
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2008-15

2008-01-01

Local Neighborhoods for Shape Classification and Normal Local Neighborhoods for Shape Classification and Normal

Estimation Estimation

Cindy Grimm and William Smart

We introduce the concept of local neighborhoods, a generalization of the one-ring on a mesh to

unlabeled 3D data points arising from sampling a 2D surface embedded in 3D. The local

neighborhood supports both local shape classification and robust normal estimation. In

particular, local neighborhoods out-perform traditional approaches in unevenly sampled, curved

regions. We show that the local neighborhood can be used in place of a full mesh structure for

applications such as smoothing, moving least-squares reconstruction, and parameterization.

Longer version of paper submitted to CAGD

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Grimm, Cindy and Smart, William, "Local Neighborhoods for Shape Classification and Normal Estimation"
Report Number: WUCSE-2008-15 (2008). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/226

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Washington University St. Louis: Open Scholarship

https://core.ac.uk/display/233233742?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F226&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F226&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F226&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F226&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F226&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F226&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F226&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/226?utm_source=openscholarship.wustl.edu%2Fcse_research%2F226&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

Department of Computer Science & Engineering

2008-15

Local Neighborhoods for Shape Classification and Normal Estimation

Authors: Cindy Grimm and William Smart

Corresponding Author: cmg@wustl.edu

Abstract: We introduce the concept of local neighborhoods, a generalization of the one-ring on a mesh to
unlabeled 3D data points arising from sampling a 2D surface embedded in 3D. The local neighborhood supports
both local shape classification and robust normal estimation. In particular, local neighborhoods out-perform
traditional approaches in unevenly sampled, curved regions. We show that the local neighborhood can be used
in place of a full mesh structure for applications such as smoothing, moving least-squares reconstruction, and
parameterization.

Notes:
Longer version of paper submitted to CAGD

Type of Report: Other

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160

Local Neighborhoods for Shape Classification and
Normal Estimation

Cindy Grimm and William D. Smart

Washington Univ. in St. Louis

Abstract

We introduce the concept of local neighborhoods, a generalization of the one-ring on a
mesh to unlabeled 3D data points arising from sampling a 2D surface embedded in 3D. The
local neighborhood supports both local shape classification and robust normal estimation.
In particular, local neighborhoods out-perform traditional approaches in unevenly sampled,
curved regions. We show that the local neighborhood can be used in place of a full mesh
structure for applications such as smoothing, moving least-squares reconstruction, and pa-
rameterization.

Key words: Surface reconstruction, normal estimation, shape classification, unlabeled
data, exponential map, one-ring

1 Introduction

We introduce a formal definition of local neighborhoods (LNs) for 3D point data
sets. Informally, a local neighborhood (LN) is the equivalent of the one-ring neigh-
borhood of a vertex in a mesh. By extending the one-ring concept to point data
sets we can apply many mesh-based algorithms, such as smoothing (Taubin, 1995;
Jones et al., 2003), edge sharpening (Attene et al., 2005), parameterization (Saba
et al., 2005), and advanced feature detection Lai et al. (2007) directly to the point
data set without the need for building an intermediate mesh surface. The graph
structure induced by the LNs can also be used to infer the global structure of the
data set. LNs differ from simply using the k-nearest neighbors in that the neighbor-
hood is both ordered and, typically, form a subset of the k-nearest neighbor graph.

LNs also provide a very robust method for estimating surface normals, even in cases
where any k-nearest neighbor, SVD-based algorithm (Mitra and Nguyen, 2003) will
fail catastrophically due to uneven sampling densities (see figure 1). Moreover, we
show that LNs can recover the correct normals for sharp features such as edges and
corners.

Preprint submitted to Elsevier 23 June 2008

Edge, random Edge, contour Corner, grid

Extra points

Looking from side, real normal shown as red arrow

Extra points

Looking down expected normal direction

Fig. 1. Three cases where the SVD results in the incorrect normal. For the contour edge
case, the density of samples in one direction (which lies diagonal to the edge) results in the
fitted plane passing through those samples. In the random sample case, the uneven point
distribution pulls the plane towards one face. For the cube this failure is due to the fact that
one side of the cube has twice as many samples.

To ensure that a LN is the correct (local) reconstruction of the surface we simulta-
neously compute a local shape descriptor to verify the LN. This shape descriptor
can in turn be used in feature-finding algorithms (Attene et al., 2005; Hildebrandt
et al., 2005). The normal plus shape descriptor can also be used to improve surface
reconstruction algorithms (Kolluri, 2005; Boissonnat and Cazals, 2000).

The majority of (local) normal estimation approaches rely on some form of surface
fitting, which can be biased by uneven sampling. Similarly, discrete, curvature-
based feature-finding approaches are also influenced by sampling regularity (Gatzke
and Grimm, 2006). In contrast, our approach does not assume regular sampling but
instead assumes that the samples arise from a 2D surface embedded in 3D. Locally,
we can describe any such surface with a small number of possible shapes (flat,
bowl, ridge, saddle, edge, or corner). Given an LN we explicitly build a model for
each of these possible shapes and determine how well the samples fit each model.
This greatly reduces the influence of the sampling on the model evaluation. The
quality of the best model is then used to evaluate the LN. This approach provides
additional robustness by insuring that the LN “predicts” a locally-valid 2D surface,
and that the shape model accurately reflects the local connectivity. Without this
local shape information we can easily end up finding LNs that look good from a
triangulation stand-point, but do not conform to the underlying surface.

Although LNs and shape descriptors are conceptually simple, formalizing them
requires a non-trivial local shape analysis. The properties that make for a “good”

2

LN are very similar to the ones that make for a good mesh triangulation (regularly-
shaped triangles). The shape descriptors are based on a geometrical description of
the idealized local shape; the difficulty is in balancing the numerical evaluation so
that the different models can be directly compared.

We begin by defining, at a high level, both a formal set of criteria for defining a LN
and sampling criteria for guaranteeing that a valid LN exists (section 3). We follow
this with a (very slow) algorithm which is guaranteed to be optimal (section 7).
Section 6 provides a much faster, heuristic algorithm for finding LNs. We give
explicit equations for the LN criteria and our shape descriptors in sections 4 and 5.
In section 8 we describe the test cases which we use to experimentally verify that
our LN criteria and shape descriptors are robust to both irregular sampling and
noise. We use the experimental data from the test cases, and show that our heuristic
algorithm returns a LN which is close to the correct (non-heuristic) answer, with
high probability. In section 9 we demonstrate the heuristic algorithm on a variety
of real-world data sets and show its applicability to several existing applications.

2 Previous work

One approach to normal estimation is surface reconstruction, either local (Fleish-
man et al., 2005) or global (Bernardini et al., 1999; Amenta et al., 2001). In the case
of noise-free and dense sampling, several global, Delaunay-based techniques exist
for accurate normal and feature size approximations (Dey and Goswami, 2003;
Boissonnat and Cazals, 2000; Amenta et al., 2001). In the presence of noise, how-
ever, these reconstructions can be incorrect. Recent work (Dey and Sun, 2005) ex-
tends this approach to noisy data by using an adaptive threshold to cull Delaunay
balls that arise due to noise. We compare our local approach to this one and show
that, particularly for unevenly sampled data, our normal reconstruction is more ac-
curate (table 4). However, the global approach can be more accurate in cases where
the sampling criteria for our approach is not met (section 8.3).

The most common approach to normal estimation is plane fitting. (Mitra and Nguyen,
2003) provide a formula for estimating the best value of K to use based on estimates
of the noise and local curvature. They then calculate the normal by plane fitting and
show that adaptively choosing K increases the accuracy of the normal estimation.
This approach was extended to quadratic and cubic surfaces with normal-based
weights (Vančo and Brunnett, 2007) which provide a better approximation in the
presence of noise. We compare our approach to this one and show that, partic-
ularly for areas of high curvature and uneven sampling, the local neighborhood
normal reconstruction outperforms these surface fitting approaches (section 8.2).
This is because irregular sampling can easily “pull” the fitted surface away from
the average, due to the nature of linear regression. This effect is worse when the
underlying shape, such as a corner, can not be approximated by the fitted surface

3

(plane, quadric, or cubic).

Pauly et. al (Pauly et al., 2003) present a modification of the plane-fitting algorithm
that weights points by their distance from the point of interest. This is called locally-
weighted regression in the machine learning literature. While this can help in some
cases, it actually exacerbates the contour-sampling problem by reducing the in-
fluence of the points on the nearby contour. In a recent comparison of these two
plane-fitting techniques with a global, Delaunay-based one (Dey et al., 2005), the
Delaunay and weighted sampling approaches were comparable, and out-performed
the non-weighted, plane-fitting approach. This result is in line with our experi-
ments.

Fleishman et. al. (Fleishman et al., 2005) provide a statistically robust method for
locally classifying points around sharp features into clusters, each of which is well-
modeled with a smooth polynomial surface. Sharp features are created where the
polynomial surfaces intersect. This approach gives much more accurate normals
along sharp features. Similarly, we also use intersecting planes to more robustly
calculate normals at sharp features. Unlike Fleishman’s approach, we do not ap-
ply smoothing before calculating the normal; this allows us to better capture small
surface detail without precluding the subsequent use of smoothing if desired.

An alternative to local curvature-based feature finding is to use both the surface
locations and the normals (Lai et al., 2007) and examine how the surface normals
vary in a local patch on the surface. The techniques presented here could easily
be applied to this approach to produce better normal estimation, produce a local
parameterization when a mesh is not available, and identify edges and corners,
which are processed differently.

Nearly all point-based methods define the concept of a neighborhood, typically the
K closest points as measured by Euclidean distance. This approach can cause prob-
lems when the surface “folds back” on itself because nearby points in Euclidean
space may not be close from a geodesic measure. This problem is exascerbated by
large K. One solution to this is to use an approximation of geodesic distance to build
large neighborhoods from small ones (Vančo and Brunnett, 2007). We have exper-
imented with this approach but have found it to decrease the quality and accuracy
of the normal reconstruction because a smaller neighborhood reduces the chance of
“bridging” a gap in the sampling. Except for the case where the distance between
the folded surface is less than the sampling distance (which causes the one-ring to
bridge the gap), the addition of points on the nearby surface tends to increase the
error of all of the models but does not change the set of available normals, which
are determined by the one-ring.

Delaunay triangulation also defines a concept of local neighborhood, called the
“natural neighbors” (Boissonnat and Cazals, 2000). Our local neighborhoods are
usually an ordered subset of the natural neighbors, and are computed locally, as

4

opposed to requiring a global construction of the Delaunay triangulation.

As part of our analysis we build local approximations of the surface (plane, ridge,
bowl, saddle, edge, corner) to determine if the K-nearest neighbor points could
have come from that surface (section 5). An alternative to explicitly representing
the surface is to determine if there exists a rigid motion entirely in the tangent space
of the points (Gelfand and Guibas, 2004). This can be used to identify points that
lie on a plane, cylinder, or sphere. This approach is unsuitable for initial shape
estimation purposes because it only handles a subset of the possible surface types,
requires surface normals, and a relatively large number of points. However, it could
be a useful secondary processing step for determining normal consistency across
larger surface patches.

3 Formal definitions

We assume that the sample points {D} come from some smooth surface S, possibly
with noise, and that the surface is sufficiently sampled (see below). Given a point
P ∈ {D}, its valid local neighborhood is an ordered subset of n points Q1 . . .Qn,
Q j ⊂ {D} such that the following hold:

• The local neighborhood {Q} contains at least three points (n ≥ 3).
• Connect each point Q j to Q j+1 mod n with a geodesic in S to form a closed curve

c. The curve c does not intersect itself.
• The region R bounded by the curve c is a disk in S, i.e., R is homeomorphic to a

unit circle (x,y), x2 + y2 < 1 in the plane.
• P is contained in the region R.
• No points in {D} are inside of the region R.

A good local neighborhood is one which is evenly sampled both in angle and
length:

• Connect each point Q j to P via geodesics g j. The lengths of all of the g j are the
same.

• The angle between g j and g j+1 is the same for all j.

The surface is considered to be sufficiently sampled if:

• The edges PQ j and Q jQ j+1, are ε approximations to the corresponding geodesics.
By ε approximation we mean that the maximum distance from any point on the
geodesic to the closest point on the edge is less than ε .

• The region R projects onto the tangent plane at P without folding.
• Project the edges Q jQ j+1 onto the tangent plane to form a polygon q. No other

points that are within max j ||Q j−P|| distance of P project into q. (The sampling

5

Local neighborhood
No shape model

Same points,
different view

Fig. 2. A good local neighborhood which is a poor approximation to the local shape. (Point
is on the side of a corner.)

on the surface is denser than the sampling between two separate parts of the
surface.)

To extend these definitions to surfaces with boundary we relax the inside constraint
for P when P is on the boundary. In this case the region R is a half disk with P lying
on the half disk’s boundary.

Note that a data set that satisfies the ε-sampling criterion (Dey and Goswami, 2004)
will also satisfy our requirements. The local neighborhood is also related to the so-
called “natural neighbors”, or the neighbors that arise from a Delaunay triangula-
tion (Boissonnat and Cazals, 2000). Note, though, that our construction is a purely
local one whereas the Delaunay approach is global.

Suppose we have a set of samples on S that meet the above criteria. When construct-
ing a local neighborhood (picking the {Q}) we can easily evaluate the quality by
replacing the geodesics with their corresponding edge approximations (section 4).
This error will closely approximate the true one, provided the edges are good ap-
proximations of the geodesics. If we have S, this verification is simply a matter of
comparing the geodesics to their linear approximations and ensuring that they meet
the epsilon sampling requirement. If we do not know S then we need some other
mechanism for measuring the quality of S. This is the role of our shape models
(section 5) which serve as a stand-in for S and ensure that the local neighborhood
accurately captures the shape (see figure 2).

Our key observation is that the samples are not random, but represent a 2D sur-
face embedded in 3D. A good local neighborhood is one which predicts, or best
explains, the local shape. Fortunately, differential geometry tells us there are only a
small number of different possible local shapes, given by the signs of the principal
curvatures (flat, bowl, ridge, and saddle). We define a function for evaluating what
each local shape should look like, given a specific local neighborhood. These shape
model functions are carefully designed so that their errors are directly comparable.

When evaluating a local neighborhood we simultaneously evaluate the shape mod-
els on the K nearest samples around P (the local neighborhood should be a subset

6

of this larger set of samples). The shape models use the LN (in particular, the es-
timated surface normal) in their evaluations. The LN’s total score then depends on
both how good the LN itself is and the best shape model fit. This helps to ensure
that the LN makes sense, and it also provides us with an estimate of the local shape.
By adding in specific shape models for edges, corners, and boundaries we also get
robust normal estimation for these cases.

We can phrase our approach as a Bayesian estimation. If we hypothesize an er-
ror distribution, normal to the fitted surface, for the error points, we can calculate
P(s|Q j), the probability of the shape model, given the local neighborhood from
the residuals (the distance from the sample points to the fitted surface). If we as-
sume that these errors are independent and normally distributed, with mean zero
and variance σ , we get

P
(
s|Q j

)
= ∏

j

1√
2πσ2

exp

(
−

e2
j

2σ2

)
, (1)

where e j is the residual for the jth point in the LN, for model s. Further, if we have
prior probabilities for each likelihood of the possible shapes, we can weight P(s|Q j)
by these probabilities. However, in the current work, we make no assumptions, and
use maximally uninformed priors (which weight each shape equally).

We next show how to compute the LN score (...)

4 Local neighborhood

Our local neighborhood (LN) evaluation consists of three pieces. The first is a val-
idation test; these are point configurations which can be rejected because they do
not form a LN. The second piece is optimization criteria for what it means to be a
“good” LN. The third piece is how we calculate the surface normal from the LN.
This consists of three different schemes, one each for smooth, edge, and corner
neighborhoods. We also take into account potential boundary cases.

Terminology: Due to the large number of symbols used in this paper, we summarize
the most-used ones in table 1. In general, capital letters denote points in 3D, and
lower case letters denote those 3D points projected onto, e.g., the tangent plane.
The symbol ⊥ q j indicates the distance to the tangent plane, and ∠q j ∈ [0,2π)
the angle in the tangent plane (using an arbitrary tangent-plane vector as the zero
axis). Subscripts on 2D and 3D points indicate elements of sets, sets are denoted
as {}, and vertical bars around sets indicate size. For example, {D}K ∈ {D} repre-
sents the |{D}K|= K closest points to P, and Q1 . . .Qk, Q j ⊂ {D} represents the k
points making up the LN. The {Q} are assumed to be ordered by their angle ∠q in

7

Q1 Q2

Q8

Q3

Q4

Q5
Q6 Q7

NL

{D}K

P

…

Maxi ||Di – P||

q2

q1 q3

q4

q5
q6 q7

q8

q7

NL

Q7

q7

q7

P point for LN

N̂L normal for LN

{D}K K nearest points to P (shape neighborhood)

{Q} k LN points, sorted by angle

q j projection of Q j into tangent plane

∠q j angle of q j in tangent plane, in range [0,2π)

⊥ q j (signed) distance to tangent plane

||q j|| distance of q j from origin

max j ||q j|| maximum width of LN polygon

max j ||Q j −P|| maximum width of LN in 3D

maxi ||Di−P|| maximum width of shape neighborhood

N Local neighborhood metric

M Shape model metric

F ,B,R,S Primary shape model M metrics

(flat, bowl, ridge, saddle)

E ,C ,D Secondary shape model M metrics

(edge, corner, boundary)
Table 1
Notation summary.

the tangent plane. Therefore, q1 . . .qk represents the polygon formed by projecting
Q1 . . .Qk onto the tangent plane at P.

The normal of the LN is denoted N̂L. Script letters (N) are used for evaluation
metrics. Epsilons ε are used for constant bounds, while W s are used for constant
weights. These are summarized in appendix A.

Let di be the projection of Di onto the tangent plane and ⊥ Di be the (signed)
distance from di to Di. We define a point as being on the plane if:

| ⊥ Di|
∑K ||Di−P||/K

< εp (2)

where εp = 0.1. Dividing by the average distance to P normalizes the measure.

8

4.1 Validation

We have three validation criteria which correspond to the formal criteria given in
section 3. The first checks that the LN normal N̂L induces the correct ordering of
the Q j. This is a mutual consistency check, because the LN normal is based on the
ordering of the Q j (section 4.3). Essentially, if we use the currently constructed LN
normal to project the Q j onto the tangent plane then we should recover the original
ordering.

The second criterion ensures that we did not “skip over” any interior points. We take
all of the points in {D} that are closer than the 3D width of the LN (max j ||Q j −
P||) and project them into the tangent plane. If any of these points lie inside of
the polygon q j then the neighborhood is not valid. If the sample points lie very
close to the polygon boundary then this can be unduly restrictive, so we soften this
restriction slightly. Let di be the projection of Di onto the tangent plane, and d′i the
projection of di onto the boundary of the polygon q j. If

||di−d′i ||
||di− (0,0)||

< εI (3)

where εI = 0.05 then we reject the LN. We do not look at points beyond the max-
imum size of the LN because, particularly if K = |Di| is large, the shape neighbor-
hood may curve around on itself.

Our third criterion simply checks that the edges of qi do not cross. This can happen
when the neighborhood points do not surround P.

4.1.1 Boundary validation

If we are evaluating a boundary model then we alter the validation criteria slightly.
If ∠q j+1−∠q j > εd then we mark that wedge as being a boundary (εd = 0.8π). We
do not include this edge in the self-intersection test. This wedge is also excluded
from the polygon inside check.

We also check to see if any points project past the boundary (see figure 3). Let q j p
and pq j+1 be the two line segments formed by joining the projection of P to the
two boundary points. Then no points should project onto those line segments from
outside the polygon.

9

Invalidating point

Fig. 3. Checking for points projecting outside of the polygon in the boundary case.

4.2 Optimization

The ideal local neighborhood is one that surrounds P, with P roughly in the center,
the qi evenly distributed around P and roughly an equal distance from P. Both
hexagonal and grid sampling patterns tend to produce nice, even neighborhoods,
the former with six neighbors, the latter with four or eight. Evenly distributed, but
random, sampling patterns produce neighborhoods that lie somewhere inbetween
the two. Contour sampling, on the other hand, produces elongated neighborhoods
with denser sampling on the long, between-contours axis (see figure 8). Random
sampling, or missed samples, can result in arbitrarily-shaped neighborhoods, with
between six and twelve neighbors, on average.

Geometrically, a good local neighborhood depends on even angle spacing in the
tangent plane (Ea), minimal variation in radius length (Ed), and how centered the
point is (Em). We define metrics for each of these elements, normalizing the metrics
so they can be combined into a single score. We add an additional convexity term,
(Ec) which particularly penalizes LNs with concave polygons.

αk = 2π/k (4)

Ea = 1/k∑
j

(αk− (∠q j+1−∠q j)
αk

)2 (5)

w j =
∠q j −∠q j−1

∠q j+1−∠q j
(6)

l j =Wd||q j||+(1−Wd)/2(||q j−1||+ ||q j+1||) (7)

Ed = 1/k∑
j

(||q j||− ((1−w j)||q j−1||+w j||q j+1||)
l j

)2 (8)

Em = ||
1/k ∑ j q j

maxi ||Di−P||
− (0,0)|| (9)

10

v j =
q j+1−q j

||q j+1−q j||
(10)

Ec = 1/k∑
j

((cos−1(< v j−1,v j >)
π

)2 if convex, i.e., v j−1× v j < 0
)

(11)

N = Ea +((1−Wm)Ed +WmEm)+Ec (12)

where all indices are taken mod k and all angle differences mod 2π . l j is a normal-
ization factor (Wd = 0.2) that blends the point q j’s length with its neighbors’. The
weight Wm = 0.2 is how much to weight the centroid error over the length error.
Note that Ea, Ed , and Em are all normalized with respect to each other, and hence
it makes sense to combine them. The Ec term is an additional error term that grows
as the neighborhood becomes concave.

We have also experimented, using the test cases in section 8, with several other
optimization criteria, none of which performed as well. These included distance
to a fitted ellipse (tended to favor neighborhoods that zig-zagged across the el-
lipse), average distances (unfairly punishes elongated neighborhoods), average an-
gle, length of polygon boundary relative to its radius, regularity of the polygon
angles q j1,q j,q j+1, and barycentric coordinates. For the barycentric approach, we
calculated the barycentric coordinates β j of the point (0,0) (the projection of P)
with respect to the polygon q j. The error was the measure of how close each β j was
to 1/k and how close ∑ j β jq j was to (0,0). We tried both Laplacian and Floater’s
shape-preserving weights (Floater, 1997). Although this approach promised to com-
bine both angle and distance in a single metric, it unfortunately is not very discrim-
inating for k > 4 and is not stable (the β j can change rapidly for small changes in
q j), particularly when P is close to the boundary of Q j. This is probably because
the system is largely unconstrained.

4.3 Normal calculation

For most cases, the normal is computed by an angle-weighted average of the nor-
mals of the triangles Q jPQ j+1. Note that other weighting schemes would work
equally well (Max, 1999). Unfortunately, normals for edge and corner neighbor-
hoods are, generally, not well-approximated by any simple averaging scheme. In-
stead, we find the planes forming the edge or corner and average those plane nor-
mals.

For the smooth and boundary cases:

11

N̂ j =
(Q j+1−P)× (Q j −P)
||(Q j+1−P)× (Q j −P)||

(13)

α j =∠q j+1−∠q j (14)

w j =

α j α j ≤ εb

max(0,2εb−α j) α j > εb

(15)

N̂ j =
∑ j w jN̂ j

||∑ j w jN̂ j||
(16)

The scale factor w j decreases the influence of the corresponding triangle normal
as the angle goes from π/2 to π (εb = π/4). These triangles represent a potential
boundary, and so that normal should not unduly influence the final normal.

For the edge case we assume that P actually lies on (or very close to) the edge.
Therefore, for each of the two planes, there should be at least one triangle of the
LN lying in that plane. We use this fact to initialize the plane fitting. We first look
at pairs of triangles with disparate normals (|< N̂i, N̂ j > |< εe = π/3), leaving out
any triangles with α j > π . If there are no such pairs then we do not try to fit planes
(the LN is flat or folded). From this set of pairs (i, j) we find the pair that represents
the most triangle normals:

max
i, j

∑
k

max(< N̂k, N̂i >,< N̂k, N̂ j >) (17)

We next build two approximate planes from the triangles i and j, using the mid-
point of the edge opposite P : e.g., (1/2(Q j + Q j+1), N̂ j). We then assign all of
the shape neighborhood points, {D}K , to the plane the point is closest too. If the
point Di lies on both planes, we assign it to both groups. We then least-squares
fit a plane to each group to get the final planes. Again, if the angle between the
plane normals is not in the range (−εe,εe) we mark the data set as not an edge. The
final normal is the average of the two plane normals, with the relative orientations
correctly determined (section 5.5), i.e., both plane normals should point out. This
is true if the points in group one lie below plane two and vice-versa.

The corner normal is found in a similar manner, except we look for three triangles
with disparate normals. We relax the angle criterion to be εe = π/4 instead of π/3.

In the final analysis, we chose which normal to use based on the best shape model
(section 5).

12

Flat

P

NL Tangent
plane

P
L

NL

x

Flush plane
Ridge

P

Bowl

NL

P

NL

Saddle

Ne2P

NL

Ne1

Edge

Nc2P
NL

Nc1

Nc3

Corner

P

NL

Boundary

Fig. 4. Idealized shape models.

5 Shape Models

For each shape model we provide the evaluation criteria and the specific algorithm
used to calculate it. The evaluation is over the entire nearby neighborhood (the
K closest points {D}K) and is based on the tangent plane formed by the point
P, the surface normal N̂L of the local neighborhood, and the LN itself. Changing
the surface normal will change the model evaluations. We use the smooth normal
(section 4.3) for all models except the edge and corner ones. We calculate each of
the individual shape models (F ,B,R,S ,E ,C ,D) and return the lowest one as
the shape model M score. A key factor of our evaluation criteria is that the scores
for each model are numerically normalized with respect to each other so that they
can be directly compared.

Note that these models are a very straightforward numerical evaluation of the de-
sired geometric shape, and may have appeared in one form or another in previous
work. Figure 4 shows idealized versions of the models. There are three mildly tricky
issues to deal with. The first is ensuring that the magnitudes of the models are all on
a similar scale. In general, our metrics are such that a good fit has an error around
0.001, rising to 0.2 for a tolerable fit. For data sets that could be, e.g., a noisy plane
or a ridge, the crossing point is around 0.02. These numbers rise linearly as noise
is introduced (for an average 10 percent error a score of 0.001 rises to 0.01).

The second issue is ensuring that the metrics evaluate correctly regardless of how
the data points are distributed, so long as there are sufficient data points to recognize
the shape. For example, a ridge or edge may contain points which are near, but not
exactly on, the ridge line itself. This type of data distribution causes algorithms
which, e.g., find edges using dihedral angles (Jiao and Heath, 2002; Attene et al.,
2005), to fail.

The third issue is ensuring that the shape model evaluation is dependent upon the

13

current local neighborhood. This is particularly important for non-uniform sam-
pling of noisy data, where pure shape fitting can give incorrect results. For example,
fitting a plane to contour data is likely to give a plane perpendicular to the actual
surface (see figure 1).

We use a fall-off weight to extend the models to regions which are well-modeled
locally around P, but possibly adjacent to features that are different. We base the
fall-off f on the average and maximum radius of the Di:

f (Di)= max(1,ε f −
(||Di−P||−1/K ∑i ||Di−P||)

maxi ||Di−P||
) (18)

The ε f = 1.1 ensures that every point Di contributes to the sum (f (Di) > 0). f (Di)
is clamped to one inside of the average distance.

5.1 Flat model

The flat model F measures the average distance of the Di from a plane. Because
P may contain noise, we use a plane which is parallel to the tangent plane, but
positioned to minimize the projected distances | ⊥ (Di

⋃
P)|. We find the plane’s

location using a least-squares solver, weighting the points by the fall-off weight
f (Di).

F =
1

K +1
(| ⊥ P|+∑

i
f (Di)| ⊥ Di|) (19)

5.2 Bowl model

The bowl model assumes that the surface lies entirely on one side of the tangent
plane and curves away from the plane. The bowl model B is therefore a combi-
nation of how well the data’s distance from the plane versus its distance from P is
modeled by a curve (E f) and whether or not the data does curve away from the
plane (Ec). The latter ensures that we do not mark flat regions as bowls.

We assume the curving can be modeled by a simple polynomial, y = ax2 +c, where
x is the distance in the tangent plane from P and y is the distance from the plane.
We first fit the polynomial to the data, using the distance ||Di −P|| for x and the
distance from the plane ⊥ Di for y, keeping the sign of ⊥ Di. We solve for a,c
using the standard least-squares approach, with one row for each Di and an addi-
tional row for P, weighting the rows by the fall-off value f (Di). We measure the

14

curvature by evaluating the polynomial at both the closest (x = 0) and the furthest
(x = maxi ||Di−P||) distance. If the angle with the plane is less than εC = π/8 we
add in a penalty term that grows, reaching one at εc = π/16, as the angle shrinks:

α = | tan−1 (c)− (a(maxi ||Di−P||)2 + c)
maxi ||Di−P||

| (20)

Ec =
εC −α

εC − εc
(21)

E f =
1

K +1
(c+∑

i
f (Di)| ⊥ Di− (a||Di−P||2 + c)|) (22)

B = E f +Wc max(Ec,0) (23)

Wc = 0.1 weights the curvature error, and we use the f (Di) fall-off function to
weight a point’s error by its distance from P. Note that we could just simply set c
to be zero, enforcing interpolation at P, but this may not yield the best total error if
P has noise.

5.3 Ridge or cylinder model

The difference between the ridge model and the bowl one is that the surface is flush
with the tangent plane in one direction, and the points fall away from the tangent
plane in the perpendicular direction (see figure 4). The ridge model R is a weighted
combination of how flush the points are in the first direction (El), how they curve
away from the plane in the perpendicular direction (E f), and whether or not they
do curve away (Ec).

We represent the flush direction as a plane that passes through P and is perpendicu-
lar to the tangent plane. We try three plane normals. The first is found by taking all
of the points that are on the tangent plane, if any (eq. 2), plus P, and fitting a line
to them. This line is then projected into the tangent plane; the flush plane’s normal
is perpendicular to this line. The other two normals we try are the plane normals
that arise from fitting two planes to the data when calculating the edge normal (sec-
tion 4.3). Note that simply fitting a line is not sufficient because there may not be
points in the flush direction.

All points Dt on the flush plane (eq. 2) plus P are used to calculate El . We measure
the distance of these points to the line L formed by the intersection of the tangent
and flush planes.

The calculation of E f and Ec are exactly the same as the bowl model B, except we
replace the distance ||Di−P|| with the distance from the line L to the projection of
Di onto the tangent plane.

15

Let dt be the closest point on L to Dt , and similarly for P:

El =
1

|Dt |+1
(||P− p||+∑

t
f (Dt)||Dt −dt ||) (24)

R =
|Dt |+1
|Di|+1

El +
(
1− |Dt |+1

|Di|+1
)
E f +Ec (25)

Note that we leave the “is curved” term Ec outside of the average; this is, again, to
prevent the ridge model from incorrectly matching flat regions.

5.4 Saddle model

A saddle is formed by radially alternating upward curving areas with downward
curving ones, when viewed from the normal direction. The saddle shape is distin-
guishable by four features: It has points both above and below the tangent plane, it
curves away, for any given radial direction, the points are all either above, below,
or on the plane, and there are at least four changes of direction. 1 The saddle model
S is built from two bowl models, one that curves up and another that curves down,
plus penalty terms for the last conditions (Eo and Es).

We first split the points into three groups, one group above the plane (Du), one
below (Dd), and one group on the plane (eq. 2). If either Du or Dd has fewer than
three points than we do not evaluate this model. The fit and curvature of Du and
Dd is then measured using the bowl model. Note that a polynomial only poorly
approximates the curved shape of the saddle; a more flexible shape model, however,
results in over-fitting.

The Eo term checks that the points in any given radial direction are all in the same
group, Du or Dd . The Es term checks to see that there are at least four radial direc-
tions where the points on one side belong to Du and to Dd on the other side. This is
primarily what distinguishes the saddle model from a flat or ridge model with lots
of noise.

S =(1−Wg)(E f (Du)+Ec(Du)+E f (Dd)+Ec(Dd))/2+Wg(Eo +Es) (26)

where Wg = 0.3 is a weighting of the clustering versus the fitting.

Calculating Eo and Es correctly is somewhat difficult; a saddle has four alternating
regions while a monkey saddle has six. Searching for the optimal partition lines that

1 This leaves out saddles that are flat spots in a monotonically non-increasing function.
These shapes are very unstable and best captured with the flat model.

16

minimize the overlaps would be prohibitive. We instead use a binning approach,
adding up the percentage overlap in each bin. The bin size is a balance of two
factors. Too many bins, and it becomes unlikely that any two points will share a bin.
Too few bins, and points which are widely separated will be marked as overlapping.
We therefore choose a bin size αb = d2π/(K/sb)e which results in sb = 2 points,
on average, falling into any given bin. We then place the bin boundaries at four
locations (bαb/4,b ∈ [0,3]), calculate Eo for each, and take the smallest value. Let
∠Di ∈ [0,2π) be the projected angle of Di in the tangent plane. We place Di in bin
b(∠Di +bαb/4)/αbc. We average the percentage overlap in each bin, skipping the
bin if there are no points in it. Es = max(4− s,0) simply checks the number of
times s the bins change from being more above than below, and vice-versa.

We also use the binning to assign some of the “flat” points to one of Du or Dd for
the bowl fitting calculation. If a flat point lies in the middle of a wedge that has
more points in Du (or Dd) then we assign that point to Du (or Dd).

5.5 Edge model

A point is on an edge if it lies at the intersection of two planes which have suffi-
ciently different orientations. We could use a K-means (Duda et al., 2000) cluster-
ing algorithm (K = 2) to find the two planes, but this does not reflect the choice of
the local neighborhood. Instead, we use the edge-normal estimation technique of
section 4.3 to find the two plane normals. The edge model error E is a weighted
combination of how well the two planes fit the data (Ep), the angle between the
planes (Ed), whether or not P lies on the intersection of the two planes (Ei), and if
the groups fall on either side of a line in the tangent plane (Et).

We first split the points into two groups, De1,De2, depending on which plane Di
most lies on. For each group De we calculate the flat error metric (F (De)). Ep is
then the weighted blend of each group’s error. Ei is found by projecting P onto each
plane, to get pe1 and pe2. Et is found by taking all the points in De1 which lie above
plane 2, and vice-versa.

Ep =
|De1|
|Di|

F (De1)+
|De2|
|Di|

F (De2) (27)

Ed =
(cos−1(< N̂e1, N̂e2 >)−π/2

π/2
)2 (28)

Ei =
||pe1−P||+ ||pe2−P||

2
K ∑K ||Di−P||

(29)

Es = ∑e1 max(0,⊥2 De1)+∑e2 max(0,⊥1 De2)
2
K ∑K ||Di−P||

(30)

E =WeEp +(1−We)(Ed +Ei +Es)/3 (31)

17

We = 0.25 weights the fit over how much this looks like an edge. The Es term, plus
the weighting in Ep, both serve to prevent the model from finding a good match by
pushing most of the points into one group.

5.6 Corner model

The corner model C is nearly identical to the edge one, except we use three planes
instead of two.

5.7 Boundary model

Unlike the other shape models, there is no natural, simple shape for boundaries
because they arise when when the sampling process is incomplete, leaving a gap
in the data. Therefore, the “correct” shape could be any one of the smooth models.
We use the flat model score for the boundary model score and additionally mark all
smooth models as being boundaries if they satisfy either of the following:

• The point (0,0) is not in the polygon qi.
• Any angle α = ∠q j+1−∠q is bigger than εdπ .

5.8 Shape model score M

We return the lowest score as the model score M unless one of the shape models
was marked as being a boundary. If a possible boundary exists we use a slightly
more complex heuristic to determine M . Note that sharp edges and corners can also
masquerade as boundaries with noise. If the best smooth shape model is flagged as
being a boundary then the point is marked as a boundary. If the best shape model
is an edge or corner one we check for sufficiently different planes; if the planes are
close to flat we return a boundary. Otherwise, we return the best shape model as
usual.

5.9 Feature size

Our feature size is based on how fast the surface curves away. For the ridge, bowl,
and saddle models this is α value computed for the Ec term. For edges and corners,
this is the angle between the tangent plane and the planes making up the edge or
corner. See figure 17.

18

6 Heuristic algorithm

The heuristic algorithm begins with a very dense neighborhood and greedily culls
out points which contribute the most to the LN score. Each model is scored inde-
pendently; different models will, usually, have different best LNs. The algorithm
returns the model, and corresponding LN, with the best shape model (SM) score.
We use the SM score alone because it is a better measure of how well the LN
approximates the surface normal.

We use the three orthogonal Eigenvectors of the SVD as starting normals for the
primary models (flat, ridge, bowl, saddle). The LNs snap into stable configurations
very quickly, even if the initial normal is off by as much as 45 degrees. We exper-
imentally checked using just three normals versus the twelve evenly-spaced ones
from section 7 and found that the additional normals only rarely affected the result
(< 5 percent), and then only the LN score, not the SM score.

Since the points’ contributions to the overall LN score are correlated, a greedy
culling algorithm is not guaranteed to find the best set of points. We address this by
adding some randomness to the selection mechanism. Instead of greedily selecting
the point that contributes most to the LN scored, we use importance sampling (Duda
et al., 2000) to pick points for culling. Points are selected with a probability pro-
portional to their contribution to the LN score. The LN score and probabilities are
recomputed after each cull. Extremely bad points, which have a high influence due
to the least-squares fit, are selected with high probability, while selections between
similarly bad points are essentially randomized. Although we still cannot be guar-
anteed to find the best set of points, importance sampling can be shown to reduce
the variance of the final LN score, and has proven to be highly effective in our
experiments.

For the secondary models (edge, corner, boundary) we first check that one of these
models might exist because there is a projection direction which leaves a large gap
in the LN (section 6.4). If this is the case, we use the estimated best boundary
normal and K-means clustering (Duda et al., 2000) to find an initial guess for the
edge and corner normals. If not, then we do not search for a boundary and we use
the smooth model normals (ridge, bowl) as a starting point for the edge and corner
ones.

6.1 Initial ordering

Given a normal, we produce an initial set Q j by projecting the Di into the tangent
plane, then binning the di by their angle (32 bins, minimum angle εs = π/16).
Within each bin we keep only the closest point. As a precaution, after we re-
calculate the normal we check to see if any of the di /∈ q j lie inside of the polygon

19

Iterate over three SVD normals N̂s

Set normal to N̂s

Iterate until stable

Find maximum local neighborhood Q j

Order Q j

Calculate normal N̂ from P and Q j

While can remove point from Q j

Order local neighborhood Q j

Calculate normal N̂L from P and Q j

Calculate N

Calculate M for flat, ridge, bowl, saddle using Di

Keep Q j and N̂L with best N +M for each model

If valid (edge,corner,boundary)

Set initial (edge,corner,boundary) normal

While can remove point from Q j

Order local neighborhood Q j

Calculate normal N̂L from P and Q j

Calculate N

Calculate M for (edge,corner,boundary) using Di

Keep Q j and N̂L with best N +M

Redo (up to 5 times) all good, valid models with importance sampling

Return model with best SM score or if boundary (section 5.7)

Fig. 5. Heuristic algorithm.

q j; if so, we add them to the LN. We loop four times, stopping if the normal stabi-
lizes (< Ni,Ni−1 >> εn = 0.95). Typically, the normal stabalizes within one to two
iterations.

6.2 Removal of points

Points are sorted for removal by scoring them according to the LN evaluation cri-
teria of section 4. We do not remove points that would cause the LN to become

20

invalid, or would introduce an incorrect boundary. Note that the scoring criteria
need to be recalculated every time the surface normal changes. Although the shape
model M score depends on the LN, it primarily depends on the LN surface nor-
mal and the set of all points Di, neither of which change (much) when points are
removed from the LN.

Validation criteria: We do not remove the LN point q j if the resulting angle in the
tangent plane (∠q j+1−∠q j−1) is bigger than εb = π/2. We also do not remove the
point if the 3D angle between Q j−1−P and Q j+1−P is bigger than εb (the tangent
plane angle can be made smaller than the 3D one by tilting the plane). Finally, we
see if q j is inside the polygon made by removing q j (eq. 3). Note that we do not
need to explicitly build this polygon, we only need to check if the segment q j p
intersects q j−1q j+1.

The score S for a point q j is basically q j’s contribution to the LN evaluation (eq. 12).
Because the desired angle changes as the number of points changes, we alter that
part of the calculation to avoid creating very large, very small, or unbalanced an-
gles. Specifically, q j’s score is formed by multiplying a desired average angle score
Sa by a combined length Sl , convexity Sc, balanced angle Sb, and small angle Ss
score. We multiply rather than add to better balance the angle and distance metrics.
The Sa multiplier shrinks to zero as the angle gets bigger than the ideal one. The Sb
term favors removing points which are not equally between their neighbors, and the
Ss term favors removing points with very small (εs < π/16) angles. The Sl and Sc
terms are the same as the evaluation ones, except we scale down Sl’s contribution
if the point is shorter (rather than longer) than its neighbors (we want to remove far
away points).

αk = 2π/k (32)
α j =∠q j+1−∠q j−1 (33)

Sa =

 1−min1,
α j−αk

αk
α j > αk

1 α j ≤ αk

(34)

w j =
∠q j −∠q j−1

∠q j+1−∠q j
(35)

l j =Wd||q j||+(1−Wd)/2(||q j−1||+ ||q j+1||) (36)
a j =(1−w j)||q j−1||+w j||q j+1|| (37)

Sl =

||q j||−a j

l j
||q j||> a j

1/10−1/10 a j−||q j||
max j ||Q j−P|| ||q j|| ≤ a j

(38)

21

v j =
q j+1−q j

||q j+1−q j||
(39)

c j =(
cos−1(< v j−1,v j >)

π
)2 if convex, i.e. v j−1× v j < 0 (40)

Sc =(c j−1 + c j + c j+1)/3 (41)

Sb = |(∠q j −∠q j−1)− (∠q j+1−∠q j)|/(2α j) (42)

Ss = 2
(

max(1,
εs

∠q j −∠q j−1
)+max(1,

εs

∠q j+1−∠q j
)
)

(43)

S = Sa(Sl +Sc +Sb +Ss) (44)

We can also remove more than one point at a time. Currently, we remove two points
at a time in the initial model calculation loops and one in the subsequent importance
sampling loop.

6.3 Importance Sampling

We run the greedy point removal again with importance sampling instead of deter-
ministic removal. This can help remove biases in the greedy procedure, particularly
for points which have very similar removal scores. We only repeat the models which
have a score within a factor of five from the best score found.

For data sets with relatively uniform sampling distributions this additional sampling
is unnecessary. However, for uneven sampling, particularly contour sampling, it can
greatly increase the local neighborhood score.

6.4 Implementation issues, timings, and analysis

Avoiding unnecessary model evaluations: We can eliminate evaluating the bound-
ary, edge, and corner model calculations for points that do not have a projection
direction that results in a gap when all of the points are projected into the tangent
plane. We take twenty uniformly distributed normals N j and take the normalized
dot product of those normals with every vector (< N j,(Di −P)/||Di −P|| >). We
assign each vector to the closest N j, and keep a running sum of the absolute value
of the dot products for each normal.

22

|{D}K | All Smooth All, no sampling Smooth, no sampling SVD K

15 11.3 3.1 3.4 2.3 0.8 0.10

25 12.2 7.5 8.6 5.5 1.8 0.15

30 14.7 10.0 11.5 7.2 2.5 0.18

45 25.6 17.3 20.2 12.5 5.0 0.26

60 36.6 24.1 27.7 17.0 9.6 0.40
Table 2
Average time (in ms) to run the algorithm on a single data point for the Gargoyle data set
(129,721 points). |{D}K | is the size of the shape neighborhood. All is trying all shape mod-
els and using importance sampling. Smooth is leaving out the edge, corner, and boundary
models, but using importance sampling. The second two collumns leave out importance
samplig. SVD is the time to compute a plane fit. K is the time to get the nearest |{D}K |
neighbors. Minimum size was six and maximum size 65 for all runs. Platform: Pent-M
1.5GHz, 768 MB Ram.

For each normal N j which does not have a vector assigned to it, we determine if
the points Di, when projected to N j’s tangent plane, have a gap bigger than εdπ . If
the number of normals without gaps is twice as big as the number of normals with
gaps then that point is not a potential boundary.

The normal N j with the lowest accumulated score is used as the initial guess for the
boundary normal.

Running time: The running time of the algorithm is linear in the size of the shape
neighborhood, for |Di| > 32, because the maximum starting local neighborhood
size is capped at 32 (the number of bins). This also bounds the number of times
the Remove Points loop is called, the local neighborhood score calculation, and the
smooth normal calculation. The model, evaluation, and edge/corner normal calcu-
lations are all linear in |Di|.

We can optionally run the algorithm leaving out the edge and corner models, or
not doing the additional importance sampling, or both. Table 2 lists the time sav-
ings for each of these cases for different neighborhood sizes. Total running time for
the Gargoyle data set ranges from a few minutes (smooth models only, no impor-
tance sampling, small neighborhood size) to a half an hour (all models, importance
sampling, large neighborhood).

Shape neighborhood size: The user provides a minimum, average, and maxi-
mum shape neighborhood size. If the heuristic algorithm fails to find a valid non-
boundary model, then it is run again with either a smaller (if no valid boundary
model found) or bigger neighborhood size, until the minimum or maximum size is
reached. Shrinking helps when the shape neighborhood has wrapped around a fea-
ture, or included points from adjacent surfaces. Growing helps bridge gaps. Typical
neighborhood size triplets for our data sets range from (6,15,25) on sparse data sets

23

to (15,25,35) on laser-scan data. Invalid cases only rarely arise, and usually only
near noisy boundaries, sharp edges, or where the data is not locally 2D.

Re-calculating the models: We only re-calculate the models as points are removed
if the surface normal changes by more than εm = 0.98, since the shape model de-
pends on the normal, not the local neighborhood.

7 Exhaustive search algorithm

The exhaustive search algorithm searches all of the possible neighbor combinations
Q j contained in the K closest data points to determine which one is the best. For
each shape model we keep the best combination of shape model and local neigh-
borhood shape found over all Q j. We then return the best Q j for the best shape
model. This prevents a good local neighbor score from over-riding a poor model
fit.

There are four parts to this algorithm: Enumerating the possible neighbor sets, de-
termining an ordering (if any) of the points Q j such that the criteria in section 3
hold, evaluating the shape model, and evaluating the quality of the local neighbor-
hood itself.

Ordering: A local neighborhood at P consists of a set of ordered points Q j ⊂ Di.
The ordering is found by projecting the Q j into the tangent plane at P, then sorting
by angle relative to an arbitrary vector in the tangent plane. Once we have an order-
ing, we can estimate the surface normal by taking a weighted combination of the
triangle Q jPQ j+1 normals (section 4.3). This presents a chicken-and-egg problem,
since we need a surface normal to project the points in the first place. We get around
this by alternating projection and normal calculation until the normal stabalizes and
the calculated surface normal gives the same ordering as the projection one.

We initialize the chicken-and-egg search with twenty evenly-spaced normals. For
each normal, we order the Q j and calculate a new surface normal. We then use this
new surface normal to re-order the Q j and then re-calculate the surface normal. We
verify that this final normal produces the same ordering of Q j in the validation step.
Each unique ordering of Q j (usually only one) is tested.

Evaluation: To evaluate a local neighborhood we use the following:

• A set of routines which implement linear versions of the validation requirements
(section 4.1). The local neighborhood must pass these validation tests.

• A metric N for measuring both the angle and the distance regularity of the local
neighborhood (section 4.2).

• A shape model metric M which, given a local neighborhood, tries all possible

24

shapes and returns the one with the lowest error (section 5).

Enumeration: Let Di be the set of K closest points to P. To find the local neigh-
borhood, we search over all of the K choose k possible neighbors combinations in
Di. K must be big enough to include the local neighborhood, but not so big that the
Di do not form a simple shape (bowl, ridge, saddle). The algorithm is summarized
in figure 6.

Iterate over K choose k, k ∈ 4 . . .K (unordered Q j)

For each of 20 evenly-spaced normals N̂

Iterate until calculated N̂ same as projection N̂ (max 4 iterations)

Order local neighborhood Q j using current N̂

Re-calculate normal N̂ from P and Q j

If already tried Q j or Q j not valid, go to next one

Calculate N from N̂L, Q j

Calculate M for each shape using Di and N̂L

For each shape model

Keep Q j if N +M smallest so far

Return Q j from best shape model.

Fig. 6. Calculating the local neighborhood.

Figure 7 shows plots of minQ j(N +M) for each value of k for all sampling pat-
terns from our test cases (section 8.1). Note that small k tend to have the smallest
error, particularly for samples on a grid, and that there is a dip in the curve after
which the error is monotonically increasing.

Obviously, if we have normals for the points then we do not need to search for the
best initial normal. Moreover, we can eliminate all points from the neighborhood
which have normals in the opposite direction.

7.1 Evaluating the heuristic algorithm

To verify that the heuristic algorithm returns near-optimal values, we ran 30 trials
over each of the test cases with error rate 0.1 (for both parameter and function er-
ror), and recorded the scores found by the heuristic algorithm. We then calculated
the large-sample 95% upper confidence bound on each set of 30 scores, and com-
pared these to the exact scores, which we generated exhaustively. In all cases, the
heuristic score was within 2% of the optimal score, with a mean of 0.88%, a median
of 0.72%, and a variance of 0.50% (all at a confidence level of 95%).

25

Score versus k, sphere

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 5 10 15 20 25 30

k

LN
 +

 S
M

 s
co

re

Score versus k, edge

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 5 10 15 20 25 30

k

LN
 +

 S
M

 s
co

re Grid
Hexagonal
Contour
Poisson
Random

Fig. 7. Evaluation score as k increases. Note the dips in the curve. Left graph: bowl shape.
Right graph: edge shape.

Total Heuristic Evaluation Normal Neighborhood Model

17.6 σ 5.1 3.2 σ 1.2 4.3 σ 1.6 4.5 σ 4.0 4.0 σ 1.1 1.5 σ 2.3
Table 3
Running times, in ms, with standard deviation. Test set size is 6×5×121 = 3630 samples,
varying both parameter and function noise from 0 to 1 in increments of 0.1. Platform: Pent-
M 1.5GHz, 768 MB Ram.

Running times for the heuristic algorithm, broken down by algorithm stages, are
given in Table 3.

8 Test cases and evaluation

We have created a suite of test cases which vary the sampling distribution and noise
but have a known (if noisy) shape and normal. We use this test suite both to validate
the LN and SM criteria, and to test our normal reconstruction.

8.1 The test suite

We generate five n× n sampling patterns in the range (−0.5,0.5)× (−0.5,0.5),
shown in figure 8. The patterns are a grid, a hexagonal grid, contours (3n sampling
rate in one direction), random but evenly distributed (Poisson distribution), and ran-
dom. We introduce noise by randomly jittering the initial samples up to ±(1/n)/2
of the original spacing distance.

We lift the samples onto one of six shapes, flat, cylinder, sphere, edge, and corner
(figure 9). Noise is added in the z direction, except for the corner, where noise is

26

Grid PoissonContourHexagonal Random

Fig. 8. Sampling patterns.

Flat Ridge Bowl Saddle Edge Corner

Fig. 9. Test shapes with example local neighborhoods. Top row: interior points. Bottom
row: boundary points.

added perpendicular to the plane the sample point lies on. The added noise is in the
range ±0.1.

The cylinder equation is the top half of a unit cylinder, scaled down by 1/2 and
translated so that the center point is at (0,0,0). The saddle equation is 1.5s(s2 −
3t2). The sphere is a reverse stereo projection, with the result translated down by
1 so the top of the sphere is at (0,0,0). The edge is placed diagonally through
(0,0,0), with the two planes at right angles to each other and folding down. The
corner model places the lower quadrant on the plane z = 0, folds the upper left
quadrant onto the plane y = 0,x < 0, and the lower right quadrant to the plane
x = 0,y < 0. The remaining quadrant is distributed over the top half with some
noise.

8.2 Test case evaluation

The default number of samples we used was K = 24 (a 5 by 5 grid), with the
contour pattern having 10× 3 samples. The point P is either the point closest to
(0,0,0) (interior tests) or a point on the boundary (see Figure 9).

For the grid and hexagonal sampling patterns with noise at 0.1 and 0.4 we know that
the LN should have eight and six points, respectively. For the remaining test cases,

27

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
Function noise:SVD

N
or

m
al

 d
ot

 p
ro

du
ct

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
Function noise:QUAD

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
Function noise:CUBIC

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
Function noise:HEUR

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
Sample noise:SVD

N
or

m
al

 d
ot

 p
ro

du
ct

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
Sample noise:QUAD

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
Sample noise:CUBIC

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
Sample noise:HEUR

Flat
Cyl
Sphere
Saddle
Edge
Corner

Fig. 10. Behaviour of normals as function (top row) and sample (bottom row) noise is
varied for (from left to right) SVD, quadratic, and cubic fitting, and our approach. Each
curve corresponds to a specific test case shape (flat, ridge, bowl, saddle, edge, and corner).
The data is averaged over the different sampling distributions (figure 8) and the sample
(top) or function (bottom) noise. Vertical bars show the standard deviation. Note that bars
for each shape are offset slightly to make them visible.

we have verified the neighborhoods by hand which is, unfortunately, a somewhat
subjective evaluation. Some examples are shown in figure 9; more examples are
shown in the supplemental materials.

We know the surface normal and shape for each of our test cases. We check the re-
turned shape model and normal against the known answer (normal comparison uses
a dot product). Note that noise can cause the edge and corner models to degenerate
into the ridge and bowl models, respectively, and that sampling noise can cause the
saddle model to look flat, locally. Figures 10 and 11 (right) plot the accuracy of the
recovered normal as the noise levels increases for each shape (heuristic algorithm).
The normal reconstruction is fairly insensitive to increased sampling and function
noise.

In comparison, we show the equivalent plane-fitting normal reconstruction (Mitra
and Nguyen, 2003) and quadratic and cubic fitting (Vančo and Brunnett, 2007) in
figures 10 and 11 (interior and boundary point, respectively). Fitting accuracy for
each shape is shown. Note that our algorithm performs better for non-flat shapes.

8.3 Real-data comparison

We verify the normal error results observed in the test cases with real data sets. Fig-
ure 12 shows comparisons of the real versus estimated normals for two models, a
low-resolution version of the bunny and a marching-cube sampled dragon. We cat-
egorize the normals based on feature shape in order to more clearly show that the

28

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
Function noise:SVD

N
or

m
al

 d
ot

 p
ro

du
ct

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
Function noise:QUAD

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
Function noise:CUBIC

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
Function noise:HEUR

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
Sample noise:SVD

N
or

m
al

 d
ot

 p
ro

du
ct

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
Sample noise:QUAD

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
Sample noise:CUBIC

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1
Sample noise:HEUR

Flat
Cyl
Sphere
Saddle
Edge
Corner

Fig. 11. Same as figure 10, except for a point located on the boundary of the test shape.

bunny 2-holed mug dragon gargoyle figure radius

LN .981, .057 .909, .215 .996, .033 .999, .063 .984, .063 .989, .057

SVD .935, .149 .758, .348 .990, .053 .995, .019 .974, .086 .973, .116

Quad .880, .204 .747, .321 .968, .102 .974, .073 .928, .147 .961, .115

Cubic .860, .230 .678, .341 .968, .105 .977, .071 .924, .162 .956, .131

Del .952, .121 .951, .102 .985, .032 .991, .022 .974, .080 .979, .083
Table 4
Comparison to known normals. Bunny is a sparse (2002) downsampling of the original data
set, 2-holed mug is a contour, undersampled smooth surface, dragon is a Marching Cubes
mesh, gargoyle is a full laser scan data set, figure is an evenly-sampled, C4 surface with
known normals, and radius is a contour data set. Given is average and standard deviation
of the dot product of the calculated normal with the known one.

performance depends on the local shape. We compare with the (local) SVD (Mitra
and Nguyen, 2003) and quadratic reconstruction (Vančo and Brunnett, 2007) and
with the (global) Delaunay approach (Dey and Sun, 2005). The SVD and quadratic
fits were calculated using one round of normal-based weighting (Vančo and Brun-
nett, 2007).

Average and standard deviation values for several different types of models are
given in table 4, corresponding images in figure 13. Note that the first two data sets
do not meet our sampling criteria; in particular, the two-holed mug case has many
places where the surfaces are closer than the corresponding sampling rate. In this
case, the global algorithm out-performs the local one, although our algorithm does
successfully identify where there are problems (see figure 13). Further examples
are provided in the supplemental materials.

Figure 14 illustrates the behaviour of the different algorithms under the addition
of Gaussian noise. Each point was perturbed by up to 0.2 percent of the average

29

0.4

0.6

0.8

1

N
or

m
al

 d
ot

 p
ro

du
ct

LN
SVD
Quad
Cubic
Del

0.6

0.7

0.8

0.9

1

N
or

m
al

 d
ot

 p
ro

du
ct

LN
SVD
Quad
Cubic
Del

0.6

0.7

0.8

0.9

1

N
or

m
al

 d
ot

 p
ro

du
ct

LN
SVD
Quad
Cubic
Del

Bunny

Flat ridge bowl saddle edge corner bdry

Flat ridge bowl saddle edge corner bdry

Gargoyle

0

0.2

0.4

0.6

0.8

0.95 0.97 0.99

Dragon

0

0.2

0.4

0.6

0.8

0.95 0.97 0.99

0

0.2

0.4

0.6

0.8

0.95 0.97 0.99

Flat ridge bowl saddle edge corner bdry

Fig. 12. Comparison to SVD, quadratic, cubic, and a Delaunay approach on real data
sets (top: low-res bunny, middle: Gargoyle, bottom: Marching cubes dragon). Normals are
grouped by shape classification (from left to right: Flat, ridge, bowl, saddle, edge, corner,
boundary). Standard error bars are shown slightly separated for clarity. On the right are
plots of the number of points for which the dot product is below 0.95, 0.97, and 0.99.

edge length at each iteration. The comparison was to the normals from the original
data set. As the graph in figure 14 shows, the local neighborhood out-performed
both the SVD and the Delaunay approach. This is because the average local shape,
even with noise, remains similar, and the algorithm picks the local neighbors (and
hence surface normal) that best predict the local shape. This is particularly true for
non-flat regions; we plot the reconstruction error for the ridge points to illustrate
this.

30

Model type: Blue: flat Purple: ridge Cyan: bowl Green: saddle Red: edge Yellow: corner Grey: boundary

Model Score: Blue < 0.03 Purple < 0.05 Red < 0.1 Yellow > 0.1

Fig. 13. Model type and model score for the bunny, 2-holed mug, dragon, gargoyle, figure,
and radius data sets.

LN

SVD

DEL

LN R

SVD R
DEL R

0.96

0.97

0.98

0.99

1

0 0.02 0.4 0.6 0.8 1

Percentage noise

N
or

m
al

 d
ot

 p
ro

du
ct

FilteredNoisyOriginal

Fig. 14. Behaviour under the addition of noise for local neighbor, SVD, and Delaunay.
Shown are average normal error for all data points (LN,SVD,DEL) and for ridge points
(LN R, SVD R, DEL R) (roughly 40,000 of 130,000 total points). Model error as noise
increases: 0.035, 0.042, 0.047, 0.051, 0.055, 0.058. Right: Surface reconstruction result for
original, maximum noise, and filtered data sets.

9 Applications

We demonstrate using local neighborhoods for two applications, surface recon-
struction of surfaces with spherical topologies and smoothing. Figure 15 shows
several genus zero, manifold, water-tight mesh reconstructions from point clouds
and figure 14 shows the result of applying simple isometric smoothing on the point
sets before reconstruction.

Our surface reconstruction is a novel approach which first parameterizes the data
set using a modified spherical parameterization algorithm Saba et al. (2005). Once
the point data set is embedded on the sphere we run a convex hull algorithm (Barber
et al., 1996) to triangulate it. This is guaranteed to produce a water-tight, manifold
mesh of spherical topology. The mesh is a Delaunay triangulation on the sphere;
when we move the vertices back to their original positions in 3D the triangles will
no longer be Delaunay. We therefore run an edge-swap optimization to improve the
triangulation.

31

a) Point set b) Embedded c) Area adjusted d) Convex hull e,f) Unembed, edge swap

before

g) Pre-area adjustment h) Final

Fig. 15. Top: Reconstructing a surface. From left to right: a) The initial point set, colored
by feature size. b) The points embedded on the sphere. c) Applying area adjustment. d)
Tessellating the sphere using a convex hull algorithm. e) Moving the mesh vertices back to
their original positions and performing edge swaps. f) Ear before and after edge swaps. Bot-
tom: g) Horse before area normalization. h) Horse after area normalization. Right: Fan-disk
model.

9.1 Modifying the sphere embedding

We make two changes to the original spherical parameterization. We modify the
initial hemisphere partition step and introduce a set of weights to more evenly dis-
tribute the points on the sphere. To create the initial hemispheres we grow two
disks starting with two widely-separated points, as in the original algorithm, using
the local neighborhoods as the graph structure. If a point’s local neighborhood lies
in both disks we mark it as belonging to the boundary. This results in a band of
points, instead of a single, closed curve, around the equator. To sort these points we
use a modified version of Isomap (Pless and Simon, 2002) which maps the points
to a circle. From here, the algorithm proceeds as before, placing each point at the
(weighted) center of its local neighborhood instead of the one ring of a mesh.

One issue with embedding the points on the sphere is that, particularly for long,
skinny regions like the horse’s legs, the points at the ends of the legs lie so close
together on the sphere that the Delaunay triangulation considers them to be co-
planar. To address this, we first embed the points using Floater’s shape preserving
weights (Floater, 1997). We follow this with several (60 to 200) area-expanding
passes where the weights are based on the area of the local neighborhood on the
sphere. Specifically, for each point P we calculate an approximate area on the
sphere for P’s local neighborhood by summing the area of the spherical triangles

32

Fig. 16. Using Polymender to produce a water-tight surface from a set of triangles.

Fig. 17. Using the same local neighborhoods, but increasing shape neighborhoods (10, 35),
for labeling features. Blue is flat, yellow is a sharp fold.

formed by qi pqi+1. The weight for the point qi is Qi’s area divided by P’s total
area. Note that these weights will change as the embedding locations for the points
change; we recalculate the weights every 5 iterations.

For the filtering examples we use a very simple filter (80% of own location summed
with 20% of average of local neighborhood locations) to adjust the 3D point lo-
cations. Figure 14 shows the gargoyle model with Gaussian noise added in then
filtered out (20 iterations of filtering).

9.2 Alternative model construction

The local neighborhood can be treated as a collection of triangles and sent to Poly-
mender (Ju, 2004). All Polymender reconstructions (see figure 16 and additional
material) were run with a depth of 8 and a 70% volume fill.

9.3 Feature size

We can vary the size of the shape neighborhood in order to get features at different
scales. Figure 17 shows an example of this for the dragon and the fan-disk models.
Feature size is an absolute measure (see section 5.9) based on how fast the surface
curves away from the tangent plane.

33

10 Remarks and conclusion

Local neighborhoods and shape descriptors are a robust approach to surface normal
estimation, local feature analysis, and determining where the sampling is (poten-
tially) insufficient or incorrect. Although specifically design to handle non-uniform
sampling cases, it also performs better on uniformly sampled data sets than previ-
ous algorithms.

Although the local neighborhood approach by itself can not bridge large gaps in the
data set or correctly disambiguate when surfaces are closer together than their sam-
pling rate, it does provide feedback (in the model score) indicating where potential
problems lie. The average model scores also correlate directly with the noise in the
samples, particularly when restricted to data points labeled as flat.

A Weights

We summarize all of the “magic numbers” used here. Constants (the εs) were cho-
sen to be very conservative, are generally based on absolute geometric considera-
tions, and are mostly used to cull out obvious bad cases. Weights (the W s) are used
to balance the different terms of the evaluation metrics. These were selected largely
by experimentation using the test cases. The results are fairly insensitive to small
(−0.05,0.1) changes to the weights.

References

Amenta, N., Choi, S., Kolluri, R. K., 2001. The power crust. In: SMA ’01: Proceed-
ings of the sixth ACM symposium on Solid modeling and applications. ACM
Press, New York, NY, USA, pp. 249–266.

Attene, M., Falcidieno, B., Rossignac, J., Spagnuolo, M., 2005. Sharpen&bend: Re-
covering curved sharp edges in triangle meshes produced by feature-insensitive
sampling. IEEE Transactions on Visualization and Computer Graphics 11 (2),
181–192.

Barber, C. B., Dobkin, D. P., Huhdanpaa, H. T., Dec 1996. The quickhull algo-
rithm for convex hulls. ACM Trans. on Mathematical Software 22 (4), 469–483,
http://www.qhull.org.

Bernardini, F., Mittleman, J., Rushmeier, H., Silva, C., Taubin, G., /1999. The ball-
pivoting algorithm for surface reconstruction. IEEE Transactions on Visualiza-
tion and Computer Graphics 5 (4), 349–359.
URL citeseer.ist.psu.edu/bernardini99ballpivoting.html

Boissonnat, J.-D., Cazals, F., 2000. Smooth surface reconstruction via natural
neighbour interpolation of distance functions. In: SCG ’00: Proceedings of the

34

εI = 0.05 Perc inside, LN (4.1)

εb = π/2 Maximum allowed angle, heuristic (6,4.3)

εs = π/16 Smallest desirable angle, heuristic (6)

εd = 0.8π Boundary angle, SM (4.1.1)

εc = π/16 Minimum fall-off angle, SM (5.2,5.3,5.4)

εC = π/8 Maximum fall-off angle, SM (5.2,5.3,5.4)

εl = 0.05 Maximum percentage distance to boundary, LN validation (4.1)

εp = 0.1 Point on plane, LN, SM (4,5)

εe = π/3,π/4 Angle between edge,corner normals, LN (4.3)

εn = 0.95 Normal is stabalized, LN (6.1)

εm = 0.98 Recalculate the shape model, SM (6.4)

Wd = 0.2 Percentage of own length, LN (4.1,6)

Wm = 0.2 Centroid weight, LN (4.1,6)

Wc = 0.1 Curvature weight, SM (5.2,5.3,5.4)

Wg = 0.3 Clustering weight, SM (saddle) (5.4)

We = 0.25 Edge-like and corner-like weight, SM (5.5,5.6)
Table A.1
Summary of constants and weights.

sixteenth annual symposium on Computational geometry. ACM Press, New
York, NY, USA, pp. 223–232.

Dey, T. K., Goswami, S., 2003. Tight cocone: a water-tight surface reconstructor.
In: SM ’03: Proceedings of the eighth ACM symposium on Solid modeling and
applications. ACM Press, New York, NY, USA, pp. 127–134.

Dey, T. K., Goswami, S., 2004. Provable surface reconstruction from noisy sam-
ples. In: SCG ’04: Proceedings of the twentieth annual symposium on Computa-
tional geometry. ACM Press, New York, NY, USA, pp. 330–339.

Dey, T. K., Li, G., Sun, J., 2005. Normal estimation for point clouds : A comparison
study for a voronoi based method. In: Eurographics Sympos. on Point-Based
Graphics. pp. 39–46.

Dey, T. K., Sun, J., Jul. 2005. Normal and feature estimations from noisy point
clouds. Tech. Rep. OSU-CISRC-7/50-TR50, Ohio State.

Duda, R., Hart, P., Stork, D., 2000. Pattern Classification, 2nd Edition. Wiley-
Interscience.

Fleishman, S., Cohen-Or, D., Silva, C. T., 2005. Robust moving least-squares fitting
with sharp features. ACM Trans. Graph. 24 (3), 544–552.

Floater, M. S., 1997. Parametrization and smooth approximation of surface triangu-
lations. Computer Aided Geometric Design 14 (3), 231–250, iSSN 0167-8396.

Gatzke, T., Grimm, C., June 2006. Estimating curvature on triangular meshes. Inter-

35

national Journal of Shape Modeling 12 (1), 1–29, how best to compare curvature
metrics on meshes.

Gelfand, N., Guibas, L. J., 2004. Shape segmentation using local slippage analysis.
In: SGP ’04: Proceedings of the 2004 Eurographics/ACM SIGGRAPH sympo-
sium on Geometry processing. ACM, New York, NY, USA, pp. 214–223.

Hildebrandt, K., Polthier, K., Wardetzky, M., 2005. Smooth feature lines on surface
meshes. In: SGP ’05: Symposium on Geometry Processing.

Jiao, X., Heath, M. T., June 2002. Feature detection for surface meshes. In: Numer-
ical Grid Generation in Computational Field Simulations. pp. 705–714.

Jones, T. R., Durand, F., Desbrun, M., 2003. Non-iterative, feature-preserving mesh
smoothing. ACM Trans. Graph. 22 (3), 943–949.

Ju, T., 2004. Robust repair of polygonal models. ACM Trans. Graph. 23 (3), 888–
895.

Kolluri, R., 2005. Provably good moving least squares. In: SODA ’05: Proceedings
of the sixteenth annual ACM-SIAM symposium on Discrete algorithms. Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA, pp. 1008–1017.

Lai, Y.-K., Zhou, Q.-Y., Hu, S.-M., Wallner, J., Pottmann, H., Jan./Feb. 2007. Ro-
bust feature classification and editing. IEEE Transactions on Visualization and
Computer Graphics 13 (1), 34–45.

Max, N., 1999. Weights for computing vertex normals from facet normals. J. Graph.
Tools 4 (2), 1–6.

Mitra, N. J., Nguyen, A., 2003. Estimating surface normals in noisy point cloud
data. In: SCG ’03: Proceedings of the nineteenth annual symposium on Compu-
tational geometry. pp. 322–328.

Pauly, M., Keiser, R., Kobbelt, L. P., Gross, M., 2003. Shape modeling with point-
sampled geometry. ACM Trans. Graph. 22 (3), 641–650.

Pless, R., Simon, I., 2002. Embedding images in non-flat spaces. In: Proc. of the
International Conference on Imaging Science, Systems, and Technology.

Saba, S., Yavneh, I., Gotsman, C., Sheffer, A., June 2005. Practical spherical em-
bedding of manifold triangle meshes. Shape Modelling International, 256–265.

Taubin, G., 1995. A signal processing approach to fair surface design. In: SIG-
GRAPH ’95: Proceedings of the 22nd annual conference on Computer graphics
and interactive techniques. ACM Press, New York, NY, USA, pp. 351–358.

Vančo, M., Brunnett, G., Mar 2007. Geometric preprocessing of noisy point sets:
an experimental study. Special Issue on Geometric Modeling (Dagstuhl 2005),
365–380.

36

	Local Neighborhoods for Shape Classification and Normal Estimation
	Recommended Citation

	tmp.1418338203.pdf.G8ass

