In Section V-B, we show that

while the best conic policy may not be optimal among all

possible scheduling policies, it contains stable policies that

maintain the system near target utilization. In Section VI we

also demonstrate that we can find conic policies that perform

well; particularly, there are conic policies that consistently

outperform the heuristic scheduling policies described in Sec-

tion IV on problems that are too large to solve using finite

state approximations.



B. Stable Conic Policies
Above, we described a case in which the system might

diverge to states with arbitrarily negative costs. In Figure 3,

if the policy instead dispatched task T1 in every state below

the decision boundary, upon reaching any of these states, the

policy would then repeatedly run that task forever. We say that

such a policy is unstable, since it never settles into a region

with bounded cost. We now derive a sufficient condition under

which a conic policy is guaranteed to be stable. Informally, a

stable policy is one under which the system state is guaranteed

to converge to a region with finite, bounded costs.
A trajectory generated under policy π is a sequence of uti-

lization states (xk)∞k=0 such that xk+1 is distributed according

to P (·|xk, π(xk)). We say that a scheduling policy is stable
iff we can guarantee that any trajectory generated under that

policy is eventually within some bounded neighborhood of the

utilization ray. The cost function in Equation 4 is defined as the

negative Manhattan distance between the state x and the ideal

point τ(x)u on the utilization ray. This means that a stable

policy maintains the system in states with costs relatively near

zero. This in turn ensures that every task makes progress

relative to one another.
Theorem 1 provides a sufficient condition on the decision

offset and action vectors to guarantee that the corresponding

conic policy is stable. The proof is stated in terms of the Eu-

clidean distance rather than the Manhattan distance; since the

two norms are topologically equivalent, stability in Euclidean

distance also implies stability in the Manhattan distance.

Theorem 1. If π = π(·;d,A) is a conic policy, and there is
some ε > 0 such that for every utilization state x,

(Δπ(x) − u)�z(x) ≤ −ε ‖z(x)‖ (8)

where ‖·‖ is the Euclidean norm, then π is stable.

We defer a formal proof of Theorem 1 to the appendix, and

provide only a brief sketch here. The vector (Δπ(x) − u) is

the instantaneous change in state at x when following π. The

precondition of the theorem requires that the angle between

this state derivative and the displacement z(x) between x
and the decision ray is negative. This guarantees that there

is always an instantaneous reduction in distance from the

decision ray under π.
However, since the state changes in discrete jumps accord-

ing to the task durations, it is possible for the policy to move

the system from a state that is close to the decision ray to

one that is farther away. Since tasks have bounded worst-case

durations, the policy will always move the system closer to

the decision ray from a state that is far enough away. Closer

to the decision ray, the policy may throw the state farther

from the decision ray, but because of the duration bounds,

the distance of this successor state from the decision ray

is bounded. Therefore, we can draw a cylinder with finite

radius centered around the decision ray such that any trajectory

starting from a state inside the cylinder must stay inside, while

trajectories originating outside of the cylinder are eventually

pulled inside, and then stay there.

We can conclude that the system state must always enter

into a bounded neighborhood of the decision ray. Since the

utilization ray is at a fixed distance from the decision ray,

this result also implies that the policy converges to a bounded

region about the target utilization.
While Theorem 1 provides a sufficient condition to guaran-

tee stability, it does not supply us with a stable parameteriza-

tion. Corollary 1 provides an example of a stable policy.

Corollary 1. A conic policy π(·;d,A) with action vectors

ai = (u−Δi)/ ‖u−Δi‖ (9)

is stable for any choice of decision offset d.

The proof of this corollary is surprisingly involved, and so

we defer this to the appendix as well. The intuition behind the

proof is relatively straightforward, however. By construction,

each action vector ai defined by Equation 9 points exactly

opposite the direction of travel relative to the utilization target,

(Δi − u); that is, the angle between these two vectors is

180◦. Because of this relationship, we can conclude that if the

angle between an action vector ai and the displacement z(x)
is “comfortably” smaller than 90◦ (expressed as a constraint

on their dot product in terms of ε), then the angle between

z(x) and the (Δi − u) must be more than 90◦, satisfying the

precondition of Theorem 1. Figure 6 illustrates these action

vectors for a three-task problem instance.

Fig. 6. Scaled action vectors ai = (u−Δi)/ ‖Δi − u‖.

The choice of decision offset is superficial in determining

stability. If a policy is stable with offset d, it will also be

stable with offset d′. This is because the state derivative when

dispatching a particular task is independent of the decision

offset. A stable choice of action vectors causes the system state

to enter a stochastic orbit around the decision ray; moving the

decision offset just moves that orbit through the state space.
This line of reasoning seems to suggest that we should

always choose d = 0 as the decision offset, so that the system

orbits around the utilization ray. This is not the case, however.

In practice, the state stochastically orbits the decision ray,

but because of the difference in durations between tasks and

because there is a non-smooth change in the direction of

travel when changing actions, the average location tends to

differ from the decision ray. Selecting a good conic policy

parameterization appears to consist of establishing a decision

offset and action vectors so that this average state is as close

as possible to the utilization target.



VI. EXPERIMENTAL EVALUATION

Finding the optimal conic policy analytically appears to

be a difficult problem. Rather than approaching the problem

from this angle, we instead employ stochastic optimization

techniques to select good parameterizations of the conic policy.

We discuss these methods and evaluate them empirically in

this section.
We ran tests comparing the performance of selected conic

policies to the heuristic scheduling policies described in

Section IV and where possible to the wrapped state model

solutions from Section III. To find good conic policies we

implemented the hill climbing and policy gradient search

methods described by Kohl and Stone [12].
Both of these search methods follow a similar outline. We

begin with an initial policy parameterization; in each case,

the stable conic policy in Equation 9 with a decision offset

of d = 0. At each iteration, we generate a population of

nearby policies by adding small random perturbations to each

parameter. In our experiments, we found that a population

size of 3n(n+1) works well for either search strategy, where

n is the number of tasks. These policies are evaluated by

performing Monte Carlo evaluation [13] – i.e., by repeatedly

simulating the policy from the initial state x = 0 to estimate

Equation 1. This population is then used to determine a policy

for the next iteration.
Hill climbing search chooses the policy at each iteration by

selecting the policy with greatest estimated value among this

population. As in Kohl and Stone’s work [12], we select the

best policy among these perturbed parameter settings regard-

less of whether that policy is worse than the current policy.

This affords the algorithm some limited ability to escape

local optima. In our experiments, parameter perturbations were

drawn uniformly at random from the interval ±(1/m+0.98m)
at iteration m.

Policy gradient search instead uses these perturbations to

estimate the gradient of the value with respect to the policy

parameters. The policy at the next iteration is determined

by stepping a fixed distance along the gradient. In our ex-

periments, parameters were perturbed by adding a value at

random from among {0,±m−1/6}, while the step size along

the gradient was 1/m+0.98m. We decay the step size and the

perturbation size in the hill climbing experiments so that we

eventually settle on some policy. The specific decay rates were

chosen, loosely speaking, to keep this from happening too

quickly. A formal discussion of appropriate decay strategies

can be found, for example, in [14].
We performed two experiments comparing the performance

of conic policies, heuristic policies, and when possible policies

obtained by finite state approximation methods. The first

experiment examines how the value of each conic policy

evolves with each iteration of the policy search method. The

second experiment examines the performance of the different

policies for problem instances as a function of the number of

tasks.
In each problem instance the task duration distribu-

tions were random histograms with worst-case execution

(a) 4 Task Problem Instance

(b) 10 Task Problem Instance

Fig. 7. Experimental results showing the performance of policy search
strategies as a function of the number of iterations performed. Values labeled
“Hill climbing” and “Policy Gradient” show the eponymous search perfor-
mance, “Greedy” and “Utilization” show the heuristic policy performance,
and “Model” the finite state approximation of optimal.

time Wi in the interval [2, 32]. The utilization targets for

each problem instance were selected by choosing integers

q ∈ [2, 32]n uniformly at random, so that the utilization target

is u = q · (∑i qi)−1. For both the heuristic and conic policies,

evaluating the value function at the initial state was carried out

using Monte Carlo evaluation.

In the first experiment, we generated a single problem

instance with 4 tasks. We performed 100 iterations of policy

search using both hill climbing and policy gradient search

and estimated the value at each iteration. We compared their

performance to the utilization policy (πu from Equation 5), the

greedy policy (πg from Equation 6), and a finite state approxi-

mation to the optimal policy, as described in Section III. These

values are shown in Figure 7(a) as “Hill Climbing,” “Policy

Gradient,” “Utilization,” “Greedy,” and “Model,” respectively.

Since costs are negative, policy values closer to zero indicate

better performance. 95% confidence intervals were obtained

by averaging across 30 repetitions of each search strategy.

Figure 7(a) shows that explicitly solving the MDP model

gives the best results. However, Hill Climbing, Policy Gradient

and Greedy produce comparable results. Utilization performs

relatively poorly.



Fig. 8. Comparison of policy performance for varying numbers of tasks.
Finite state approximation of the optimal policy is shown only for two and
three tasks.

Figure 7(b) shows the results of repeating this experiment

using a 10 task problem instance. In this case solving the

MDP model is intractable. Computing the exact value of either

heuristic policy also requires enumerating their set of reach-

able states, and thus is also intractable. Instead Monte Carlo

simulation is used to estimate their values, which are shown

with 95% confidence intervals. In this case Hill Climbing

outperforms either heuristic policy. The additional structure of

Policy Gradient search allows it to outperform Hill Climbing.

In the second experiment we compared the performance of

these policies across problem instances with varying number of

tasks. For each number of tasks we generated 100 independent

problem instances with the same method described above.

Average values with 95% confidence intervals are shown in

Figure 8. We report the policy found after 100 iterations of

search. Results are shown for the finite state approximation

for two and three task problem instances.

In two or three task problem instances, Greedy, Model,

Hill Climbing and Policy Gradient all perform similarly. With

more tasks the conic policy clearly outperforms either heuristic

policy. This supports the use of conic policies for scaling to

larger problem instances.

VII. CONCLUSION

In this paper we have introduced a scalable conic schedul-

ing policy design technique that compactly approximates the

geometric structure of policies obtained using direct solution

techniques. This technique allows us to derive good scheduling

policies for open soft real-time systems with large numbers of

tasks. Our results indicate that direct solution techniques are

most appropriate when tractable, while conic policies provide

strong scalable performance where direct solution methods

fail.

Our experiments demonstrate that search is able to find a

good conic policy when initialized with the stable policy from

Equation 9. However, it is unclear whether these methods are

likely to converge to a global optimum among conic policies

when restricted to this initial parameterization. Typically, this

would be addressed by using randomized restarts in order to

sample many local optima. However, that approach fails for

our task scheduling problem, as most random conic policies

are unstable and policies in their neighborhood also tend to

be unstable. Since unstable policies reach states with large

magnitude cost, these policies have almost uniformly low

value, so there is no clear direction that search can follow

to reach a good parameterization.

We plan to consider two approaches to address this problem

in future work. One is to use a richer policy representation;

for example, choosing to dispatch tasks at random, with

probability proportional to to the action vector responses, may

provide a more informative value gradient [11]. A second

method is to derive a more comprehensive characterization of

stable conic policies, which would allow us to sample safely

from a wider variety of initial conditions.

APPENDIX

Proof of Theorem 1: Let (xk)∞k=0 be a trajectory, with x0 arbi-

trary and xk+1 determined by executing π(xk) in xk. We need

to prove that this (arbitrary) trajectory converges to a bounded

neighborhood of the utilization ray. Our proof consists of two

parts: first we show that the trajectory eventually enters this

neighborhood, and then we show that the trajectory can not

escape this neighborhood.

Let x be an arbitrary state and let π(x) = i. Suppose that

y = x + tΔi is a successor of x under π. We can write the

displacement z(y) between y and the decision ray in terms of

the displacement at x,

z(y) = x + tΔi − τ(x)u− tu− d

= z(x) + t(Δi − u).

This allows us to derive an upper bound on the squared

magnitude of z(y), as

‖z(y)‖2 = (z(x)− t(Δi − u))�(z(x)− t(Δi − u))

= z(x)�z(x) + t2(Δi − u)�(Δi − u)

+ 2t(Δi − u)�z(x)

≤ ‖z(x)‖2 + t2 ‖Δi − u‖2 − 2tε ‖z(x)‖ .

Defining

η(x, t) ≡ t2
∥∥Δπ(x) − u

∥∥2 − 2tε ‖z(x)‖
allows us to write the inequality above more concisely as

‖z(y)‖2 ≤ ‖z(x)‖2 + η(x, t). (10)

We define M = maxi{W 2
i ‖Δi − u‖2} to bound the first term

of η(x, t) above (recall that Wi is the worst-case execution

time of Task Ti). For any α > 0 let ρα = (M + α)/(2ε) be

the radius of a cylinder centered on the decision ray. Then if

‖z(x)‖ ≥ ρα,

η(x, t) ≤M − 2ε(M + α)/(2ε) = −α.

We can substitute this inequality into Equation 10 to get

‖z(y)‖2 ≤ ‖z(x)‖2 −α. In other words, executing the policy



action always reduces the distance between x and the decision

ray if x is far enough away.

This result guarantees that the trajectory is eventually within

ρα of the decision ray for any α > 0. If this were not the case,

we would be able to find some K such that any k ≥ K has

‖z(xk)‖ ≥ ρα, but for any m > 0, we have

‖z(xK+m)‖2 ≤ ‖z(xK+m−1)‖2 − α

...

≤ ‖z(xK)‖2 −mα,

so xK+m is within ρα of the decision ray for large m.

By the triangle inequality, we have

‖z(y)‖ = ‖z(x) + t(Δi − u)‖
≤ ‖z(x)‖+ t ‖Δi − u‖
≤ ‖z(x)‖+ M1/2,

so if ‖z(x)‖ ≤ ρα, ‖z(y)‖ ≤ ρα + M1/2. Since the state gets

closer to the decision ray when ‖z(x)‖ is greater than ρα, and

cannot get farther than ρα + M1/2 when the state is inside

this neighborhood, the trajectory must eventually enter and

stay within distance ρα + M1/2 of the decision ray for any

α > 0. Since the trajectory is arbitrary, this must hold for any

trajectory generated while following π.

Proof of Corollary 1: To simplify notation, let z denote z(x)
for some arbitrary state x. Under Equation 9,

a�i z = −(Δi − u)�z/ ‖Δi − u‖ .

Therefore, we just need to show that for some α > 0,

max
i
{a�i z} ≥ α ‖z‖

for every z, since then (Δπ(x) − u)�z ≤ −α ‖z‖ ‖Δi − u‖,
satisfying Theorem 1’s precondition. To simplify the dis-

cussion, we assume that mini{‖Δi − u‖} is a factor of α.

This term is guaranteed to be positive because no single

task is assigned the entire processor. Demonstrating the claim

therefore reduces to demonstrating that in every state there is

a task Ti such that (u−Δi)�z ≥ α ‖z‖.
For the sake of contradiction, suppose that for all α > 0,

there is a state x (and corresponding displacement z) such that

max
i
{(u−Δi)�z} < α ‖z‖ . (11)

We can rewrite the left-hand side of Equation 11 according to

max
i
{(u−Δi)�z} = u�z−min

i
{zi}

(recall that Δ�i z = zi). We will procede to show that satis-

fying Equation 11 for arbitrarily small α requires an invalid

utilization target. To achieve this, we first need an upper bound

on the left-hand side of the equation.

To obtain this bound, recall that z is the displacement

between x and the decision ray (see Equation 7). This lies

in a plane perpendicular to 1, and so
∑n

i=1 zi = 0. Let ζ be

the sum of positive components of z, then −ζ is the sum of

its negative components.
Without loss of generality, we may assume that the

components of the utilization target are ordered with

u1 ≥ u2 ≥ . . . ≥ un. This implies that un lies in the inter-

val (0, 1/n] and that u1 ≤ 1− un(n− 1), as otherwise u’s

components would not sum to one.
Using these observations, it is straightforward to verify that

for a fixed utilization target, the left-hand side of Equation 11

is maximized by fixing z1 = ζ and zn = −ζ, and setting the

other components to zero. Then

u�z−min
i
{zi} ≤ ζu1 − ζun + ζ

≤ ζ(2− n · un)

Substituting this bound into Equation 11 yields the inequality

ζ(2− n · un) < α ‖z‖, or equivalently,

un > 2/n− α ‖z‖ /(ζn).

Thus as α approaches zero, the smallest utilization target un

must exceed 1/n, a contradiction.
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