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Abstract

Present day routers typically employ monolithic operating systems which are nor easily
upgradable and extensible. With the rapid rate of protocol development it is becoming increas-
ingly important to dynamically upgrade router software in an incremental fashion. We have
designed and implemented a high performance, modular, extended integrated services router soft-
ware architecture in the NetBSD operating system kernel. This architecture allows code modules,
called plugins, to be dynamically added and configured at run time. One of the novel features of
our design is the ability to bind different plugins to individual flows, this allows for distinct plugin
implementations to seamlessly coexist in the same runtime environment. High performance is
achieved through a carefully designed modular architecture; an innovative packet classification
algorithm that is both powerful and highly efficient; and by caching that exploits the flow-like
characteristics of Internet traffic. Compared to a monolithic best-effort kernel, our implementa-
tion requires an average increase in packet processing overhead of only 8%, or 500 cycles/2.1s
per packet when running on a P6/233.
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1 Introduction

New network protocols and extensions to existing protocols are being deployed on the Inter-
net. New functionality is being added to modern 1P routers at an increasingly rapid pace. In the
past, the main task of a router was to simply forward packets based on a destination address
lookup. Modem routers, however, incorporate several new services:

» Integrated Services

* Enhanced routing functionality (level 3 and level 4 routing and switching techniques)
* Security algorithms (e.g. to implement virtual private networks (VPN))

» Enhancements to existing protocols (e.g. Random Early Detection (RED))

* New core protocols (e.g. 1Pv6 [7])
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typical EISR kernel
features the following
important additional components: a packet scheduler, a packet classifier, security mechanisms,
and QoS-based routing/Level 4 switching, Various algorithms and implementations of each com-
ponent offer specific advantages in terms of performance, feature sets, and cost. Most of these
algorithms undergo a constant evolution and are replaced and upgraded frequently. Such network-
ing subsystem components are characterized by a relatively “fluid” implementation, and should be
distinguished from the small part of the network subsystem code that remains relatively stable.
The stable part (called the core) is mainly responsible for interacting with the network hardware
and for demultiplexing packets to specific modules. Different implementations of the EISR compo-
nents outside of the core often need to coexist. For example, we might want to use one kind of
packet scheduling on one interface, and a different kind on another.

Figure 1: Best Effort Router vs Extended Integrated Services Router {EISR)

In this paper, we propose a software framework and present an implementation which
addresses these requirements. The specific goals of our framework are:

* Modularity: Implementation of specific algorithms come in the form of modules called plu-
gins',

» Extensibility: New plugins can be dynamically loaded at run time.

» Flexibility: Instances of plugins can be created, configured, and bound to specific flows.

* Performance: The system should provide for a very efficient data path, with no data copying,
no context switching, and no additional interrupt processing. The overhead of modularity
should not seriously impact performance,

T A note on our use of the word ‘plugin’ (instead of ‘module’) is in order. In the web browser world, a plugin
is & software module that is dynamically linked with the browser and is responsible for processing certain
types of application streams (or flows). In a similar fashion, our router plugins are kemel software modules
that are dynamically loaded into the kernel and are responsible for performing certain specific functions on
specified network flows.
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Our proposed framework has been implemented in the NetBSD UNIX kernel. This platform
was selected because of its portability (all major hardware platforms are supported), efficiency,
and extensive documentation. In addition, we found state-of-the-art implementations on this plat-
form for 1Pv6 [12] and packet schedulers [25, 5] that could be integrated into our framework.

We envision several applications for our framework. First, our architecture fits very well
into the operating system of small and mid-sized routers. It is particularly well suited to the imple-
mentation of modern edge routers that are responsible for doing flow classification, and for
enforcing the configured profiles of differential service flows. This kind of enforcement can be
done either on a per-application flow basis, or on a generalized class-based approach (e.g. CBQ
[101). Our implementation supports both models efficiently.

Our framework is also very well suited to Application Layer Gateways (ALGs), and to secu-
rity devices like Firewalls. In both sitnations, it is very important to be able to quickly and effi-
ciently classify packets into flows, and to apply different policies to different flows: these are both
things that our architecture excels at doing.

Yet another application of our framework is for network management applications, which
typically need to monitor transit traffic at routers in the network, and to gather and report various
statistics thereof. For such applications, it is important to be able to quickly and easily change the
kinds of statistics being collected, and to do this without incurring significant overhead on the data
path.

Finally, while our proposed framework is very useful in real-world implementations, its
modularity and extensibility also make it an invaluable tool for researchers. We plan to release all
of our code in the public domain and we will attempt to incorporate several core portions into the
standard NetBSD distribution tree.

The main contributions of our work are:

* An innovative, modular, extensible, and flexible EISR networking subsystem architecture and
implementation that introduces only 8% more overhead than a best-effort kernel.

+ A very fast packet classifier algorithm which provides highly competitive upper bounds for
classification times. With a very large number of filters (in the order of 50000), it classifics
1pv6 packets in 24 memory accesses, and is much faster for smaller numbers of filters.

* Implementations of plugins for two state-of-the-art packet schedulers: Deficit Round Robin
(DRR, [22]) for fair queuing, and the Hierarchical Fair Service Curves (H-FSC, [25]) scheduler
for class-based packet scheduling.

There are a few commercial attempts that we are aware of which follow similar lines. The
latest versions of Cisco’s Internet 0S (108, [6]) claims to fulfill some of the requirements, but since
it’s a commercial operating system, there is no easy access for the research community and these
claims are not verifiable. Microsoft’s Routing and Remote Access Service for Windows NT (RRAS,
previously referred to as “Steelhead” [17, 18]) is an atternpt to implement router functionality
under Windows NT. RRAS exports an API and allows third party modules to implement routing pro-
tocols like OSPF and SNMP agents in user space. The API does not provide an interface to the rout-
ing and forwarding engines, and the platform offers no integrated services components. A few
research projects attempt to achieve some of the goals mentioned above [11, 19, 20]. Most of them
are focused on the implementation of modular end-system networking subsystems instead of
routing architectures. Scour from the University of Arizona is a particularly interesting project
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based on the x-kemel that implements an operating system targeted at network appliances (includ-
ing routers). It comes with router components implementing simple QoS support. Since the whole
operating system is implemented from scratch, most of the provided functionality is over-simpli-
fied and does not provide the large feature set that is found in mature implementations. Later in
this paper, we shall look at some of these commercial and research projects in more detail.

In Section 2, we describe our architecture and explain how it achieves modularity, extensi-
bility, and flexibility while maintaining high-performance. In Section 3, we describe the imple-
mentation of a module called the Plugin Control Unit (PCU), which is responsible for all control
path interactions with plugins. Section 4 outlines the implementation of the Association Identifi-
cation Unit (A1U), which is used by almost all other components in our design. The AIU imple-
ments an innovative algorithm for packet classification which efficiently maps packets to code
modules (plugins). In Section 5, we elaborate on two example plugins (packet schedulers) which
we implemented or adapted for our environment. Section 6 presents performance results from our
implementation. Section 7 relates our work to that of others, and Section 8 summarizes our ideas.
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2 Overall Architecture

The primary goal of our proposed architecture was to build a modular and extensible net-
working subsystem that supported the concept of flows, and the ability to select implementations
of components based upon flows (in addition to simple static configurations). Because the deploy-
ment of multimedia data sources and applications (e.g. real-time audio/video) will produce longer
lived packet streams with more packets per session than is common in today’s environment, an
integrated services router architecture should support the notion of flows and build upon it. In par-
ticular, the locality properties of flows should be effectively exploited to provide for a highly effi-
cient data path. Our plugin framework features:

* Dynamic loading and unloading of plugins at run time into the networking subsystem. Plugins
are code modules which implement a specific EISR functionality (e.g. packet scheduling). Net-
BSD offers a simple yet powerful mechanism which allows modules to be loaded into the ker-
nel. This mechanism is used to load our plugins into the kernel. Once a plugin is loaded, it is
no different from any other kernel code. What is required for our system is a component
which glues the individual plugins to the networking subsystem, and which provides a con-
trol-path interface used by other kernel components (possibly also other plugins) and user
space daemons to talk to the plugin. In our system, this component is called the Plugin Control
Unit (PCU). The PCU hides most of the implementation specific details from the individual plu-
gins and allows them to access the system in a simple yet flexible fashion.

* Creation of individual instances of plugins for maximal flexibility. An instance is a specific
run-time configuration of an individual plugin. It is often very desirable to have multiple
instances of one and the same plugin concurrently in the kernel. For example, consider packet
scheduling. A packet scheduler can work with different configurations on different network
interfaces. State-of-the-art packet schedulers are usually hierarchical, with possibly different
modules working on different levels of the scheduling hierarchy. Among the nodes of the
same level, modules are specifically configured, which means that they coexist in our frame-
work as plugin instances. In order to provide a simple and unified interface for the allocation
of multiple instances of one and the same plugin, the plugins must respond to a set of stan-
dardized messages. By standardizing this message set and implementing it in all plugins, we
guarantee interoperability among different plugins and provide a simple configuration inter-
face.

» Efficient mapping of individual data packets to flows, and the ability to bind flows to plugin
instances. Sets of flows are specified using filters. For example, a filter might match all TCP
traffic from the network 129.0.0.0 to the host 192.94.233.10. Filters can also match individual
end-to-end application flows. Filters are specified as six-tuples:

<source address, destination address, protocol, source port, destination port, incoming interface>
Any of the fields in the six tuple may be wildcarded. Additionally, for network addresses, a
prefix mask may be used to partially wildcard the corresponding field. For instance, for the
above example, the filter specification would read:

<]29.% ¥ % ]92.94.233.10, TCP, *, * *>

Clearly, the filter for an end-to-end application flow would have all fields (except perhaps the
incoming interface) fully specified. We will see later in this section that a packet matching a
particular filter will be passed to the plugin instance that has been bound to that filter. This
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will be shown to happen whenever the packet reaches a “gate” in the IP stack; a gate can be
thought of as the entry point for a plugin.

Overall high performance. High performance is guaranteed only in part through a fully kernel
space implementation which prevents costly context switches. We identified two other critical
properties which, when combined, guarantee high performance even in a highly modular
environment: the flow-like naturc of most internet traffic, and the ability to classify packets
into flows quickly and efficiently. As we show below, the filter lookup to determine the right
plugin instance to which a packet should be passed happens only for the first packet of a burst.
Subsequent packets get this information from a fast flow cache which temporarily stores the
information gathered by processing the first packet. The filter lookup itself is efficiently
implemented using a Directed Acyclic Graph (DAG). We elaborate on these techniques later in
this section, and also in section 4

In order to describe our framework, we first look at the different components and how they

interact in the control path. In the Section 2.2, we will look at the data path, and how individual
packets are processed by our architecture.

2.1 The Control Path

our system and the control communica-
tion between different components. A
description of the different components
follows:

Figure 2 shows the architecture of

IPv4/IPv6 core: The 1pv4/iPv6 core
consists of a stream-lined I1PV4/IPV6
implementation which contains the io s

(few) components required for packet Elizzammrmay oo
processing which do not come in the |
form of dynamically loadable mod-
ules. These are mainly functions that Figure 2: System Architecture and Control Path
interact with network devices. The

core is also responsible for demultiplexing individual packets to plugins as we will show in
the next section. There are no plugin related control path interactions with the IP core.
Plugins: Figure 2 shows four different types of plugins — plugins implementing IPv6 options,
plugins for packet scheduling, plugins to calculate the best-matching prefix (BMP, used for
packet classification and routing), and plugins for 1P security. Other plugin types are also pos-
sible: e.g., a routing plugin, a statistics gathering plugin for network management applica-
tions, a plugin for congestion control (RED), a firewall plugin. Note that all plugins come in
the form of dynamically loadable kernel modules.

Plugin Control Unit (PCU): The pCU manages plugins, and is responsible for forwarding
messages to individual plugins from other kernel components, as well as from user space pro-
grams (using library calls).

Association Identification Unit: The Association Identification Unit (AIU) implements a
packet classifier and builds the glue between the flows and plugin instances. The operation of
the ATU will become clear when we describe the data path in the next subsection.

Plugin Manager: The Plugin Manager is a user space utility used to configure the system. It

registers
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is a simple application which takes arguments from the command line and translates them into
calls to the user-space Router Plugin Library which we provide with our system. This library
implements the function calls needed to configure all kernel level components. In most cases,
the plugin manager is invoked from a configuration script during system initialization, but it
can also be used to manually issue commands to various plugins, We show an example of how
the Plugin Manager is used in Section 5.

Daemons: The RSvP [29], SSP [1] (a simplified version of RSVP), and route daemon are linked
against the Router Plugin Library to perform their respective tasks. We implemented an SSp
daemon for our system, and are currently in the process of porting an RSVP implementation,

After a reboot, the system has to be configured before it is ready to receive and forward data

packets. Configuration involves the selection of a set of plugins. Since a selection does not neces-
sarily apply to all packets traversing the router, a definition of the set of packets which should be
processed by each individual plugin instance is required. This configuration can be done either by
a system administrator, or by executing a script. Configuration involves the following steps:

Loading a plugin: Using the modload command, which is part of the NetBSD distribution,
plugins are loaded into the kernel. On loading, they register themselves with the PCU by pro-
viding a callback function. This function is used to send messages to the plugin. There are
messages for creating and freeing instances of the plugin and for binding plugin instances to
flows. Also, plugin developers can define an arbitrary number of plugin specific messages.
Once the callback function for a plugin has been registered, the PCU can forward these config-
uration messages to the plugin.

Creating an instance of a plugin: Using the Plugin Manager application, configuration mes-
sages can be sent to specified plugins. Typically, these messages ask the plugin to create an
instance of itself. In case of a packet scheduling plugin for example, the configuration infor-
mation could include the network interface the plugin should work on,

Creating filters: Once a plugin has been configured and an instance has been created, it is
ready to be used. What has to be defined next is the set of datagrams which should be passed
to the instance for processing. This is done by binding one or more flows to the plugin
instance. To specify the set of flows that are supposed to be handled by a particular plugin
instance, the Plugin Manager or one of the user space daemons (RSVP or $8P) can create filters
through calls to the A1U. Recall (from earlier in this section) that a filter is a specification for
the set of flows it matches.

Binding fiows to instances: Next, the binding between filters and plugin instances must be
established. Each filter in the ATU is associated with a pointer to a plugin instance; this pointer
is set by making another call to the A1U to do the binding.

Now the system is ready to process data packets. We will show in the next subsection how

data packets are matched against filters and how they get passed to the appropriate instances.

2.2 The Data Path

Data packets in our system are passed to instances of plugins which implement the specific

functions for processing the packets. Since data path mechanisms are applied to every single
packet, it is very important to optimize their performance. Given a packet, our architecture should
be able to quickly and efficiently discover the set of instances that will act on the packet.
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The data path interactions are
shown in Figure 3. Before we can
explain the sequence of actions, we
have to introduce the notion of a
gale. A gate is a point in the IP core
where the flow of execution
branches off to an instance of a
plugin. From an implementation
point of view, gates are simple mac-
ros which encapsulate function calls
to the AIU that will return the correct
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function call to the AIU altogether,
thereby permitting a more efficient
implementation. Gates are placed
wherever interactions with plugins need to take place. For example, sometimes after a packet is
received by the hardware, option processing has to be done if the packet contains 1P options. In our
system, IP option processing functions are modularized and come in the form of plugins. A gate is
inserfed into the IP core code in place of the traditional call to the kernel function responsible for
IP option processing. In our current implementation, we use gates for IPv6 option processing, IP
security, packet scheduling, and for the packet filter’s best-matching prefix algorithm.

Figure 3: System Architecture and Data Path

To follow the various data path interactions, it is important to get a basic understanding of
the operation of the A1U. The AIU is responsible for maintaining the binding between flows and
plugin instances. It makes use of a special data structure called a flow table to cache flows. Flow
tables allow for very fast lookup times for arriving packets that belong to cached flows.

In the AU, all flows start out being uncached (i.e., they do not have an entry in the flow
table). If an incoming packet belongs to an uncached flow, its lookup in the flow table data struc-
ture will fail (i.e., there is a cache miss). In this case, the packet needs to be looked up in a different
data structure that we call a filter table. Filter tables store the bindings between filters and plugins
for each gate. The filter table lookup algorithm finds the most specific matching filter {(described
later) that has been installed in the table, and returns the corresponding plugin instance. Usually,
filter table lookups are much slower than flow table lookups. An entry for a flow in the flow table
serves as a fast cache for future lookups of packets belonging to that flow. Each flow table entry
stores pointers to the appropriate plugins for all gates that can be encountered by packets belong-
ing to the corresponding flow. The processing of the first packet of a new flow with n gates
involves n filter table lookups to create a single entry in the flow table for the new flow.

If a cached flow remains idle (i.e., no new packets are received) for an extended period, its
cached entry in the flow table data structure may be removed (or replaced by a different flow). In
this case, if the flow becomes active again, the first packet that is received would again result in a
cache miss, which would again cause a new cache entry 1o be created in the flow table so that sub-
sequent packets can benefit from faster lookup times.

Section 4.1 describes a very fast filter table lookup implementation based on directed acy-
clic graphs (DAGS). Section 4.2 describes our flow table implernentation, which is based on hash-
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ing.

As an example, consider the steps involved in processing an IPv6 packet (see numbers 1-6 in

Figure 3). Uncached flow processing involves the following sequence of events and actions:

0.

How

Packet arrival: When a packet arrives, it gets passed to the IP core by the network hardware.
As it makes its way through the core, it may encounter multiple gates.

Encountering a gate: Assume that the packet has reached the gate where 1Pv6 option process-
ing will be handled. The task of this gate is to find the plugin instance which is responsible for
processing the IPv6 options contained in the packet.

Discovering the right instance: The gate makes a call to the A1U. The parameters of the call
are a pointer to the packet and an identification of the gate issuing the call. In our case, we
would identify the I options gate as the caller.

Packet classification: The AU first does a lookup in the flow table, and finds that there is no
cached entry available for the flow. Consequently, it performs a lookup in the filter table cor-
responding to the IPv6 options gate, The resulting plugin instance pointer is returned to the
calling gate (“OPT2” in Figure 3). Note that since this packet classification step performed by
the ATU is the most expensive step in the whole cycle, an efficient packet classification scheme
and implementation is important.

Caching of the instance pointer: Before the AIU returns the instance pointer to the gate, it
stores the pointer in the flow table. Note that entries in the flow table are identified by the same
six tuple used to specify filters, but without masks or wildcards (all fields have fully specified
values). In other words, a flow table entry unambiguously identifies a particular flow. In our
example, the pointer to the OPT2 plugin is stored in the row of the flow table which corre-
sponds to our packet’s flow.

Returning the instance pointer: The instance pointer found is returned to the gate.

Calling the instance: The gate calls the plugin instance, passing the packet as an argument,
Repeating the cycle: When the call returns, the 1 stack continues processing the packet, until
it encounters another gate, in which case the same cycle repeats.

This cycle is executed only for the first packet arriving on an uncached flow. Subsequent

packets follow a faster path because of the cached entry in the flow table. Note that in our system,
we have created optimized implementations of both the flow and filter tables, allowing for high
performance on both the cached and uncached paths. These implementations are described in
Section 4.

Cached flow processing involves the following sequence:

Processing at the first gate: When a packet from a cached flow encounters the first gate, the
AU is called to request the plugin instance. This time, the pointer to the instance requested is
already in the flow table. The flow table is looked up efficiently, and the plugin instance
pointer corresponding to the calling gate is returned. No filter table lookups are required.

Associating the packet with a flow index: Together with the instance requested, the AIU
returns a pointer to the row in the flow table where the information associated with the flow is
stored. This pointer is called the flow index (FIX), and is stored in the packet’s mbuf?. The
instance is then called to process the packet, following which the 1P stack passes the packet on

! The mbuf is a data structure that is used to store packets and packet related information efficiently in BSD
derived operating system kernels.
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to the next gate,

* Processing at subsequent gates: Once the packet has made its way past the first gate, the AIU
does not have to be called upon to classify the packets at the remaining gates. Macros imple-
menting a gale can retrieve the instance pointers cached in the flow table by accessing the FIX
stored in the packet. This allows us to pass packets to the appropriate instances in a very effi-
cient manner using an indirect function call instead of a “hardwired” function call. We show
in section 6 that this does not imply significant performance penalties.

Our architecture implements a highly modular system with minimal performance overhead.
Our architecture is scalable to a very large number of gates since the number of gates matters only
for the first packet arriving on a (uncached) flow. But even for the first packet, fast retrieval of the
instance is possible with the DAG based packet classification algorithm that is used to implement
the filter tables in our system (see Section 4).
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3 Plugins and the Plugin Control Unit (PCU)

Depending on the type of network software component that is implemented by a plugin, it
can be very simple (e.g., a dozen lines of code for an IP option plugin) or very complex (e.g., a
state-of-the-art packet scheduler). Each plugin in our framework is identified by a name and a
type. The type of a plugin refers to the specific network software component it implements; thus,
there is a direct correspondence between a gate in our architecture and the plugin type. Whenever
a packet enters a gate, it will be passed to a registered plugin of the appropriate type. There can
potentially be multiple plugins of the same type that have been registered; in this case, flow filters
that have been installed for the corresponding plugin type are used to pick the right plugin to
which the packet should be passed.

Our implementation currently supports four types of plugins, corresponding to different net-
work functions: IP options, IP security, Packet Scheduling, and Longest-prefix Matching (used as
part of the packet classifier that is present in the A1U). In the future, we plan to also add support for
a Routing plugin, which would allow routing table lookups to be based on the flow classification
that is performed by the AIU. Other plugins that are envisioned include a plugin for statistics gath-
ering (useful for network monitoring/management), a plugin for congestion control mechanisms
(e.g., RED), and a plugin for firewall functions. Doubtless, additional plugin types will be intro-
duced by third parties once we have released our code into the public domain. We will discuss the
implementation of two example plugins in section 5.

Plugins must fulfill two important requirements: they have to register a callback function
with the PCU when they are loaded into the kernel, and that callback function must reply to a set of
messages. As mentioned earlier, these messages fall into two categories: standardized messages,
and plugin-specific messages. The set of standardized messages include:

» create_instance: Creates an instance of a plugin. This results in the allocation of a data struc-
ture that will be used to store configuration and run-time information for that instance. A func-
tion to handle a data packet (the main packet processing function which is called at the gate)
must be specified and functions which are called by the AIU on removal of an entry in the flow
or filter table can optionally be specified.

» free_instance: Removes all instance specific data structures. A freed instance can no longer
be used by the kernel and all references to it are removed from the flow table and the filter
table.

« register_instance: Registers a plugin instance with the A1U, and binds that instance to a filter
that has to be supplied as a parameter. The same instance may be registered multiple times
with the ATU with different filter specifications. This message would result in a call to a regis-
tration function that is published by the AlU.

+ deregister_instance: Removes the binding between a specified filter in the AlU and the plugin
instance,

Creating and freeing instances is a highly plugin specific task. Registering and deregistering
instances with the AU and a supplied filter is a relatively simple task; in most cases, this merely
results in a call to the corresponding AIU function.

The PCU itself is a very simple component (200 lines of C code) managing a table for each
plugin type to store the plugin’s names and callback functions. Once loaded into the kemnel, plu-
gins register their callback function through a function call to the pCU. All control path communi-
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cation to the plugins goes through the pCU. Usually, such messages come from user space, either
from the Plugin Manager or from one of the daemons using a library call. The PCU is responsible
for dispatching these messages to the target plugin, and for handling exceptions. We implemented
a dedicated socket type for all plugin related user space communication with the kernel, which is
similar to the routing socket that is used by routed to communicate with the routing engine in a
BSD-based kernel.

4 The Association Identification Unit (AIU)

The Association Identification Unit (AIU) is the most important component in our proposed
framework. It implements a packet classifier, fast flow detection, and provides the binding
between plugin instances and fiiters. To do so, it manages two main data structures: filter tables
and a flow table. In Section 2.2, we described how flow and filter tables are used; in this section,
we will describe their implementations.

4.1 Filter Table Implementation Using DAGs

Filter tables are used to classify packets belonging to uncached flows. They are usually
invoked only for the first packet of a flow. Nonetheless, many flows may be very short-lived (just
one or a few packets), so it is important to have an efficient filter table implementation.

Several generic packet filtering algorithms have been proposed in the literature [2, 9, 19].
These algorithms are very powerful and flexible when they are used to look inte arbitrary packet
fields. They usually come with a ‘language’ which allows for the specification of filters in terms
of individual bytes in the packet header, and the values they should be checked against. They are
complex both in terms of theoretical background as well as in terms of code size (typically several
1000 lines of C code). To specify a simple filter to match a given TCP connection, half a page of
filter specification written in the filter’s language might be required (see [2] for an example of a
TCP filter specification). Besides complexity, all except DPF [9] typically provide performance
which is worse than that of tailor-made packet classifiers optimized for a certain fixed pattern of
packet header.

Furthermore, these existing packet filtering algorithins either do not support or cannot effi-
ciently match on partially (arbitrary number of bits) wildcarded fields, and therefore cannot be
used for efficient detection of best matching prefixes on addresses. This was an important require-
ment in our EISR framework.

Unlike generic packet filters that are optimized to search based on arbitrary bytes (specified
by the user) in a packet, our filter table implementation targets only the Internet protocol stack,
and requires packets to be classified based upon the same five packet header fields and the inter-
face on which the packet was received. Qur goal was therefore to find a fast lookup algorithm for
matching the six-tuple <source address, destination address, protocol, source port, destination
port, incoming interface> in a packet against a possibly large set of filters (several of which may
include address fields that are partially wildcarded, requiring a longest prefix match).

Note that since there is one filter table for every gate in our system, usually multiple lookups
(in different filter tables) are necessary for each packet that is received on an nncached flow. Why
is it that we don’t have a single filter table that applies for all network functions? The answer is
that the router administrator may have very different sets of policies for different networking com-
ponents. For example, the set of filters that are specified for one function (e.g. packet scheduling
for QoS) will usually be quite different from the set of filters that are installed for security applica-
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tions (e.g., firewalls). While it is theoreticaily possible to merge all filter tables into a single global
filter table (by merging the different filter specifications and creating new filters whenever there is
an overlap), such an implementation is practically infeasible because the space requirements for
the global table can, even with very few installed filters, increase very quickly (exponentially) to
unacceptable levels.

Note that the property of requiring multiple packet classification steps (filter table lookups)
is not unique to our system. Every common integrated services router does at least two filter look-
ups: one for packet scheduling, and one for routing. Routing in that sense is packet classification
with only one field (destination address) in the six-tuple for a filter specified, and all the other
fields set to wildcards. A more generalized approach to routing would involve looking not just at
the destination address, but also at other fields in the packet; this kind of extended routing func-
tionality has come to be known as L4 switching.

4.1.1Directed Acyclic Graph (DAG) Implementation

Our implementation of filter tables makes use of a directed acyelic graph (DAG) to find the
best matching filter. The easiest way to explain the algorithm is to use an example. For simplicity,
owr example assumes filters with only three header fields in place of six. It should be noted that
this scheme can work with an arbitrary (but constant) number of filter fields,

Destination Protoco
Address 1
129.%# 192,94.233.10 | Tcp
128.252.153.1 128.252.153.7 | upp
128.252.153.1 128.252.153.7 | Tcp
128.252.153.* ® UDP

Table 1: Sample Filters

# Source Address

Jal QI b e

We consider a filter table containing four filters (see Table 1); the first field in each filter
corresponds to the source address, the second field to the destination address, and the third field to
the protocol. The first filter matches all TCp traffic from the network 129.0.0.0 to the host
192.94.233.10. The second and the third filters match all UDP/TCP traffic from host 128.252.153.1
to host 128.252.153.7. And the fourth filter matches all UDP traffic from network 128.252.153.0. It
is easy to see that filter 2 is a proper subset of filter 4; we say that filter 2 is more specific than filter
4. Also note that filters 1 and 4 are disjoint.

Figure 4 shows the corresponding DAG. To malch a triple
<128.252.153.1, 128.252.154.7, UDP> corresponding {o an
incoming packet, the triple’s first field, the source address
of the packet (128.252.153.1) is subjected to a longest pre-
— fix match against the three prefixes present at level 1 of the
| DAG (ie., 129.%, 128.252.153.1, and 128.252.153.%). The
most specific match is clearly (128.252.153.1) and there-
fore the edge to node ‘¢’ of the DAG is followed. Next, the
second field, the packet’s destination address, undergoes a
similar longest prefix match against prefixes present at level 2 of the DAG on edges leading out of
node ‘c’. Since there is only one such prefix (128.252.154.7), and it matches our input value, the

Figure 4: DAG without Soft Edges
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search continues to node ‘f’. On the next level, the match function is a simple equality check on
the protocol field from the packet. Since there is a matching outgoing edge for ‘UDP’, the filter
lookup procedure terminates, returning filter 2 as the best matching filter.

Note that the matching function used at each level of the DAG can be different, and is based
on the desired lookup method for the corresponding field type. For example, for IP address fields,
a match based on the longest prefix match is appropriate. For port numbers, matching can be done
on ranges, with the possibility of having the single wildcard ‘*°, For the protocol and incoming
interface fields, an appropriate matching function would be a simple exact match (equality) with
the possibility of a wildcard match (‘***). The matching function itself can be independently con-
figured for each level of the DAG, and is implemented as a special plugin in our framework (it is
special because, unlike other plugins, it cannot be bound to flows). For 1P address matching, we
implemented two such plugins: one is based on the slower but freely available PATRICIA algo-
rithm, and the second is based on the patented binary search on prefix length [28] algorithm. For
the other levels, we use a default plugin provided as part of our kernel, which performs the simple
equality checks mentioned above.

Note that the leaf nodes of a2 DAG correspond to the installed filters, and therefore contain all
information associated with filters, These filter records contain, in addition to a pointer to the cor-
rect plugin instance, an opaque pointer that can be filled in by the plugin to point to some private
data. This can be used by plugins to store plugin specific (hard) state that is associated with
installed filters.

There is one difficulty we have to deal with when build-
ing the DAG. Consider the triple <«<128.252.153.1,
129.0.1.1, UDP>, corresponding to an incoming packet.
Following the approach outlined in the example above,
< the first match would lead to node ‘c’. The second match
operation would fail because 129.0.1.1 is neither equal to
nor a subset of 128.252.154.7. However, clearly filter 4
should have matched this triple. To deal with such cases,
Figure 5: DAG with Soft Edges a check must be made when building the graph for sub-
sets; in our example, since 128.252.153.1 is a pattern
matching 128.252.153.*, there must be an edge from node ‘c’ to node ‘g’ with the wildcard value
*? (the dashed line in Figure 5). In other words, whenever there is a subset relationship between
filter fields corresponding to two or more edges leading out of a node, there must be edges in the
graph that connect the corresponding branches on the next lower level. We call these edges ‘soft’
edges because they might not be permanent. It is these soft edges that result in the graph being a
DAG rather than a tree. If in our example the filter <128.252.153.1, *, UDP> were to be added, the
soft edge would have to be replaced by a regular (hard) edge pointing to a new node in the graph.
If on the other hand filter 4 were to be removed from the filter table, the soft edge between ‘c’ and
‘g’ would have to be removed as well. Note that adding one soft edge to the graph at level [ of the
DAG may cause one or multiple adds of soft edges at level [+1. Our implementation efficiently
finds, inserts, and removes the necessary soft edges. Due to space limitations, details of our imple-
mentation are beyond the scope of this document and will be published in a separate paper.

Although our example does not demonstrate it, cach DAG will usually have a default (com-
pletely wildcarded) filter (i.e., <*, *, * >) installed, which gets used if none of the other filters
match. In this case, the default branches from many nodes at different levels in the DAG will usu-
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ally be soft edges leading to nodes along the default path (i.e., the path with all “*°s) through the
DAG.

4.1.2 Optimizing for Lookups in Multiple DAGs

So far, we showed only one DAG, which implements a single filter table. As mentioned car-
lier, several filter table lookups may be necessary for each packet, one at each gate that is encoun-
tered by the packet along its data path. Often, it may be the case that the same or similar filters are
installed in two or more filter tables. In such cases, it should be possible to exploit the information
that has been gleaned from a lookup in one filter table to speed up the lookup for the same packet
in the next and subsequent filter tables,

In Figure 6, we show the
DAGs corresponding to two [EE
gates along the data path, The
first gate corresponds to IP
security; we can refer to the
corresponding DAG as the IP
security DAG. The second gate
corresponds to packet schedul-
ing; it has a corresponding
p aCk?I schedulmg DAG. Note Figure 6: Two DAGs Connected
the lines that point from leaf
nodes in the first DAG to nodes
in the second DAG. These lines, which are calculated whenever a filter is added or removed from
either of the DAGs, are used to show where the search in the second DAG can start assuming that
the result of the Iookup in the first DAG is known. In the example from the figure, the result of the
lookup in the second DAG is known without having to traverse that DAG if the search in the first
DAG terminated at leaf nodes I or 2 (the result is leaf nodes 5 or 6 respectively, as indicated by the
lines connecting the two DAGs). Node 3 represents a leaf node in the first DAG which does not have
a corresponding node in the second, so that the search would have to begin at the root of the sec-
ond DAG. Leaf node 4 in the first DAG cannot be mapped to a leaf node in the second DAG. How-
ever, the lookup in the second DAG can commence from intermediate node ‘k’, so fewer levels will
have to be traversed. It is easy to see that by computing such interconnections between DAGS
implementing the different filter tables, significant performance benefits can be realized. Note
however that these performance benefits depend on the actual set of filters that have been installed
in the various filter tables. The more alike the filters installed in different filter tables, the greater
the gains. In the unlikely case where completely different sets of filters are installed in different
filter tables, there will be no performance gains at all.
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4.1.3 Other Optimizations

Our DAG approach affords some simple optimizations. If multiple
wildcarded edges succeed each other without any branching at inter-
mediate nodes (see Figure 7%), then an obvious optimization is to col-
lapse multiple nodes along such a path into a single supernode. If a
supernode is encountered when traversing a DAG, the lookup proce-
dure can skip over several fields in the packet, corresponding to the
levels that have been collapsed. This becomes very important for DAGs
that implement a Routing plugin, where most routes will be based on
the destination address only; in this case, it is possible to skip over
Figure 7: Collapsing Levels o of the fields and do a best-matching prefix on just the destination
address, making the lookup as fast as can be supported with a traditional routing table approach.
Of course, if there are several filters that are specified with routing based on fields other than the
destination address (L4 switching), then this optimization may not provide as much benefit,

4.1.4 Ambiguous Filters

There is one important property of our algorithm that we have not mentioned so far; the fil-
ters specified in a DAG may be ambiguous. A pair of filters are considered to be ambiguous if an
incoming packet matches both filters, but neither filter can be considered to be a better matching
filter. Consider for example the two filters that have been installed for packet scheduling: <A, *, *,
* % *>and <¥* B, * * * *>_ The first filter matches all packets from source address A; let us say
that packets matching this filter are given 80% of the available bandwidth. The second matches all
packets with destination address B; assume its bandwidth allocation is 20%. Now, suppose we
receive packets with source address A and destination address B. Such packets match both filters.
Further, neither filter can be considered a better match, because neither filter is a subset of the
other. So the question arises: what percentage of the bandwidth should the corresponding flow
receive? Clearly, the answer cannot be determined without more information. One way to get this
extra information would be to require the user to add another filter <A, B, * * # *> with a spec-
ified bandwidth, say 80%. In this case, the packet would match all three filters, but the most spe-
cific matching filter would be the new one we just added, so there is no ambiguity. Such filters
which are added to remove ambiguities are called disambiguating filters.

Resorting to set theory, and thinking in terms of sets in the filter tuple space, a pair of ambig-
uous filters correspond to a pair of sets which have a non-zero intersection, where neither set of the
pair is a proper subset of the other. In this case it is not possible, given a data point that lies within
the intersection of the two sets, to decide on which of the sets it belongs to. Note that if one set is
completely contained within the other (i.e., a proper subset), then there is no ambiguity — we
would match on the smaller set, which would correspond to the best match. If ambiguous filters
are inserted in a DAG, then the result from a lookup may depend on the ordering of fields in the
DAG (i.e., which field is processed at what level in the DAG). One approach would be to arrange the
fields (and levels) in some known order, which would result in an implicit priority among fields

2 The order of fields corresponding to levels in the DAG which is shown in the figure has changed from previous
examples; the destination address field is now at the lowest level. This has been done to emphasize the fact that
the ordering of fields is not important for the algorithm to function correctly. As we will see later however, it does
impact the memory space requirements; the organization shown in the figure has the minimum space requirement
if the filters are all based on the destination address alone.
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that can be used to decide the outcome of an ambiguous lookup. For example, in Figure 5, the pro-
tocol field has priority over the address fields since it is at the lowest level, The default behavior
that is implicit from this priority ordering can always be overridden by the user {the entity install-
ing the filters) if necessary, by installing one or more disambiguating filters. This kind of resolu-
tion progresses by [inding filters corresponding to intersections of ambiguous filters, and adding
those filters to the DAG, until the resulting collection of filters are either completely disjoint, or are
proper subsets of one another. In other woids, there would be no overlapping filters.

Often however, it might make sense to choose an ordering of fields in the DAG so that it
results in the minimum memory space usage. With large numbers of filters, the memory needs of
a DAG can be quite significant, so this is an important optimization. In such cases, the ordering of
fields may not be known in advance, but may be dynamically determined based on the current set
of installed filters. Thus, the outcome of a lookup would be one of the matching ambiguous filters,
but it may not be possible to know in advance which one. In many cases, this kind of behavior may
be quite acceptable. In cases where it isn’t, it would be necessary to resort to the trick of adding
disambiguating filters, as described in the previous paragraph.

Our implementation includes detection of ambiguous filters, which is executed whenever a
filter is added. If it is determined that the newly installed filter results in an ambiguity in the result-
ing DAG, this condition is reported to the user (the entity that installed the filter). In addition, our
implementation also finds and reports the set of disambiguating filters that would be needed to
resolve all ambiguities. The user can respond to this by either ignoring the condition (in which
case he is willing to tolerate the ambiguity), or by adding the set of disambiguating filters to the
already installed filters.

Our DAG-based scheme is loosely related to Cecilia Tries [27]; the DAGs can be thought of
as multi-bit Cecilia Tries with header fields being used instead of bit fields, and a generic match-
ing function (e.g., best-matching prefix) in place of exact matching of multibit fields to integer
values.

The DAG-based algorithm is simple and easy to implement (our implementation requires
approximately 800 lines of C code including ambiguity detection), and it is much faster than the
‘typical’ filter algorithms used in existing implementations [16, 21]. While most of these existing
techniques require Ofn) time, n being the number of filters, our solution when used with a state-of-
the-art best matching prefix algorithm (e.g., controlled prefix expansion [24]), is more or less
independent of the number of filters. If we were to characterize the performance of our DAG
approach, it would be O(f), where f is the number of fields in a filter specification. Since any
packet classifier has to look at least once at each field in the packet (except when the set of filters
is trivial, e.g. all wildcards), we argue that our scheme is theoretically optimal in speed. From a
practical standpoint, our current implementation does not exploit hardware properties such as the
machine’s cache subsystem architecture or main memory quirks to improve performance. Given
the large improvements in performance that other researchers have achieved by exploiting such
properties in the context of best matching prefix algorithms, we believe that there is room for
future work in applying similar techniques to our packet classification algorithm. Also, as men-
tioned earlier, the memory requirements for our DAG-based filter tables can be substantial for large
filter sets. We are currently working on techniques to improve the memory utilization of our algo-
rithm. It is important to note that because of the modular character of our implementation, we can
easily replace our DAG based classifier with a new classifier plugin if and when better approaches
become available.
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In this section, we have attempted to provide an overview of the DAG based packet classifi-
cation algorithm. A description of the implementation details are beyond the scope of this paper
and will be covered in a future paper. Section 6 provides some performance results from our cur-
rent implementation of the DAG-based packet classifier.

4.2 Flow Table Implementation Using Hashing

The flow table is used to cache flow information for individual end-to-end flows. In other
words, each entry in the flow table corresponds to a flow with a fully specified filter (one that con-
tains no wildcards). Since there is no wildcarding, hashing can be used to implement flow table
lookups efficiently.

Out implementation of the flow table uses the five tuple of header fields <source address,
destination address, protocol, source port, destination port> from the packet to calculate the hash
index. The code that is used for this calculation has been kept very simple to improve perfor-
mance. It is executed in 17 processor cycles on a Pentium, and is described in Section 5. Hash col-
lisions are resolved by storing all entries in the same hash bucket on a singly linked list.

The array for the hash table is allocated at system boot time. Its size is dependent upon the
environment in which the router is used (LAN vs. regional vs, backbone router); the default value
used in our kernel is 32768.

Each flow record in the hash table includes space for:
1. The six tuple of the corresponding filter
2. A pair of pointers for each gate that is implemented in the core. One pointer peints to the
plugin instance that has been bound to the flow. The second points to private data for that
plugin instance; it is used by the plugins to store per-flow “soft” state. This is used, for exam-
ple, by the DRR plugin (Section 5.1) to store a pointer to a queue of packets for each active
flow.
3. A pointer to the filter record from which this flow was derived.
4. A pointer which is used to link the record onto either a free list or onto the linked list for a hash
bucket.
A small number of flow records is allocated at system boot time and linked into a free list (default
is 1024). More records are added as the need arises, with the number of allocated records increas-
ing exponentially {e.g. 1024, 2048, 4096, ...) to adapt to the environment as fast as possible. The
system can be configured to stop allocating new flow records after a given maximum number of
records have been allocated. Once this point has been reached, the oldest flow records are recycled
(i.e., the old entries in the cache are replaced with new ones). Different cache replacement policies
can be used with different performance trade-offs. To keep our discussion simple, we will not go
into the details of the cache replacement policy that we have implemented in our current setup.

Performance results from our flow table implementation are presented in Section 6.
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5 Example of Plugins

We will look at two plugins for packet scheduling in this section to give the reader a better
feel for how plugins interact with our architecture and how they are implemented. The two plugins
we consider are a port of Carnegie Mellon University’s (CMU) Hierarchical Fair Service Curve (H-
FSC, [23]) algorithm and our own implementation of a simple weighted Deficit Round Robin
(DRR, [22]) plugin. These two plugins are complementary in the sense that DRR is particularly use-
ful to implement fair queuing among best-effort flows, whereas H-FSC implements hierarchical
scheduling similar to Class Based Queuing (CBQ, [10]) with several advantages over CBQ. In the
current implementation, packet scheduling plugin instances are chosen per interface. We plan to
implement a Hierarchical Scheduling Framework (HSF) which will allow different instances of
packet scheduling plugins to be placed at individual nodes in the scheduling hierarchy. For exam-
ple, this will allow us to combine both the H-FSC and the DRR scheduling schemes, where DRR
could be used to do fair queuing for all flows ending in the same H-FSC leaf node. Note that in its
current implementation, H-FSC uses FIFO queueing for all flows matching the same leaf node,
which may result in unfair service to different flows.

5.1 The Weighted DRR Plugin

The Deficit Round Robin (DRR, [22]) algorithin is a very simple yet powerful packet sched-
uling scheme which provides fair link bandwidth distribution among different flows. The original
implementation comes from the WFQ module found in the ALTQ [5] software distribution. The
ALTQ WFQ modules implement fair queneing for a limited number of flows, which it distributes
over a fixed number of queues. ALTQ came with a basic packet classifier which mapped flows to
these queues by hashing on fields in the packet header. Since our architecture already offers mech-
anisms to store per-flow information in the flow table records, it was straightforward to add a
queue per flow which guarantees perfectly fair queuing for all flows. In order to allow bandwidth
reservations, we have implemented a weighted form of DRR which assigns weights to queues.
These weights are fixed for all best effort flows and dynamically recalculated for reserved flows if
a new reserved flow is added to the system. Since packet classification is already done very effi-
ciently by the A1U, the actual scheduler plugin is very simple (less than 600 lines of C code). It
turned out to be extremely useful for demonstrations of the link-sharing capabilities of our archi-
tecture,

Shown below are the commands necessary to load and configure the DRR plugin; this will
give the reader a feel for the simplicity and elegance with which plugins can be put into operation.
Note that these commands can be executed at any time, even when network traffic is transiting
through the system. pmgr is our Plugin Manager program, and modload is the NetBSD command
that is used to load kernel modules.

* lLoading the plugin: the plugin registers with the PCU under the name ‘DRR’.

wooster# modload —o drr -e drr combined.o
Module loaded as ID 0

* Creating an instance: this creates an instance of plugin named ‘drr’ of type ‘ps’ (packet sched-
uler), and binds it to the ATM interface en0.

wooster# ./pmgr create_instance pn=drr pt=ps if=en
Created plugin instance, handlie = 1
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* Adding a filter: this specifies a filter which matches all traffic originating at IPv6 source
address 37£e:2000:400:11::4, and sets the reserved bandwidth for all flows matching this fil-
ter to 80%. Usually, the filter and it’s associated QoS would be set by a daemon (RSVP or SSP)
through a library call, but we implemented it on the command line as well to allow for simple
testing,

woosterd ./pmgr add_filter sa=3f£fe:2000:400:11::4 pt=ps ih=1 bw=80
Filter Handle = 3

From now on, all flows originating from the specified source address will get at least 30% of
the link bandwidth. Note that the packet scheduler can be turned off any time by freeing the
instance or unloading the plugin module (which frees all instances of the plugin automatically):

» Freeing an instance: frees the instance of the plugin named ‘drr’, type ‘ps’ (packet scheduling)
with handle “1°.

wooster# ./pmgr free_instance pn=drr pt=ps ih=1

We demonstrated the DRR packet scheduling plugin by sending a video stream on a 155
Mb/s ATM link through a router that implemented our framework. We created UDP streams to gen-
erate noise, with the objective of disrupting the video. As expected, we observed very good quality
video when using bandwidth reservations for the video stream, and a significant degradation of the
quality without reservations. In case of a reserved video flow, the reserved flow remained within
approximately 1% of it’s reserved bandwidth, regardless of the number of active UDP streams.

5.2 The Hierarchical Fair Service Curve Algorithm

Our implementation of the H-FSC algorithm is a port of an implementation provided by CMU.
Since the developers at CMU properly separated the packet classifier from the scheduling algo-
rithm, it was relatively easy to convert the code to use our DAG-based packet classifier which is
resident in the ATU. Besides that, we converted it into a dynamically loadable module and changed
the interface to work with our environment. The algorithm is well documented in [25] and our
results are consistent with that paper. We believe that H-FSC represents the state-of-the-art in
packet scheduling. One of its main advantages is the decoupling of delay and bandwidth alloca-
tion, which is very useful if both real-time and hierarchical link-sharing services are required con-
currently. There are just two potential disadvantages of this algorithm. The first is its complexity
and therefore its overall throughput performance. As we show in section 6, the simple DRR plugin
requires less processing overhead than H-FSC. Second, we plan to improve H-ESC to provide fair
queuing among all flows of the same leaf traffic class by adding our DRR plugin to the leaf nodes
of the scheduling hierarchy. This will be very simple once our Hierarchical Scheduling Frame-
work (HSF) is in place.
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6 Performance

In this section, we elaborate on the performance of our architecture and implementation,
One of the drawbacks of modularity is that modules are accessed using indirect function calls. We
show, however, that the indirect function calls do not significantly affect the overall performance
of the system. We also look into the performance of the hashing algorithm which is especially crit-
ical since it is touched by every single packet. Thanks to the careful implementation of the hash
function, packet to flow mapping based on hashing requires 1.3 s for an 1Pv6 flow if the relation
between the number of flows and the size of the hashtable is reasonable. We show performance of
our DAG-based filter lookup algorithm by giving a worst case estimate for the number of memory
accesses which is 24 for 1Pv6. We conclude with measurements of the overall packet forwarding
delay and throughput supported by our kernel. We found that even in a highly modular environ-
ment we add only §% overhead compared to a best-effort kernel. We provide equal or better per-
formance than most integrated services platforms.

We did all of our measurements on a Pentium Pro with 512 KB Level 2 cache running at 233
MHz. For our measurements, we used the VTUNE [13] tool to obtain dynamic clock cycle counts.
Further we used special functions to access the Pentium’s processor clock register (tsc) which is
incremented by one every cycle and allows for very accurate measurements. The Pentium proces-
sor provides two instruction pipelines to execute instructions in parallel if no explicit dependen-
cies exist among instructions which prevent parallelization. Since the number of cycles consumed
by a single instruction therefore depends on its context, the cycles indicated in this section repre-
sent worst case values.

6.1 Indirect Function Calls

A regular function call (hard coded, not indirect through a function pointer variable)
requires 1 cycle and can usually be executed in parallel with the previous instruction. An indirect
function call through a variable requires 3 cycles, and since an explicit flow dependency occurs,
no parallel execution is possible. In case the function’s address has to be fetched out of the second
level cache or main memory, wait states are necessary. For a RAM with 60ns memory access time,
roughly 15 cycles are spent for every access that cannot be satisfied from the first (1) or second
level (L2) caches. In case of a hit in the L2 cache, 8 cycles are expended for the address fetch.
Since all function pointers come from entries in the flow table which have been accessed just
before the call to the function, it is fair to assume that the pointer would come out of L2 cache in
the worst case. Consequently, an indirect function call would require 12 cycles or 52 ns. This
overhead has to be multiplied by the number of gates throughout the kernel. In a typical scenario,
with one gate each for IP security, 1P options, Routing, and Packet scheduling, we would require
roughly 200 ns in the worst case to call all of the plugin instances. These back-of-the-envelop cal-
culations give us an idea of the overhead associated with modularization. We provide actual mea-
surement results in the following subsections.

6.2 Flow Detection: Hashing

Flow table lookups are a key function in our architecture as they are executed for every
packet. We use the following function to calculate the hash key.
if{flow_labhel] {
key = flow_label & (TABLESIZE-1);

} else |
key = BSWAP (LOWEST_32BITS (source address) +
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LOWEST_32BITS (destination address)) +
BSWAP (SRC_PORT+DST_PORT) & (TABLESIZE-1);
}

The same code applies to IPv4 and to IPv6. ficu_iavel is the IPv6 flow label, and it gets used
if it is non zero. In case of IPv4, the vowst_32817s MACTO simply returns the address itself, while for
Ipv6 it fetches the least significant 32 bits of the 1pv6 address.

BSWAP execules the Pentium’s bswap instruction. We need to execute a byte swapping func-
tion on little endian machines because the data is in network byte order (big endian) and we would
not get even hash key distribution without it. We are using bswap instead of the NetBSD function
ntohl because it turned out to be significantly faster. ntohl executes a sequence of rotate instruc-
tions which consume a total of 7 cycles, whereas bswap requires a single cycle. We use an AND
function (requires 1 cycle) instead of the modulo function usually applied for hashing (which
requires 41 cycles). The complete calculation requires 17 cycles or 73 ns, and turned out to result
in a reasonably even distribution of individual flows over the hash table. We simulated hashing in
user mode to get a better idea of how well this algorithm would perform, From [15] we found that
a large backbone router (FIXWEST2) has to manage an average of 22000 active flows concurrently.
We set the hash table size to 32768 and used larger nurnbers of flows to show how hash table over-
load affected performance. We passed 50 million 1Pv6 packets through the flow lookup in the AIU,
and measured hash table lookup times. Note that 1Pv6 flow labels were not used for our measure-
ments. The results are shown in Table 2. A flow lookup requires about 1.3pts under regular cir-

#of Size of hash collisions | 2Yerase #cycles | average flow
Flows | hash table | table load for flow lookup lookup time
22000 | 32768 67% 0% 310 1.3us
44000 | 32768 134% 25% 350 1.5us
65535 | 32768 200% 50% 400 1.7us
131072 | 32768 400% 150% 580 2.5us

Table 2: Flow Lookup

cumstances without overload. 200% overload causes the lookup time to degrade to 1.7)ls which is
still acceptable.

6.3 Packet Classification

The DAG scheme uses a best matching prefix (BMP) algorithm for address lookups, and sim-
ple indexing for port numbers and the protocol field. Recently, several new BMP algorithms have
been proposed to replace the PATRICIA [23] algorithm found in many of today’s BSD-based routing
engines: Binary search on prefix lengths (BSPL, [25]), Multiway and Multicolumn search (MMS,
[14]), and Controlled Prefix Expansion (CPE, [24]), to name just a few. Most of these schemes are
optimized for one lookup table which they usually try to fit into the processor’s cache. Perfor-
mance measurements published in these papers cannot directly be applied to our scenario, because
we have a potentially large number of smaller lookup tables, one per pertinent node of the DAG.
Furthermore, performance of these schemes largely varies with the type and size of the working
data set. Such frace-driven simulation cannot be applied to our framework because appropriate
data sets of real-world filter patterns are not available. However, the metric for the worst case
number of memory accesses of the BMP algorithms is an interesting measure since it would allow
us to give a good worst case estimate of how the classification algorithm performs. Table 3 gives
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Worst case
Prefix
Scheme memory
length
accesses
PATRICIA 32 32
128 128
BSPL 32 5
128 7
CPE 32 4
128 5

Table 3: Worst Case Memory Access Time for Different BMP Schemes

an overview of the worst case number of memory accesses for the three different schemes for 32
bit (Ipv4 addresses) and 128 bit (1Pv6 addresses) prefix lengths. These numbers are valid for a very
large number of prefixes, usually in the order of 50000. So far, we have implemented PATRICIA
and BSPL as plugins, and plan to add at least CPE since it shows very interesting numbers. In case
of BSPL, the number of worst case memory accesses for a full filter lookup calculation is shown in
Table 4. Since the operations to calculate the hash values are inexpensive compared to memory
accesses, a reasonably good estimate of the worst case filter lookup time can be calculated by mul-
tiplying the number of memory accesses with the memory access delay (60 ns). This leads to a
worst case filter lookup time of 1.4 us and has to be multiplied by the total number of gates in use
to get a worst case estimate of the total lookup time of the packet. Again, since this is a worst case

Access to function pointer for BMP function 1
Access to function pointer for index hash 1
1P address lookup (2*1og,(32)/2%*1l0og,(128)) 10/14
Port number lockup 2
Access to DAG edges 6
Total 20724

Table 4: Memory Accesses for a Filter Lookup

number, we expect much better results in real world scenarios where the number of filters is typi-
cally much smaller, and we could benefit from various optimizations in the DAG data structures, as
shown in section 4. In any case it is important to note that this number is independent of the num-
ber of filters in use and how they are organized. While we expect faster schemes for filter lookups
to emerge in the future which exploit hardware properties in the same way BMP algorithms do, we
believe that the DAG-based scheme already offers a significant improvement over current imple-
mentations of packet classifiers, which typically traverse a linear list of all filters. We are currently
working on more detailed performance evaluations in terms of processor cycles for different filter
sets and plan to publish them as soon as they become available.

6.4 Overall Packet Processing Time

Overall throughput was measured using the Pentium’s cycle counter. We added a time
stamp function into the ATM device driver which timestamped every incoming packet just after the
data was received from the network card. This value was compared to the CPU cycle counter right
before the packet was output to the hardware of the ATM card again. We sent 8 KByte UDP/IPV6
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datagrams (1Pv6 flow label NOT used) belonging to three different flows concurrently through our
router, The ATM MTU was 9180, so there was no fragmentation, We sent a total of 100 packets per
flow, and calculated the average processing time. This was repeated 1000 times. The system had
16 filters installed. We installed three gates which called empty plugins for the first test and only
one gate for packet scheduling in case DRR was turned on. The results are shown in Table 5 The

Average Av&_arage Additional Relative | Throughput | Throughput
Kernel Cycles Time overhead Overhead | [packets/s) [Gbs)?
[us] [us] P

Unmodified 6460 27.73 - - 36800 2.3
NetBsp 1.2.1
NetBSD with our 6970 2991 2.19 7.89% 34100 2.1
Plugin Architecture
Netssp with 8160 35.0 - - 28600 1.9
ALTQ and DRR
NetssD with our 8110 34.8 0.2) (0.61%) 28729 1.9
Plugin Architecture
and a DRR plugin

Table 5; Overall Packet Processing Time

a. The throughput numbers reported in this table do not take into acconnt the data copy overhead between
memory and the network interface.

first row shows the processing time of the unmodified NetBsD 1.2.1 kernel. A packet is received,
forwarded and sent back to the AT™M hardware within 6460 cycles or 28 s. With our framework
turned on, flow detection and the three function calls caused an overhead of roughly 500 cycles or
2.2 s as expected based on our simple calculations from Section 6.1. Note that filtering has a
minor impact on the overall throughput since it happens only for the first packet of each flow.
With our DRR plugin installed and guaranteeing fair queueing among the three flows, we measured
similar performance as an ALTQ system running the same algorithm. Since the packet scheduling
code is similar in both implementations (our implementation of DRR is derived from ALTQ), we
benefit only from faster hashing in terms of performance. Packet scheduling introduces an over-
head of 20% compared to a best-effort kernel. While 20% overhead may sound excessive, it cor-
responds to the numbers reported by others. Although H-FSC has very different scheduling
characteristics from DRR, thereby making any direct comparison difficult, [25] reports between 6.8
and 10.3 us® for packet queueing overhead, which would correspond to about 25% to 37% over-
head.

It is important to see that every integrated services platform requires some sort of packet
classification. By carefully implementing packet classification, we achieve faster lookups for 1Pv6
than other integrated services platforms for 1pv4 (e.g, [25] states that they require 2.6 |us for packet
classification for 1pv4 packets), even though 1Pv6 addresses are larger. Once the flow a packet
belongs to is detected, picking the right instance of a plugin to which the packet should be passed
does not cost more than an indirect function call. Thus we showed that on integrated services plat-
forms, a very flexible and modular architecture can be introduced with almost no additional pro-
cessing cost.

3 Stoica, Zhang, and Ng’s measurements on a Pentium 200 were scaled to our 233 MHz Pentium.
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7 Related Work

In this section, we review work (one comnmercial, three research) which is closely related to
ours,

Microsoft’s Routing and Remote Access Service for Windows NT (previously known as
“Steelhead”) is an add-on to Windows NT 4.0 or 5.0 server. It allows regular Windows NT PC’s to
be used as IP or IPX routers and is targeted fo routing small to midsized networks. It’s main advan-
tage is price and ease of use, since it can benefit from NT’s graphical user interface for configura-
tion and monitoring tasks. It implements most of the important routing protocols like RIP and OSPF
as well as support for packet filtering and remote network management via RPC. It provides one
API to implement custom routing protocols and another API to extend management support. Both
APIs are interfaces to user-space components and do not allow the extension of the networking
subsystem in the kernel. To add new network protocol implementations like 1pv6, the usual
TDI/NDIS interfaces have to be used and the entire protocol stack has to be implemented as a block.
The system does not allow for replacement of individual functional modules like routing lookups
or packet schedulers. Further, it does not implement any integrated services components (yet).

ALTQ [5] is an attempt to unify the interfaces to packet schedulers. It comes with a port of an
implementation of Class Based Queuing (CBQ, [10]) and a DRR module which we changed to pro-
vide support for reserved bandwidth. Further, it provides modifications to the NetBSD ATM driver
to support packet scheduling. While ALTQ bundles interesting components, it does not implement
a lot of functionality on it’s own. In particular, it does not separately implement a packet classifier
but uses packet classifiers that are glued to the various packet schedulers (which, as we mentioned
earlier, is the wrong place for doing packet classification). It does not allow dynamic loading of
modules nor does it feature any functionality to bind code to flows.

The x-kemel [11] is a well known object-based framework for implementing network proto-
cols. It defines an interface that protocols use to invoke operations on one another and a collection
of libraries for manipulating messages and operating system resources. Over the last several years,
the x-kernel has served as a research platform for investigating end-to-end issues related to com-
puter networks. The x-kernel focuses on the implementation of network software running on the
end systems, contrary to our work which concentrates on the router.

The same university released Scout [19], which is an operating system implementation
based upon x-kernel, with a special focus on network appliances. Still mainly end-system ori-
ented, it comes with a router module which implements QoS functionality and 1Pv6. Various
packet scheduling schemes like DRR, Virtual Clock [26] and Weighted Fair Queuing [8] are
included in the router module. The problem with implementing a new operating system seems to
be that it requires an enormous amount of time and manpower to provide features comparable to
matured implementations like BSD Unix. Whereas we rely on state-of-the-art 1Pv6 and packet
scheduler components implemented by others, and focus on implementing our specific new con-
tributions, everything had to be reimplemented for Scout. Thus, some of the provided components
lack several important features. For example, the 1Pv6 module does not implement ICMPV6, and
routing lookups are done in a strongly simplified fashion using hashing. At this point of time,
Scout does not appear to provide the feature set of state-of-the-art implementations, such as those
available for NetBSD and used in our system.
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8 Conclusions and Future Work

We presented an extensible and modular software framework to implement high-perfor-
mance integrated services routers. It allows code modules called plugins to be dynamically loaded
into the kernel and configured at run time. Instances of plugins can be bound to individual flows.
We have implemented a fast packet classification algorithm which makes use of existing highly
optimized best-matching prefix algorithms, and which provides acceptable worst-case filter
lookup times that are independent of the number of installed filters. We clearly separated packet
classification from packet scheduling, and showed that a high degree of modularity can be incor-
porated in an integrated services platform without considerably affecting performance. We plan to
freely distribute our source code, with the objective of providing the research community with a
state-of-the-art integrated services platform to build upon. We expect to release this software in
the public domain by the time this paper is published.

Our future plans include implementing the Hierarchical Scheduling Framework (HSF) to
provide a more sophisticated environment for packet scheduling than what we’ve presented so far.
The HSF will allow the combination of different scheduling algorithms at different levels in the
scheduling hierarchy. As one application, we plan to show the combination of H-FSC and fair
queuing algorithms like DRR, where DRR would do fair queving among the flows in a H-ESC leaf
node. We believe that the integration of routing into the packet classifier makes a lot of sense.
While this is conceptually very simple, it requires some amount of work to do this in a standard
BSD Unix kernel, since the routing functions are not very well isolated. By unifying routing and
packet classification, we get QoS-based routing/Level 4 switching for free. We believe that these
enhanced routing technologies have interesting properties and a lot of potential. The integration of
routing will make fast packet classification schemes even more important. While we believe that
our DAG algorithm is a valid contribution to the state-of-the-art, we plan to pursue research in
packet classification algorithms, and incorporate enhanced implementations and algorithms into
our framework.
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