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ABSTRACT

The important feature of this work is the combination of minimizing a
function with desirable properties, using the conjugate gradient
method(cgm). The method has resulted in significant improvements for both

easy and difficult training tasks.

Two major problems slow the rate at which large back propagation neural
networks (bpnns) can be taught. First is the linear convergence of gradient
descent used by modified steepest descent methods (msdm). Second is the
abundance of saddle points which occur because of the minimization of the

sum of squared errors.

This work offers a solution to both difficulties. The cgm which is
super linearly convergent replaces gradient descent. Division of each
squared error term by its derivative and then summing the terms produces a

minimization function with a significantly reduced number of saddle points.



INTRODUCTION

This paper presents work on faster learning methods for bpnns[RM].
Two major ideas are presented in this study. The first is the minimization
of a function which imposes a severe penalty for having the wrong output at
a node and has few local extrema and saddle points. The second is the use
of the super linearly convergent cgm instead of the linearly convergent
steepest descent method. Both methods are presented in the book by
Polak{PE]. The author incorporated these ideas into software to compute
optimal weights for several bpmns including two large examples. This work
also demonstrates that for the two optimization methods discussed
comparison of numbers of epochs required to find a global minimum is a fair

representation of the speed of the methods.

The combination of minimizing a function with desirable properties
using the cgm and applying the new technique to a large and important
problem are the unique features in this work. Fahlman[F] discusses an
approach which operates on a function with similar properties to ours,
According to Fahlman this function does not achieve much improvement to
learning and it is hard to implement. The function presented here is
simple to implement and when combined with the cgm shows marked improvement
in comparison to ordinary descent methods applied to any minimization
function. Battiti [B] discusses the use of the cgm with the usual error
function. He finds that the cgm requires fewer pattern presentations but
is more expensive per presentation. He does not discuss the propensity for
cgm to hang up at saddle points on large problems. Fahlman[F] extensively

discusses this point for minimizers in general.
TRAINING BACK PROPAGATION NEURAL NETWORKS

This section describes the training of neural networks. It explains
how optimization is used. It also explains the history of the term

"back propagation." See Appendix A for details about neural networks.

Training a bpnn consists of two steps. The first step is to specify
a set of teaching patterns for the input layer and a set of target patterns

that the units of the output layer should match. The second step is to



adjust the weights and biases so that the activation level of each output
unit for a given set of input patterns reasonably matches the corresponding
target pattern. Weight adjustment is done by minimizing an error function
based on the difference between the output activations and the target

patterns,

The networks are called back propagation networks due to the way
optimal weights and biases are found. First the weights between the hidden
layer and the output layer and the biases of the output layer are adjusted
based on the derivatives of the error function with respect to these
weights and biases. Then the weights between the input layer and the hidden
layer and the biases of the hidden layer are adjusted based on the
derivatives of the error function with respect to these weights and biases.
These derivatives are computed from the first set of derivatives. Hence
the weight adjustment propagates back from the output layer to the input
layer. The weight adjustment process is repeated until a set of weights is
found that causes all output activations to reasonably match all target
patterns. An epoch is processing the weights after the error function has

been evaluated for one complete set of training patterns.
THE ERROR FUNCTION AND LOCAL EXTREMA

The technique msdm[RM] finds optimum weights by varying the error
function ferr over the teaching patterns. See Appendix B for a description
of ferr and its derivatives. Since the usual minimization techniques work
by finding a set of weights which make all the derivatives zero, any set of
weights which makes all ocutput activations *1 will make all the derivatives
zero. If not all the errors are 0 then the minimization method finds a

local extremum or a saddle peint. If n is the number of output units then

n
there are 2 - 1 such conditions for each configuration of the hidden

units,

The msdm package uses heuristics like the momentum term, a small
learning rate and periodic random perturbation of the weights to attempt to
steer clear of local extrema and saddle points. The conjugate gradient
method quite readily tends to locate local extrema and saddle points.

Problems like "exor", where n, = 1, have no saddle points where all



the derivatives are 0. Problems for which n, <= 10 prebably will not cause
difficulty for the cgm. The bpnn for the deterministic parser has n o= 40.

In this case the cgm with ferr always terminated at a saddle point.

If a function to replace ferr reduces the probability of the
occurrence of saddle points and local extrema, then the conjugate gradient
method should more guickly locate a global minimum which makes all the
errors = 0. Such a function is kerr. See Appendix B for a description of
kerr and its derivatives. The function kerr becomes infinite when for a
particular pattern an output activation is exactly the opposite of its
target value, which corresponds to having an exactly wrong result. This
will drive any minimizer away from sets of weights for which ferr obviously
has a saddle point or local extremum. The deterministic parser bpnn with
the cgm and kerr always terminated at a global minimum. This is conclusive
evidence that the cgm with kerr is a viable approach to train medium to

large bpnns.

When for a particular pattern the output activation approaches its
target value its contribution to kerr linearly apprecaches zero. This
behavior will cause any minimizer of kerr to behave well near a global
minimum, All minimizers of ferr will slow down near a global minimum
because of the gquadratic nature of the terms in ferr. Figure 1 illustrates
the behavior of ferr and kerr for two output nodes along a constant contour

of one of them.

If n, is the number of hidden nodes then by symmetry arguments there
must be nH! equivalent global minima if there is one global minimum. nH!
also multiplies the number of saddle points previcusly discussed.
Observations based on varying o while holding the rest of a network
constant indicate that there often may be several sets of nH! global
minima. Just forcing all output activations to= *1 will not cause a local
extremum or saddle point of kerrx. Because of the summation terms in the
derivatives it is still possible for local extrema and saddle points to
occur but their likelihood is considerably reduced. (The "exor" problem is
an example of this type of local extremum.) Saddle points and local

extrema may be avoided by periodically shocking the weights. Another



approach is to use different centers for the distributions used to randomly

initialize weights and biases.

FIGURE 1: BEHAVIOR OF ferr AND kerr
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Substitution of kerr for ferr should make it considerably faster for
a minimizer to find a global minimum for a back propagation neural network
and its training patterns. A super linear minimizer like the conjugate
gradient method is more effective. Note that kerr will be zero whenever

ferr is and vice versa,
THE CONJUGATE GRADIENT METHOD

The conjugate gradient method(cgm) is used in this work because it is
super linearly convergent and it does not require O(WZ) space to store the
second derivative(Hessian) matrix, W is the number of weights in the
network. Proof of the convergence behavior of cgm is presented by Polak in
[P]. The basis for the algorithms used in this work is developed in
"Numerical Recipes im C" [PFIV]. High level descriptions of the algorithms
are in Appendix C. The rest of this section discusses why it is fair to
compare the number of epochs taken by msdm to number taken by cgm and the

improved effectiveness of cgm when it is used in conjunction with kerr.

Computing activations, errors and derivatives is equivalent to back
propagation, If P is the number of teaching patterns, the time complexity

of back propagation is proportional to P W, The factor P comes from the




fact that each weight is accessed P times. The value I is the average
number of quadratic interpolation iterations per iteration of cgm.

Each line minimization requires one back propagation for each iteration of
quadratic interpolation and each iteration of cgm requires one back
propagation for computation of the next descent direction. Each line
minimization requires I W computations for directional derivatives and W
weight updates. Each cgm iteration requires W computations for a
directional derivative. The time complexity of an iteration of cgm for a
bpnn is proportional to W (P I + I + 2). The term W (I + 2) is the overhead
induced by the cgm. The overhead is essentially the time required by cgm

in excess of the time required by I iterations of msdm. The fractional
overhead of using cgm is 1 / P when P » I, which is nearly negligible for
large bpnns. For a large bpnn one cgm iteration is equivalent to I msdm
epochs. Comparing the number of epochs needed by cgm to the number required

by msdm is a fair evaluation.

In the msdm package each step along the negative gradient is kept
small and combined with previous descent directions through the use of a
momentum term. The conjugate gradient method requires a full step along
the descent direction for each iteration. The cgm descent direction is
only collinear with the gradient for the first iteration. Because of the
the full step computed by line minimization the cgm is more susceptible to
local extrema and saddle points than msdm. In fact in experiments with cgm
it has often failed to find global minima of the function ferr. However,

the use of kerr makes the cpgm much better than msdm used on ferr.
RESULTS AND DISCUSSION

This section presents results of using the cgm with kerr on small
medium and large bpnns. This method is currently being tried on several
other networks and will be used on still others in the future. For large

networks the results are very encouraging.

The new method was applied to the standard exor problem of Rumelhart
and McClelland[RM]. This problem has a 2-2-1 arrangement and corresponds

to 9 independent variables(weights and biases). All 4 possible training



patterns were used. With the standard error function ferr and msdm this
problem is solved in 270 epochs. The new method was able to solve the same
problem in 105 epochs or over 2.5:1 improvement. One of the keys to this
improvement is to use separate centers for the distributions which are used

to randomly initialize the weights and biases,

A network was built to emulate locking up sin(x) in a table. The
network was arranged as 8-16-8 and it corresponds to 280 independent
variables. 20 of 256 training patterns were used. The new method
successfully trained the network in 150 epochs. No data for the

msdm were available.

The new method was also applied to rule-based grammar learning of
Faisal and Kwasny[KF]. For one large grammar learning problem, a 66-40-40
network with biases is required, This represents 4320 independent
variables. With the standard error function and msdm the solution required
500000 pattern presentations to comverge. With etol set to 0.75 the new
method requires 213 epochs of 433 pattern presentations or 92229 pattern
presentations. (The value etol is discussed in Appendix B.) The value of
I is 5.2 and P » I is satisfied. The weights of this solution showed
generalization properties quite similar to the solution found by msdm.
With the standard error function cgm tends to find saddle points and is
unable to achieve a satisfactory solution. The combination of kexrr with
cgm reduces the number of saddle points and makes global minima more

attractive.

Laine and Ball[LB] are developing a neural net to be used in optical
character recognition. They are using a 64-40-36 arrangement which
corresponds to 4076 independent variables. An interesting feature of the
training patterns of this case ig that the inputs in [-1,1] instead of
{-1,1}. A preliminary study ylelded 224 prototypical training patterns.
The new method took 174 epochs compared to 500 by msdm.

Kwasny and his group are loocking at adding conmectionist functionality
to a deterministic parser. One thing that is desired is to represent a

stack by a neural network. The network for a 2 symbol 3 level stack is



5-3-5 which corresponds to 38 independent variables. This arrangement is
due to Jordan Pollack[PJ]. Pollack calls this a recursive associative
automatic memory(raam). This is a small network. An interesting feature of
this case is that the teaching patterns which represent the state of the
stack are only known for its initial state(empty). To find the optimal
weights for this structure requires convergence on the weights and the

other possible states of the stack; that is a double iteration. The new
method was used for the iInner iteration and the outer iteration was based

on convergence of the stack states. Since the epochs are of different

sizes we report the time it took. Using a SUN 4/110 with floating point

accelerator tock 12 sec. No data are available from msdm yet.

We are investigating applications of the new method to a cross section
of problems. Since it is complementary to othexr methods we are also
assessing how a combination of methods performs. We are adding the new

method to a neural network software package that already supports msdm.
APPENDIX A -- DETAILS OF NEURAL NETWORKS

Bumelhart and McClelland[RM] describe a bpnn as a layer of input
units, a layer of output units and at least one layer of hidden units,
Figure A-1 lists some of the terminology of neural networks. Figure A-2
shows an example. Each unit in each layer is connected every unit in the
next layer by an arc. Each arc has a weight associated with it. Each
hidden unit and output unit has a bias associated with it. A network is
specified by listing n-n-mn. For example a network with 5 input units,
3 hidden units and 5 output units is specified as 5-3-5. Figure A-2 shows

a generic network.

FIGURE A-1. TERMINOLOGY OF NEURAL NETWORKS

n number of output units,
n number of hidden units.

noc number of input units.




FIGURE A-2 : A NEURAL NETWORK

APPENDIX B -- DETATLS ABOUT ERROR FUNCTIONS

FIGURE B-1. TERMINOLOGY OF ERROR FUNCTIONS

index for output units.
index for hidden units,
index for input units.

index for teaching patterns.

sigmoidal function centered around zero;

input activation of unit k for pattern p (usually Z1).
activation of hidden unit j for pattern p,.

activation of output unit i for pattern p.

target value of output unit 1 for pattern p (usually *1).

error at output unit i1 for pattern p.

: welght on connection between hidden unit j and output unit i.

: weight on connection between hidden unit j and input unit k.

component of special error function, kerr.

the usual error function.

the new improved error functiom.

the part of d ferr which depends on unit 1 (output or hidden).
the part of d kerr which depends on unit 1 (output or hidden).

the bias associated with unit 1 (output or hidden),




This appendix presents the details of the two error functions
discussed in the section on saddle points. TFigure B-1 has the definitions

of terms used in the discussion about the error functions.

The function v(x) 1s defined by:

vix) =(1-e ) /(1 +e ™ and v(x) = (1l - vx)®) /2.

Define a LA a + . = v w a +
p.d (E X, ﬁ ) %oi (Z ivip,d ﬂ )
and e =t - a .
p.l p.i p,i
The usual error fumetion is ferr = ) e 12. Define
p,i
2 2
§ = e 1-a and § = § w 1 -a 2,
p.i p,i( p,i ) P, J § p.i j,i( p,j) /

The derivatives of ferr which the msdm uses are:

3 ferr / Bwj'i ) 45'p‘ia.p,j , 8 ferr / 8Wk,j = - § 6131j a
3 ferr / 8 B~ - g apri and 3 ferr / 8 ,Bj = - g 5N
The new improved error function is:
kerr = ) g, ; where B,; epj% / (1 - aiJ) . Define
o1
Vo= s T By and-yplj=== Z 7LIWL1 - ajj) / 2. The derivatives

of kerr which are used to determlne a descent direction are:

k a = = d k d = -
a kerr / LA ¥ Yoi %50 err / LA E ¥

8 kerr / 8 ﬁ;ﬂ ) L and 8 kerr / 8 ﬂj =- )
p

P.d

For computational purposes replace the 1 in the denominator of gP, by
,i
1 + ¢ where ¢ is the machine epsilon. This will prevent divide by zero

errors and g = will still have its desirable behavior for all practical
P

Purposes.

APPENDIX C -~ DETAILS OF THE CONJUGATE GRADIENT METHOD

This appendix presents the details of the conjugate gradient method.

Figure B-1 defines some of the terminology used in the algorithms of the



cgm. Figure C-1 defines the rest. Figure C-2 describes the algorithms of

the egm.

FIGURE C-1. TERMINOLOGY OF THE CONJUGATE GRADIENT METHCD
etol : main convergence criterion; based on "winner take all®.
cgm driver : main procedure of cgm; controls termination.

a : set of activations; input, hidden and output.

: set of weights and biases.

! set of errors.

gradient vector with respect to weights and biases.

temporary vector used in computation of descent direction.

N MY R oo

: next direction of descent.

cgm : procedure for conjugate gradlent method.

line minimization : procedure for method to find minimum along direction

of descent.

mnbrak : procedure for method to find an initial interval which contains
a minimum along direction of descent.

dbrent : procedure to find minimum along direction of descent; it

requires an initial interval which contains a minimum.

A : distance along direction of descent from starting point te minimum.

v : coefficient used in computing new descent direction.

The value of etol determines convergence. The maximum value of |e |
p,i

is 2, which occurs when a _ = -t . Perfect training makes each
p.i p.i

apd = tpj. However, perfect training is not necessary. If every
[emi[ < 1 then every output activation will be closer to the desired value
than to the wrong value. Under the "winner take all" strategy this

convergence criteria will guarantee that the correct output will result for

each training pattern. Computing activations and errors constitutes an

epoch,

Further analysis shows that mnbrak can be replaced by a simpler
adaptive bracketing algerithm which doubles the maximum step size whenever
A in dbrent is greater than a certain tolerance times the current maximum

step size. This simple substitution can save more than half of the



FIGURE C-2.

begin
input
create
invoke
report
end
begin "ecgm
compute
compute
compute
initial

repeat

end
begin cgm
invoke

A
W

set
compute
compute
compute
compute
end
begin "line

invoke

BACK PROPAGATION CGM ALGORITHMS

"back propagation neural network cgm -- main algorithm"

network parameters
network
"cgm driver"

results; e.g. weights, maximum error etc.

driver"
e s . A
initial weights w {(w. , w }
J.d k,J

A
a {a !
p,i e.d p.k

derivatives of kerr to get gradient 2

2 (e )

} and errors )
p.i

activations , s

. . . A A
ize descent direction z ¢ - X, ﬁ < é, Q & ﬁ

until max |e |
p,i

< etol

invoke cgm

- ss s . A
"line minimization®" along X;
A A
e«w+ A X
z . A A
activations a and errors e.

s . . A
derivatives of kerr to get gradient X
A A2

/1]

+ 7 B,

A A

7 ¢ (X +2) X

A A
z z

Qef

<—-§,ﬁe~

minimization"

mnbrak; mnbrak uses golden mean search to locate a

region along the descent direction £ that contains a
minimum of kerr.
invoke dbrent; dbrent uses quadratic interpolation to isolate
the minimum just bracketed. It finds X such that
kerr(@ + A Q) is a minimum.

end




invocations of back propagation. A few more invocations of back
propagation can be saved if the maximum step size is halved whenever

A is less than another tolerance times the current maximum step size.
Observations on moderately large problems indicate that a small initial

maximum step size leads to fewer epochs needed for convergence.
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