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a mesh from a static camera angle. I present two ways to edit a mesh via a simple
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Chapter 1

Introduction

This thesis describes two techniques for performing mesh editing. In our system,

shown in figure 1.1, artists first load a 3D mesh into the program. Artists can

position the mesh as they likes by clicking a point on the mesh and dragging, or by

using the controls available on the left-hand side of the screen. Once artists have

identified an area of the mesh that they would like to edit, they can alter the mesh

using either of the two editors we have developed.

Mesh editing can be a very tedious task. In the worst case scenario, artists may

be forced to edit a mesh vertex by vertex, if they are trying to introduce fine scale

changes in a detailed mesh. Such a task quickly becomes infeasible as models increase

in complexity. Some techniques have been developed that allow a user to specify larger

scale deformations that can be applied across a region of vertices simultaneously

( [21], [15]). For example, there are commonly used tools that allow an artist to

scale, translate, or rotate a section of a mesh. Such tools simplify the overall task,

but the artist may have to sacrifice some fine scale detail in exchange for ease of use.

If a complex deformation is desired the mesh may also have to be rotated

around and edited from several camera angles. Not all viewpoints can be seen at
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Figure 1.1: Editing System Layout.

once, which means an edit made from one angle may look completely unacceptable

from another. Any attempts to reconcile the two viewpoints may introduce further

unwanted visual artifacts.

The techniques presented in this thesis aim to resolve these issues by allowing

an artist complete artistic control from one viewpoint. Any edits made should look

good from all angles, regardless of initial orientation. The techniques work from

sketch-like gestures as input, allowing the artist to specify their artistic “intent”

without having to be overly precise. The primary contributions of this thesis are

the unique user interfaces created for the two sketch-based editors, as well as the

application of corrected matrix linear interpolation to mesh deformations. Our work

ties in many existing algorithms into one cohesive whole in a manner that has never

before been attempted.

The thesis is organized as follows. Previous work relevant to sketch-based mesh

editing is discussed in Chapter 2, followed by essential background information in

Chapter 3. Chapter 4 presents an overview of the system, while Chapters 5, 6, and

7 discuss the details of the shading, profile, and direct editor, respectively. Chapter
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8 discusses how the mesh deformations are performed. Finally, in Chapter 9 the

types of edits our system is capable of are explored, and in Chapter 10 we discussed

improvements that could be made to our system.
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Chapter 2

Previous Work

2.1 Sketch-based User Interfaces

Sketch-based user interaction is currently an active field of research. The field seeks to

develop applications for a wide variety of purposes, from aiding in automobile design

to rapidly drawing deformable cartoons. Sketch-based user interfaces are appealing

because they more closely approach the movements of a traditional artist.

Early sketch-based deformation systems took their inspiration from traditional

sculpture techniques [21]. Singh and Fiume introduced wires (see figure 2.1)as an

easy way of editing 3D meshes. In their system, an artist sketches wires on the mesh

which are then bound to the geometry. By manipulating the wires, the artist deforms

the geometry. Singh and Fiume’s technique combines the level of control available in

free-form deformations with the ease of use in sketch-based UIs. Our research aims to

build directly off this sort of UI approach, but uses a different underlying deformation

technique.

Other techniques have also aimed to tackle the problem of editing from multiple

camera angles. Cohen et. al. developed a system [4] in which an artist could sketch
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Figure 2.1: Singh and Fiume’s Wires, here used to edit the nose of the mesh

Figure 2.2: Igarashi’s Teddy

a 3D curve in space, followed by sketching its projected shadow on a plane. Using

the extra information provided by the shadow, their system could infer the exact

placement of the curve in space. If users edit the curve or the curve’s shadow, they

redefine the curve’s 3D placement. The goal of this work was to rapidly create

approximately correct curves, which an artist can later refine in another program.

Our system implements an idea similar to the plane-sketching idea in the profile

editor. We project the mesh’s profile along a curve onto a plane and let the artist

redefine it.
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Sketch-based UIs are useful for a wide range of applications, but are particularly

useful for design. The ability to rapidly sketch a prototype can save a large amount

of money and time. An artist can use a sketch-based UI to create 3D models from

scratch, as in the Igarashi’s Teddy program [11]. In Teddy (see figure 2.2), an artist

draws a 2D silhouette and the program builds a 3D model from it. Emphasis is again

put on rapid prototyping without having to bog the artist down with too many details.

However, Teddy is only capable of producing round, blobby shaped models. The level

of control a user has over the type of shapes created is limited. In a similar vain,

[22] presents a system for using a sketch-based UI to rapidly prototype automobile

designs, [20] present a system for sketching architectural designs, and [19] present a

technique for building models from 3D sketches scanned in with camera phones.

Another use for sketching interfaces is in animation. An artist may want to

specify that a portion of a mesh be deformed over time. Kho and Garland addressed

this need in [15]. Their work builds off the wires idea. They create a system in which

a user sketches a reference curve along a part of the mesh. Then the user sketches

a new curve along the new desired path for the reference curve. By interpolating

between the original and deformed positions, a smooth animation can be attained.

2.2 Deformation Techniques

Interpolating between deformations is also an active area of research. Our goal is to

perform a deformation that acts “correctly”, i.e. the resulting mesh looks as we would

expect it to. Translating, scaling, or rotating one part of the mesh should not cause

unrelated parts of the mesh to suddenly grow or shrink. Furthermore, none of these

operations should cause a mesh to lose volume. Several papers have tried to address
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these issues. While these works address topics worthy of further research, our work

does not attempt to simulate any realistic physical properties nor preserve volume.

In Singh’s wires, axial deformations were used. In such deformation, a reference

wire is specified around which a fall off function is set. The fall-off function specifies

by what percentage the area around the reference curve will deform. The percentage

grows smaller as distance increases from the curve. Deformations made using wires

generally produce pleasing results. However, successive transformations are not

commutative and may accumulate error. If we are trying to specify deformations

to interpolate between, we may run into problems. For example, if a deformation

is specified, one would expect that applying one-half of the total deformation twice

would produce the same effect as applying the entire deformation once. However this

is not the case. Our system presents editing techniques similar to wires but with the

corrected interpolation presented by Alexa [1].

Another way to head off deformation problems is by representing the mesh in

a different type of coordinate system. Lipman et. al. present a type of rotation-

invariant coordinates [17]. In their paper they discuss a way to represent vertices on

the mesh by encoding the relative differences between them. Therefore no matter

what rigid-body deformation is performed, the mesh should be able to preserve local

topology correctly. Volumetric graph laplacian coordinates [24] could also be used,

as could mean value coordinates [14].
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Chapter 3

Background

This chapter provides the background information necessary for this thesis. Here we

present the fundamental concepts and general terminology used in our research.

3.1 Meshes

A mesh is a list of vertices, and connectivity information for faces and edges. The

mesh can be rendered in wireframe mode or shaded with lighting applied. An example

of a typical mesh is depicted in figure 3.1. 3D meshes used in this research were taken

from a library of meshes available in the Media and Machines lab. The meshes we

(a) Shaded Mode (b) Wireframe Mode

Figure 3.1: An example mesh



9

(a) Texture image (b) Image mapped onto a sphere

Figure 3.2: Example of a texture image mapped onto geometry

tested are commonly used through Computer Graphics literature. They have either

been scanned in from real world models or created by hand using modeling software.

3.2 Splines

We represent curves drawn on the mesh as splines. A spline is a piecewise polynomial

representation of a curve. Any point along the spline can easily be computed. We

build splines using the mouse generated input points as control points. The spline

curve always falls within the convex hull of its control points. Specifically, we use

non-uniform rational b-splines (NURBS) to represent curves in our system. We can

evaluate any point on the spline by calculating C(t) = bi(t)gi, where bi is a piecewise

polynomial and gi is a control point, and t ranges between 0 and 1. Splines allow

artists fine control over their drawing operations and have a low computation cost.

3.3 Texture Mapping

Texture mapping is the process of mapping a 2D image, or texture map, onto a 3D

surface. See figure 3.3 for an example. The texture map is generally a rectangular
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image whose width and height are a power of 2. Each pixel in the texture, or texel,

will map to at least one pixel on the surface. We refer to any texel’s coordinates in

the image as (u, v), where u and v range between 0 and 1.

Texture mapping is done in two steps. First, texture coordinates must be set.

We say a mesh point is assigned a texture coordinate when a point on the image

(u, v) is constrained to lie at a specific location on the mesh. Commonly, a texture

coordinate will be set for each vertex in the mesh being painted by the image. Second,

for other pixels without a specific texture coordinate, final color is interpolated from

one or more texels in the image.

In our research, we use texture mapping to map a gray scale image onto the

area of the mesh being deformed. The textured image conveys information that

otherwise would have had to be specified through the surface properties of the mesh’s

vertices. Although we do not use textures to represent very high levels of detail, we

find it is an easy, mesh-independent way of specifying detail at a resolution higher

than a mesh’s default polygon count.

3.4 Mesh Modification

The way a mesh’s surface is parameterized greatly affects its ability to approximate

the modeled surface, its ability to render aesthetically pleasing textures, and the

amount of mesh data that needs to be stored. A well parameterized mesh also lends

itself to more numerically stable calculations. The goal is keep enough vertices, edges,

and faces in areas of high detail such that the high-frequency information in the model

is captured. In areas that are almost planar however, we don’t need to capture much

information and can get away with storing less data. As the user edits a mesh, an

area of high curvature may be introduced, which will in turn need more detail in
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Figure 3.3: Mesh simplification operations

order to accurately capture the curve. We dynamically retriangulate the mesh after

each edit, so that the number of polygons in a region scale proportionally with the

region’s curvature. If, after editing, an area becomes mostly planar, we can reduce

the polygon count.

In a good triangular mesh parametrization, we should strive to have all

triangles be roughly the same size and equilateral. We can do so by performing

three types of operations on the mesh: edge swapping, edge splitting, and edge

collapsing. Our algorithm for evaluating these operations is based directly off a

commonly established technique ( [10], [16]). Figure 3.3 shows examples of each

type of operation. Before describing the operations in detail, let us formally define

some terms. An edge in the mesh is a connection between two vertices e = (u, v).

A face is a collection of vertices connected by edges, and has at least three vertices,

f = (u, v, w). When deciding whether to perform a mesh modification operation, we

only consider a small subarea on the mesh, called the neighborhood.

An edge collapse happens when we take an edge (vi, vj) and replace it with a

vertex vr. An edge split is when we take one edge and form two new edges from it,

each one with half the length of the original. New edges are then drawn between the

neighboring vertices and vr. In an edge swap, we take an edge between two vertices
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(a) Translation (b) Rotation (c) Scale

Figure 3.4: Geometrical point transformations

(vi, vj) and replace it with an edge between two other vertices from the same faces

(such as (vk, vl)). Our system often needs to increase the resolution of our mesh, and

hence we mostly lean towards performing edge splits. However computation costs

can be lower in mostly planar regions by performing edge collapses. Edge swaps are

performed in any area of the mesh deemed appropriate, regardless of curvature. The

implementation details for these operations can be found in [10] and [16].

3.5 Geometrical Transformations

In order to deform a mesh, we perform geometrical transformations on the mesh’s

vertices. Since edges and faces are defined in terms of vertices, if we transform the

vertices then the entire mesh is transformed. There are three types of transformations

performed in our research - translation, rotation, and scaling. All three operations

can be done using matrix algebra. If a 3D point is represented as 3D column vector,

we can multiply it by a square matrix representing the transformation in order to

find the point’s new location.

In order to move vertices around properly, we must scale, rotate, and translate

them in the proper order. We can combine the scaling, rotation, and translation

matrices into one matrix in order to save on computation. However, if they are

combined in the wrong order, we may end up making an unintended transformation.
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Matrix multiplication is not commutative and thus the order in which operations

are applied is important. For example, we know that rotation and scaling must

occur about the origin. Hence any time we wish to rotate or scale a mesh, we first

translate it so that it is centered at the origin, perform any rotations and scales, and

then translate back an equivalent distance. Lets say we would like to deform points

p1, p2, . . . , pn. We first translate so that the points are centered about the origin. We

then perform any desired rotations, followed by any desired scales, followed by any

new translations on the points. Lastly, we translate the points back an equal and

opposite amount to counter the centering operation. Mathematically, we state this

as:

M = T (−c) ∗ T ∗ S ∗R ∗ T (c)

where M is the combined matrix, T (c) is matrix that translates the set of

points to be around the origin, R is the rotation matrix, S is the scale matrix, and T

is the new translation matrix.

3.6 Sketching

Sketching is a technique employed by artists when they are trying to quickly express

an idea (see figure 3.5). An artist draws the most important elements of an image

in a rough, approximate manner. Sketching gives someone the immediate impression

of an idea, without the need to specify details. It is quick, easy to do, and requires

few resources. If a sketch does not come out as desired, the artist can change it by

drawing on top of existing lines. In our research, we will use the sketching technique

in both of our editors. The idea is to allow an artist as much control as possible

without requiring him to make exactly precise movements.
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(a) Van Gogh (b) Da Vinci

(c) Nyein Aung, Liftport Group

Figure 3.5: Sketch Drawings
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Chapter 4

System Overview

In this chapter, we describe the basic fundamentals of using our system. Prior to

using either of the editors, users must decide what area of the mesh they would like

to edit, and from what vantage point they want to view the area. There are camera

controls, curve drawing tools, and deformation handles available to the user.

When our system starts up, the camera is always located in a default position.

When we load a mesh, the camera automatically centers itself on it. A user may

want to edit part of the mesh that is not directly in view, or a part that may be

viewed better from a different angle. Hence, manipulating the camera easily is an

important prerequisite for mesh editing. Our system offers users several different ways

to perform the same type of camera change. Some users may prefer using keyboard

shortcuts over the virtual trackball, while others may prefer using a combination of

both. Having multiple ways to perform the same type of edit allows users to pick

which ones they find the most speedy and intuitive. A description of the specific

camera controls implemented in our system is provided in [Ap. A].

Before opening either of the editors, users must first specify what part of the

mesh they would like to edit. We will refer to the area of the mesh that is selected
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(a) Reference curve (b) Boundary curve (in green)

Figure 4.1: Reference curve

as the region of interest (ROI). Before either editor can be used, users must set

the reference and boundary curves. The reference (figure 4.1(a)) curve forms the

backbone of the feature we are trying to create or edit. The reference curve will lie

at the center of any deformations that occur later on. It also helps define the general

shape of the feature. After marking the reference curve, users must decide how much

of the mesh around it to influence. For example, we may only want to extrude a

small bump on the mesh or we may want to deform a large section. The area to be

deformed is sectioned off with a boundary curve (figure 4.1(b). The reference curve,

together with the boundary curve, completely define the ROI. Once the reference and

boundary curves are set, no more input is required from the user. Users can choose

to refine their input by re-sketching either of the curves. Re-sketching modifies a pre-

existing curve by blending it with a newly drawn curve. Users can choose to replace

the entire curve or just redraw a portion of it.

To perform deformations, users click on the reference curve and drag it around.

More detail on how exactly deformations are performed will be provided in chapter 8.

Vertices outside the ROI do not get affected by any deformations, while vertices inside

the ROI are affected at varying levels. When the reference curve is deformed, we want
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the vertices that lay along it to deform completely, but we want the vertices laying

along the boundary curve to remain stationary. All vertices in between move at some

percentage of the total deformation. Exactly how much they deform is determined

by using the shading editor and the deformation handles.

4.1 Implementation Details for Specifying a Region

of Interest

In order to specify a region for editing, a user must first draw a reference curve. The

new reference curve is represented as a spline. We build the curve by using the input

points generated from the mouse as control points. The stroke is parameterized from

0 to 1, where a parameter value of 0 gives the first input point, and a value of 1 gives

the last input point. Any value in between 0 and 1 can be used to find a point lying

along the curve.

The stroke is then filtered, so that no control points on the curve are located

too close together. To filter the curve, we perform the following steps. First, we

take the mouse generated input points and project them back into screen space. We

discard any points that are too close together in screen space. For our purposes,

a thresholding distance of 10 pixels gives a nicely spaced distribution. Second, a

NURBS curve is fitted to the remaining points. Third, the spline is resampled so

that control points are spread out evenly over the length of the curve (see figure 4.2).

We sample the curve at a high enough rate for there to be a control point every

few pixels. The resulting spline is what we save as the final reference curve. Mesh

faces located underneath the spline’s control points are subdivided so that the spline’s

control points lie directly on mesh vertices.
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Figure 4.2: Evenly spaced control points

The boundary curve is represented in a similar manner. However the boundary

is always a closed curve. Hence we automatically set the beginning and ending control

points on the boundary curve to be the same point. It is then thresholded and

resampled, just like the reference curve.

4.2 Implementation Details for Curve Re-Sketching

To re-sketch a curve, the user simply draws another curve over the old one. Depending

on the new curve’s distance to the old one, part or all of the old curve is replaced.

If only part of the old curve is replaced, we want to blend smoothly between the old

parts and new parts of the curve.

Our algorithm used to implement re-sketching (see figure 4.3) , based off of

[3]’s technique, works as follows. Let us refer to the original curve as f and the re-

sketched curve as m. When m is first drawn, it is input as series of points generated

from the mouse’s movements. The points are used to build a NURBS spline, and

the NURBS spline is then resampled evenly. After m and f are merged, we are left

with a final re-sketched curve, called r. How “smooth” a transition there is from f

to m is controlled by a “smoothing” coefficient, k. Although Baudel’s work states

that a value of k = 3 works best, in our research best results were achieved when

k = 6. There are three main parts to the curve merging/re-sketching process; one
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(a) Originally sketched curve (b) User draws amended version of curve
area

(c) Resulting merged curve

Figure 4.3: The resketching process

must analyze the starting transition from f to m, the main body of m, and the final

transition from m back to f . Throughout the following explanation, refer to figure 4.4

for a visual illustration.

The beginning and ending transitions are identical to each other, but work

in reversed directions. Let us define point S as the point on f that is closest to

m(0), the starting point of m, and E as the point on f that is closest to m(1), the

ending point of m. If S < E, then we need to calculate an initial blending point,

S
′

= S − k ∗ d(f(S), m(0)), from which we will begin blending between f and m.

d(f(S), m(0)) is a term that measures the distance between the points f(S) and

m(0). The location of f(S), and hence the accuracy of the distance metric, depends

on how finely divided into intervals the spline is. If we evaluate our NURBS splines

at smaller intervals, we will achieve more accurate results. If S
′
< 0, that means that

m extends the old curve; we can replace the beginning of f with the beginning of

m, and not create a smooth transition between the two (see figure 4.4(b)). In other

words, r will begin at m(0). Otherwise, we must define a transition spline ms going

from S
′
to m(0). To calculate ms, we create a hermite spline with two points, S

′
and

m(0). The tangent at S
′
is calculated by finding the control point on f that precedes
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S
′
and subtracting its position from S

′
. The tangent at m(0) is found similarly by

subtracting m(0) from m’s following control point. Then, for all the control points on

f that fall between S
′
and S, we create new corresponding points on r(t) as follows:

for each control point t between S
′
and S:

c = f((t− S
′
)/(S − S

′
))

r(t) = (1− c) ∗ f(t) + c ∗ms((t− S
′
)/(S − S

′
))

The same procedure is used to create an ending transition from m to f . We

first calculate E
′
= E +k ∗d(f(E), m(1)). If E

′
> 1, we know that m is an extending

stroke, and no transition back to f is necessary (see figure 4.4(c)). Instead, r will end

at m(1). Otherwise, we build a transition spline me that goes from the last point on

m, referred to as m(1), to f(E
′
). Just like ms, we build a hermite spline and filter

it. For each control point on f between E and E
′
, we build a corresponding point on

r(t) as follows:

for each control point t between S
′
and S:

c = f((t− E
′
)/(E − E

′
))

r(t) = (1− c) ∗ f(t) + c ∗ms((t− E
′
)/(E − E

′
))

For all control points t along f between S and E, we create a point on r located

at the closest point on m to f(t). After performing these steps, we have completely

integrated the new sketching stroke. A user has the freedom to re-sketch any curve

drawn in our system.
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(a) Start and end transitions (b) No starting transition

(c) No ending transition

Figure 4.4: Re-sketching the curve
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Chapter 5

Shading Editor

The shading editor (figure 5.1) is useful because it allows users control over how

different portions of the mesh will deform. Alone, a reference and boundary curve

are not enough to specify how we want the ROI to deform. The same reference and

boundary curves can be used to specify completely different types of deformations

(see figure 5.2). The shading editor is used to specify how much the vertices within

the ROI should be deformed.

The editor opens in its own viewing window and lets the user view the ROI as a

flattened region. Once users mark the area of the mesh they want to edit, the system

projects a gray scale texture over the area. The system creates a square texture and

then deforms it so that it lies over the entire region. In order to make the application

of the texture to the mesh easier, we first flatten the selected area of the mesh into

a disc. Then, users must decide how they want the gray levels to be set. Ideally,

in a fully sketch-based system, our system would have a user completely draw the

gray scale texture from scratch. This would be a very tedious process however, so

instead we present the user with a default texture that can be edited. Users can edit

the texture until they are satisfied with it, and then we copy the resulting texture



23

(a) Main window

(b) Shading Editor

Figure 5.1: Layout of the shading editor
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(a) Graduated gray scale fall-off (b) side view

(c) Sharp gray scale fall-off (d) side view

Figure 5.2: Different types of surfaces can be made using the same reference and
boundary curves
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back onto the original mesh. The entire texture may be edited all at once, or if edits

sectioned off with the area selection tool, changes can be limited to a specific region.

The gray level tells the user by how much a vertex will deform. For example,

a white area of the texture indicates that vertices located in the area will move 100

percent with any specified deformation, whereas a black region indicates that vertices

in that area will remain stationary. Gray values in between the two extremes signify

varying levels of movement.

5.1 Computing the Region of Interest

In order to apply a texture to the ROI, we transform the selected area of the mesh

into a form that is amenable to texture mapping. But first, we must compute what

part of the mesh is included in the ROI. After the user has selected a part of the

mesh to edit, we see what face lies underneath the point that lies halfway along the

reference curve. From this face, we grow outwards, checking each neighboring face

to see if it is also in the ROI. We continue doing this until we can no longer find

any neighboring faces that are still within the ROI. Then we add in one extra ring of

faces, just to make sure we have the entire area within the ROI accounted for. Only

vertices strictly within the area marked off by the boundary spline will be affected by

mesh deformations.

Having computed the ROI, we create a copy of the area and “flatten” it out

into a disc. The vertices are rescaled so that they are all located within the range of

-1 to 1 on the x and y axes. All vertices have a z coordinate of 0 after the flattening

operation. Implementation details on how the rescaling is performed are provided in

appendix [Ap. B].
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(a) Flat disc (b) With texture applied

Figure 5.3: ROI as displayed in the shading editor

5.2 Generating a Texture

The default texture is generated based on a vertex’s distance to the closest spline point

on reference curve R. For each vertex in the ROI, we set a corresponding texture

coordinate, (u, v). Trying to edit a continuous gray scale texture would not be very

useful, however. Instead we discretize the distances into levels for display purposes.

The number of levels is user controllable, but we find that a default number of 5 levels

works well. The gray levels vary from white to black in even intervals. Figure 5.3(b)

shows what the flattened mesh looks like with the default texture applied.

Although the texture is discretized into gray levels for viewing, the function it

represents is still continuous. Within each level, vertices will still linearly interpolate

between their level’s boundaries in order to determine how much they should deform.

5.3 Editing the Texture Globally

Our system allows a user complete control over the texture’s appearance. To edit the

texture, the user places a handle on a particular layer (as in figure 5.4). A handle

anchors the layer it is placed on. If only one handle is placed, then all layers will
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(a) Handles (b) After dragging

Figure 5.4: Handles used for texture editing

change when it is dragged. However, if more than one handle is placed, only the

layers between handles will move. For example, if three handles are placed and the

middle one is dragged, only the layers between the outer handles will be altered. If an

outer handle is dragged, any layers between its neighboring handle and the outermost

layer will be changed. If the handles are dragged sufficiently inwards, it is possible to

make a layer disappear. Not to worry - dragging the layers outwards again will make

the missing layer reappear. However, no amount of dragging outwards can introduce

a new layer that was not already pre-existing.

5.4 Editing the Texture Locally

Handle dragging affects the entire texture, but a user may only want to edit a section

instead. For this case we introduce the area selection tool (see figure 5.5). After

sectioning off an area, the user can place and drag handles, and only this area will

be affected. While an area is selected, the user can also change the number of gray

levels and have it only affect that region.
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(a) Area Selection (b) Dragging within selected area

Figure 5.5: Editing within a selected region

5.4.1 Area Selection Algorithm

The area selection algorithm keeps track of what pixels are in the selected region. It

works the same as a scan-line polygon fill algorithm mentioned in [6]. The algorithm

is robust enough to handle an area selection that self-intersects. It takes as input

points generated from the mouse, and outputs a set of pixels p that are strictly

within the selected area. The basic outline of the algorithm is as follows. From the

set of input pixels, we draw edges connecting them together. The edges will form the

boundary of the area selected. Our algorithm scans lines from left to right, bottom to

top, seeking to identify exactly what pixels within this area have been chosen by the

user. We sort the edges according to their x coordinate. Finally, for each scan-line,

we add to p any pixels between edges on that line, as long as they are considered

‘inside’ the region.

To start, we check each scan-line for intersections against edges. Since not

all edges will intersect a given scan-line, we take advantage of edge coherence. Edge

coherence states that most of the edges that intersect a particular scan line are likely to

intersect the next scan line as well. Hence, we can update our intersection information

based on the previous scan line, instead of calculating it from scratch each time. Using
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Table 5.1: Area Selection Data Structures
Edge (ymax, p1, p2, x, m) connecting 2 pixels
p1 Pixel
p2 Pixel
ymax Max( p1.y, p2.y )
x X coordinate of intersection between edge and scan line
m Edge slope

Edge Table list of (ymin, edge) pairs
ymin Min( p1.y, p2.y )
edge (ymax, x, m)

this property, we create an active edge table (AET) which keeps track of what edges

the current scan line intersects. We also keep a complete list of all edges in a global

edge table (GET). A complete description of the data structures used by this algorithm

is presented in table 5.1. All edges listed in a table are sorted in order of increasing

y coordinates.

Maintaining the AET is done by running a scan-line algorithm. We look at the

GET and find the minimum and maximum y coordinates. Our scan-line algorithm

will examine all pixel rows in between and including these two. Let y be the row

we are currently on. Starting with y = ymin, we scan the pixels from left to right.

Although initially the AET starts out empty, it gets populated with edges as we scan

a row. As we scan y, we move any edges with ymin = y from the GET to the AET,

and sort them on their x coordinate. Any edges already in AET that have a ymax = y

are removed. Pixels between pairs of x coordinates are then added to p. Finally, we

update the x coordinates of non-vertical edges in AET and move to row y = y + 1.

As we move from one scan line to the next, for all edges in the AET, we update

the intersection x coordinate by setting xy+1 = xy + 1
m

, where m is the slope of the

edge. m is calculated as m = (ymax − ymin)/(xmax − xmin). Clearly this update rule

can result in fractional x coordinates. We handle this by storing x as a double, and

rounding up to get an integer pixel coordinate when necessary.
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Whether a pixel is considered ‘inside’ the selected region is determined by the

odd-parity rule. The odd-parity rule states a parity bit can be used to determine

belonging; if the bit is even, the pixel is considered inside the region, otherwise it is

outside. Each time a scan line crosses an edge, the bit is flipped. When we move to

a new scan line, the bit is initially set to ‘inside’, since we start on the intersection

between an edge and a scan line.

While the algorithm so far works fairly well, there are a few special cases worth

noting. As we update an edge’s x coordinate, we will be left with either an integer

or fractional intersection. If there is an edge has an integer intersection, it is handled

differently depending on what side of the scan line it bounds. If it falls on the leftmost

side, we consider it to be inside the area. However if it is the rightmost, we consider

it to be outside. Furthermore, if the intersection at an integer pixel coordinate occurs

on a shared vertex, we have to handle it slightly differently. In this case, the ymin

pixel of an edge affects the parity bit, but not ymax pixel. In other words, a ymax pixel

only gets included if it doubles as the ymin for a neighboring edge. Lastly, horizontal

edges are treated specially depending on whether they form a bottom or top row.

Bottom horizontal edges are drawn, but top ones are not.

5.5 Applying Texture onto Original Mesh

Once users have edited the gray scale texture satisfactorily, the new texture will be

mapped back onto the original mesh. Each vertex in the ROI determines how much it

is able to deform according to what gray level was associated with it. Texture data is

copied from the disc over to the original mesh. No new texture coordinates or colors

need to be calculated.
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Chapter 6

Profile Editor

The profile editor is useful for re-sketching how a cross section of the ROI looks.

The profile editor opens in a separate window and presents the user with a profile

going horizontally across the center of the ROI. On the original mesh, we draw three

planes based off of the reference curve that define a local coordinate system for the

profile. The planes can be thought of as approximating a frenet frame. A frenet

frame is defined by three orthonormal vectors along a point on a 3D curve in space.

One vector is the tangent vector t for the curve at that point. The second vector

is the curve’s normal vector n. The third vector, the binormal vector b, is defined

by taking the cross product of the tangent and normal vectors. For each vector we

have a corresponding plane. The user can slide the plane corresponding to b along

the reference curve. We present a profile of all the faces that cut through this plane

in the editing window. The user can then re-sketch what the profile looks like, and

have their changes applied back onto the mesh.
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6.1 Calculating the Profile Planes

Based off the reference curve, we build three planes that define a local coordinate

system for the profile, much like a frenet frame. The first plane, which approximates

n, runs along the reference curve and cuts through the center of the mesh. The second

plane, which approximates t, is perpendicular to the first and runs lengthwise along

the curve. The third plane, which approximates b, is also perpendicular to the first

and, by default, cuts along the center of the curve. The third plane can be moved so

that it lies at any point along the reference curve. For clarity, let us refer these planes

as the n-plane, t-plane, and b-plane, respectively. See figure 6.1(a) for an illustration.

To calculate the n-plane we find a plane of best fit for the reference curve’s

control points. We can do this easily using a least squares solver. Given n control

points, we set up the equation Ax = B such that A is a 3 by n matrix, x is a 1

by 3 matrix, and B is a 1 by n matrix. The solver finds the normal for a plane of

best fit. A holds the x and y coordinates for all the points, and a 1 in place of the z

coordinate. The z coordinate is placed in B. After the solver runs, x holds the new

normal (a, b, c). We now have a normal but still need to find a point on the plane in

order to completely describe it. Hence we choose the point that lies halfway along the

reference curve. For drawing purposes, the planes are scaled so that they are large

enough to cut through all points on the mesh.

Calculating the first plane is the most difficult; the other two planes can be

derived from the first. The second plane is defined by point along the curve a and

the vector (a.z, a.y + s, a.z − s)− (a.x, a.y + s, a.z + s). Similarly, the third plane is

defined by a and the vector (a.x, a.y − s, a.z − s)− (a.z, a.y + s, a.z − s).
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(a) All 3 planes (b) t-plane

(c) n-plane (d) b-plane

Figure 6.1: The profile coordinate system

6.2 Calculating the Profile Cross-section

The profile editor displays a profile of the mesh along the second plane, cutting

horizontally across a midsection of the ROI. To present the user with a profile,

we calculate where the mesh intersects the b-plane. We start on one point of the

boundary curve and move across the mesh faces until we intersect the plane again

on the opposing side. To find the starting and ending profile points, we check to

see where the boundary curve intersects the cross section plane. The boundary will

intersect it at least twice. If there are more than two intersections, we only keep the

leftmost and rightmost ones. To determine how far left a point is, we check to see

how close it is to the average of the profile plane’s two leftmost corner points. The

closer it is to this point, the farther left it is. The averaged point is guaranteed to be

farther left than any point on the boundary because of our choice of s. s is dependent
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on the mesh size. Similarly, to find the rightmost point, we choose the intersection

that is farthest from the averaged point. Our cross-section building algorithm always

scans from left to right, so we sort the final two boundary intersection points into this

order.

After finding the starting and ending boundary points, bs and be, we are ready

to traverse the mesh faces. Initially, we make note of what faces bs and be lie on. We

build a plane that holds points bs, be, and the mesh center. Starting with the face

under bs, fs, we move towards fe along the plane, checking to see what mesh edges

it intersects. We first check to see what edges of fs intersect with the plane. If more

than one intersects, we choose the one that is closer to be. Then we move onto that

edge’s opposite face and repeat the process until we reach fe. We will be left with

a series of points that form a nice profile across the ROI. The points are fitted to a

NURBS curve, rescaled to be between the ranges of 0 and 1, and sent to the profile

editor window.

6.3 Profile Editor User Interface

The profile editor window presents the user with an uncluttered view of the mesh’s

cross-section (figure 6.2). At this point, the user can re-sketch the curve to be a

different shape. The same curve re-sketching technique available for editing reference

and boundary curves can also be used here. Once changes are accepted, the mesh

vertices are deformed to match the new profile. Exactly how the mesh is deformed

will be discussed in chapter 8. The profile’s orientation is indicated through use of

a color gradient and an orientation arrow. The arrow points from the center of the

curve, through the center of the profile, and towards the outside of the mesh. The

color gradient is applied to the profile curve in the editor as well as on the original
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(a) Profile presented on mesh

(b) Profile presented in editor

Figure 6.2: Profile Editor UI
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mesh (see figure 6.2). It helps the user correlate which part of the profile belongs on

the left as opposed to the right.
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Chapter 7

Direct Editing

While users can use the two sketch-based editors to do change the mesh, we also

present them with the option of directly editing the mesh by manipulating handles.

Editing handles are analogous to the shading editor’s handles; they are used to both

introduce changes as well as limit the extent of deformations.

Figure 7.1 shows an image of an editing handle. It is composed of three

orthonormal axis, defining a local coordinate system at that point. If a user clicks on

an axis, the mesh will deform only along that dimension. Clicking on the inner third

of the axis lets the user translate, clicking on the middle third lets the user scale, and

(a) Stylized handle (b) Actual handle

Figure 7.1: Handles
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(a) 2 Handles (b) 3 Handles

Figure 7.2: Arrows indicate a particular handle’s range of influence

clicking on the outer third lets the user rotate. After placing a handle, users can drag

it around its axes.

To directly edit the mesh, the user sets handles down along the reference

curve. When a handle is dragged, the changes in its position and orientation are used

to create a geometric deformation matrix. The matrix is applied to all the vertices

within the ROI, with varying levels.

Similarly to the shading editor, if users only want to deform parts of the ROI

at a time they can set multiple handles. If a handle is dragged, it only updates the

region of the mesh that is located between its neighboring handles. If a handle lacks

a neighbor on one side, its influence extends in that direction until the end of the

reference curve 7.2. If no handles have been placed along the reference curve, then

the re-sketching deformation will extend throughout the entire ROI.
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Chapter 8

Mesh Deformation

We have covered how to edit the mesh using both sketch-based techniques as well

as a direct editing technique. Now that we have discussed how the editors are

used to introduce deformations, let us discuss how the deformations are performed

mathematically.

Once users have defined a ROI, our system automatically pops up a default

texture. This is the same default texture that is displayed the first time the shading

editor is opened. We simply display it initially so that users can skip directly to

deforming the mesh if choose.

Once users specify a deformation, it is applied using Marc Alexa’s matrix

operators [1]. For each vertex, the percentage of the deformation that gets applied is

determined by the grayscale texture value for that vertex. As discussed, the texture

is set with the shading editor. Vertices that lie in a white texture area will move

along completely with any deformation made by with a handle. Vertices in darker

areas will move less. A vertex in a black region will not move at all, no matter what

deformation is specified. After users finish specifying a deformation with one of the

editors, the ROI is retriangulated and the texture is updated.



40

8.1 Mesh Retriangulation

Deformations can radically change vertex positions and introduce oddly-shaped

triangles. By retriangulating we keep our triangles about the same size on average,

and as close to equilateral as possible. A deformation might introduce an area of high

curvature. Such an area needs more vertices in order to capture the curvature fully.

Our retriangulation algorithm is sensitive to changes in curvature and will strive to

preserve more detail in high curvature areas, but less in almost planar areas.

When we first load a mesh, our system calculates the average edge length,

eavg. eavg is only calculated once. When we are retriangulating, we use then eavg as

a metric against which to evaluate edges for either swapping, collapsing, or splitting

operations. If an edge is much shorter than eavg is will be collapsed, where as if it is

much longer than it will be split. The exact factor by which it must differ from eavg

depends upon the curvature of the neighboring area.

8.2 Matrix Operators

To apply deformation matrices, we use the
⊙

and
⊕

operator as defined by Marc

Alexa [1].

As explained by Amy Hawkins in [8]:

The
⊙

operator implements scalar multiplication of a transformation

matrix. Example: Given a scalar s and matrices A and B (which may be

any combination of rotation, translation or scale matrices), if B = 2
⊙

A,

then applying B gives the same result as applying A twice.

The
⊕

operator is similar to matrix multiplication, with the exception

that the
⊕

operator is commutative. The operator is defined such
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that, if AB = BA, then A
⊕

B gives the same result as regular matrix

multiplication. In the case where AB 6= BA, then
⊕

can be understood

as applying A and B simultaneously. The operators are implemented

using the matrix logarithm and exponential, as follows:

s
⊙

A = es log A, (8.1)

A
⊕

B = elog A+log B. (8.2)

Once these two operators are defined, we can write the usual linear

interpolation equation using Alexas operators:

[(1− t)
⊙

A]
⊕

[t
⊙

B]t ∈ [0, 1]. (8.3)

To find percentages of the deformation matrices that satisfy the grayscale

texture’s constraints, we linearly interpolate according to equation 8.3.
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Chapter 9

Results

We conclude by showing examples of different types of edits that can easily be

performed with each one.

9.1 Editing Examples

The following figures show the results of deforming a mesh with our shading and

profile editors.
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(a) Rotation

(b) Successive rotation

(c) Resketching of profile

Figure 9.1: Rotations and resketching
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Figure 9.2: Rotate and extrude

(a) Sink (b) Successive Sink

(c) Successive extrude

Figure 9.3: Sinking and extruding
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Chapter 10

Future Work

Due to time constraints, we did not have time to evaluate our system against other

standard graphics packages. Doing a proper comparison is necessary in order to see

where our system excels. Feedback from a comparison analysis can also be used to

help us decide what improvements need to be made. Evaluations can be conducted

by performing a user study as well as running time analysis.

10.1 User Study

A user study should be conducted in order to compare our system against other

commonly available modeling tools. Ideally, the study should be conducted on

artists who are familiar with digital 3D modeling. A participant would be asked to

complete the same task in our system and 2 other systems, such as Maya or 3DS Max.

The time elapsed until completion should be noted, as well as any other particular

difficulties the participant had. After performing several rounds of tasks, participants

can describe their experience by filling out a short questionnaire. Some questions

should aim to quantify the experience (using a multiple choice answer of “agree very
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strongly”, “agree”, “neutral”, “disagree”, or “disagree very strongly”). Others should

present an area for open-ended comments. Good multiple choice questions to ask

would be:

• Were tasks more difficult to complete in our system than in other graphics

packages?

• Did the user interface feel more intuitive than in other graphics packages?

• Did you feel our system let you complete tasks more quickly?

Some good open-ended questions to ask would be:

• Were some tasks more difficult to complete than others? Why?

• Were some editors more difficult/unintuitive to use than others? Why?

• Are there any changes to UI that could be made to improve its effectiveness/ease

of use?

• Would you consider using this application in your daily work? Why or why

not?

To fully realize the usefulness of our tools, we need to evaluate how much our

system increases productivity over other existing tools, and what advantages users

perceive in our user interface. Constructive feedback from a user study could be used

to increase the effectiveness of our UI.

10.2 Implementation Changes

Our implementation as it stands has several areas in which it could be improved.

The most pressing issue is that it needs to run faster. While it does work at an
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interactive rate, a user’s operations still take several seconds to update. The largest

bottleneck occurs with the number of calculations we perform when evaluating splines.

Distance calculations involving splines are performed often, and require a high degree

of accuracy. To improve speed, we could lower the accuracy on our distance measures.

Another bottleneck occurs when intersecting rays with the mesh. When users draw

a spline, we project their strokes onto the surface of the mesh. In order to find which

face a spline’s control point lies in, we project a ray from the camera’s eye point,

through the control point, and see where it intersects the mesh. To improve speed,

we can partition the search space using a data structure such as oct-trees. However,

since our mesh geometry changes dynamically, any space partitioning data structure

would have to be recalculated often. A better solution would be to work on optimizing

our intersection code as it stands.



Appendix A:

Camera Control Implementation

Keyboard shortcuts can be used to alter the camera in any direction. See table 1 for

a complete listing of shortcuts. Pressing the ‘r’ key spins the mesh counter-clockwise,

similarly to the spin dial. Pressing ‘x’, ‘y’, or ‘z’ will orient the camera so that it

is looking down that axis. Pressing ‘1’, ‘2’, or ‘3’ will rotate the camera around the

x, y, or z axis respectively, by a small amount. For all shortcuts mentioned so far,

pressing ‘shift’ at the same time will reverse the direction of their movement. Hitting

the ‘w’ resets the camera to the default position, and hitting ’c’ centers the camera

on the mesh. Pressing ‘h’ rotates the camera clockwise. However, if ‘h’ and ‘shift’

are pressed together, the camera will pan in. Similarly, pressing ‘l’ spins the camera

counter-clockwise, but if pressed in conjunction with ‘shift’ it will pan the camera out.

Pressing ‘i’, ‘m’, ‘j’, or ‘k’ rotates the camera up, down, left, or right respectively.

However, if pressed in conjunction with the ‘shift’ key, the camera is panned up,

down, left, or right respectively. Pressing ‘p’ pans the camera in, while ‘n’ pans the

camera out. If pressed in conjunction with ‘shift’, these keys zoom instead of pan.

Pressing the numbers ’7’ through ’9’ will toggle between the three different profile

planes that appear when the profile editor is open. Pressing ’6’ will display all the

planes at once, while pressing ’0’ will display none. Lastly, although not a camera

control, the keyboard shortcut ‘q’ will quit the application.

In our system we present the user with four main camera controls, which

together allow for complete control of the camera in all dimensionsThe first controller,

a zoom slider, controls how big or small the scene is that a user sees. It multiplies the

objects in the scene by a scaling factor which controls how large they appear. The

second controller, a spin dial, allows a user to rotate the mesh clockwise or counter-

clockwise up to 360 degrees. Spinning is useful for turning the mesh upside down

quickly, while not changing which side of the mesh is facing forward.
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Table 1: Camera Control Shortcut Keys
Key Action With ‘shift’ modifier
r spins counter-clockwise spins clockwise
x looks down x axis looks down negative x-axis
y looks down y axis looks down negative y-axis
z looks down z axis looks down negative z-axis
1 rotates clockwise around x axis rotates counter-clockwise around x axis
2 rotates clockwise around y axis rotates counter-clockwise around y axis
3 rotates clockwise around z axis rotates counter-clockwise around z axis
w resets camera to default position -
c centers camera on mesh -
h spins clockwise pans in
l spins counter-clockwise pans out
i rotates up pans up
m rotates down pans down
j rotates left pans left
k rotates right pans right
p zooms out pans in
n zooms in pans out
6 toggles all profile planes on -
7,8,9 toggles between profile planes -
0 toggles all profile planes off -
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Lastly, the user can control the camera with a virtual trackball. With a virtual

trackball, users can click anywhere on the mesh and drag their mouse. As the mouse

moves, the mesh will rotate in the same direction, such that the point of the mesh

on which the user clicked remains underneath the mouse. Using a virtual trackball is

very intuitive and easy for novice users to learn.
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Appendix B:

Mesh Rescaling Implementation

Rescaling a mesh’s vertices is simple. We iterate through all the vertices in the region

of interest, and keep track of the minimum and maximum x and y coordinates we

see. If one of the minimum x coordinates is less than 0, we add its absolute value

to the x coordinates for every vertex. The same is done if the minimum y value is

negative. We also add the minimum x and y values to the maximum x and y values,

respectively, if they are negative. For each vertex, we divide its x coordinate by the

the maximum x coordinate (and likewise for y). At this point, all vertices will have

x and y coordinates ranging between 0 and 1. For display purposes, we want all

vertices to be in the range of -1 to 1. As our last step, we multiply all the vertices’

locations by 2 and subtract 1. Note that since we flattened the mesh beforehand,

for all vertices z = 0, and none of the z coordinates must be rescaled. The reference

curve is also rescaled so that it retains the same relative position to the faces it lies

on.
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