
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2006-15

2006-01-01

Tuple Space Coordination Across Space & Time Tuple Space Coordination Across Space & Time

Gruia-Catalin Roman, Radu Handorean, and Chenyang Lu

CAST is a coordination model designed to support interactions among agents executing on

hosts that make up a mobile ad hoc network (MANET). From an application programmer’s point

of view, CAST makes it possible for operations to be executed at arbitrary locations in space, at

prescribed times which may be in the future, and on remote hosts even when no end-to-end

connected route exists between the initiator and target(s) of the operation. To accomplish this,

CAST assumes that each host moves in space in accordance with a motion profile which is

accurate but which at any given time extends... Read complete abstract on page 2. Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Roman, Gruia-Catalin; Handorean, Radu; and Lu, Chenyang, "Tuple Space Coordination Across Space &
Time" Report Number: WUCSE-2006-15 (2006). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/164

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Washington University St. Louis: Open Scholarship

https://core.ac.uk/display/233233687?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/164?utm_source=openscholarship.wustl.edu%2Fcse_research%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/164

Tuple Space Coordination Across Space & Time Tuple Space Coordination Across Space & Time

Gruia-Catalin Roman, Radu Handorean, and Chenyang Lu

Complete Abstract: Complete Abstract:

CAST is a coordination model designed to support interactions among agents executing on hosts that
make up a mobile ad hoc network (MANET). From an application programmer’s point of view, CAST
makes it possible for operations to be executed at arbitrary locations in space, at prescribed times which
may be in the future, and on remote hosts even when no end-to-end connected route exists between the
initiator and target(s) of the operation. To accomplish this, CAST assumes that each host moves in space
in accordance with a motion profile which is accurate but which at any given time extends into the future
for a limited duration. These motion profiles are freely exchanged among hosts in the network through a
gossiping protocol. Knowledge about the motion profiles of the other hosts in the network allows for
source routing of operation requests and replies over disconnected routes. In this paper, we present the
CAST model and its formalization. We also discuss the feasibility of realizing this model

https://openscholarship.wustl.edu/cse_research/164?utm_source=openscholarship.wustl.edu%2Fcse_research%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/164?utm_source=openscholarship.wustl.edu%2Fcse_research%2F164&utm_medium=PDF&utm_campaign=PDFCoverPages

Department of Computer Science & Engineering

2006-15

Tuple Space Coordination Across Space & Time

Authors: Gruia-Catalin Roman, Radu Handorean, Rohan Sen

Corresponding Author: rohan.sen@wustl.edu

Abstract: CAST is a coordination model designed to support interactions among agents executing on hosts that
make up a mobile ad hoc network (MANET). From an application programmer’s point of view, CAST makes it
possible for operations to be executed at arbitrary locations in space, at prescribed times which may be in the
future, and on remote hosts even when no end-to-end connected route exists between the initiator and target(s)
of the operation. To accomplish this, CAST assumes that each host moves in space in accordance with a
motion profile which is accurate but which at any given time extends into the future for a limited duration. These
motion profiles are freely exchanged among hosts in the network through a gossiping protocol. Knowledge
about the motion profiles of the other hosts in the network allows for source routing of operation requests and
replies over disconnected routes. In this paper, we present the CAST model and its formalization. We also
discuss the feasibility of realizing this model.

Type of Report: Other

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160

Tuple Space Coordination Across Space & Time

Gruia-Catalin Roman1, Radu Handorean2, and Rohan Sen1

1 Department of Computer Science and Engineering
Washington University in St. Louis

Campus Box 1045, One Brookings Drive
St. Louis, MO 63130-4899, USA

2 Qualcomm Inc.
6180 Spine Road, Boulder, CO 80301

Abstract. CAST is a coordination model designed to support interac-
tions among agents executing on hosts that make up a mobile ad hoc
network (MANET). From an application programmer’s point of view,
CAST makes it possible for operations to be executed at arbitrary loca-
tions in space, at prescribed times which may be in the future, and on
remote hosts even when no end-to-end connected route exists between
the initiator and target(s) of the operation. To accomplish this, CAST
assumes that each host moves in space in accordance with a motion pro-
file which is accurate but which at any given time extends into the future
for a limited duration. These motion profiles are freely exchanged among
hosts in the network through a gossiping protocol. Knowledge about the
motion profiles of the other hosts in the network allows for source routing
of operation requests and replies over disconnected routes. In this paper,
we present the CAST model and its formalization. We also discuss the
feasibility of realizing this model.

1 Introduction

Mobile Ad hoc Networks (MANETs) are a special class of wireless net-
works, which do not rely on any external infrastructure and are formed
opportunistically among physically mobile hosts. By definition, a MANET
is an open, dynamic environment where hosts may join or leave the net-
work of their own volition and connectivity between host pairs is tran-
sient, requiring a decoupled style of computing. Developing applications
for MANETs is especially challenging because peer-to-peer interactions
between hosts can be short lived and the hosts participating in the com-
putation change often and in an unpredictable fashion.

Coordination middleware is a software solution that has been proven to
be able to handle the open environment and decoupled interactions as ev-
idenced by systems such as MARS [1] and KLAIM [2], designed for wired
settings, and systems such as LIME [3], Limone [4] and Ara [5] which
are targeted to mobile settings. However, mobile settings, and MANETs
in particular impose additional challenges which cannot be handled by
the current generation of coordination models. The key problem is that
current technology has a very restricted definition of reachability in the

dimensions of space (hosts must be strategically located in space so as
to have access to a route to the destination) as well as time (the routes
are only valid at the current instant). Handling more sophisticated ap-
plications requires us to develop models that expand the present narrow
interpretation of reachability, allowing more predictable interactions with
larger numbers of participants in a MANET.

CAST (Coordination Across Space and Time) is a new kind of coor-
dination model that extends the reach of coordination activities across
space and time by addressing restrictions imposed by current models.
In the spatial domain, we use disconnected routing, a type of routing
algorithm which does not enforce end-to-end connectivity between the
source and destination of a message. This type of routing algorithm is
similar to source routing in that the complete sequence of intermediary
hosts is specified in the message header. The difference lies in the manner
in which the hosts that form the route are selected. We use information
about the motion of hosts (exchanged among hosts using a gossiping
protocol) to compute intervals of pairwise connectivity among hosts ex-
tending from the present moment for a fixed amount of time into the
future. The hosts forming the route are selected such that the sequence
of intervals of pairwise connectivity between them will be sufficient to
deliver a message from the source to the destination. The message is
temporarily buffered on each host when the incoming communication
window and outgoing communication window do not coincide, allowing
coordination among hosts that are never in direct pairwise contact.

CAST also addresses the temporal domain by offering operations that
have an explicit space and time value associated with it. The operations
are moved to the required location using the mechanism described above
and held in an inactive status until the activation time is reached. If
there is no route which can get the operation to the required location by
the specified time, the middleware can immediately raise an exception
and reject the operation. Spatiotemporal operations allow coordination
to occur across the reaches of space and time, thereby expanding the
reach of the model.

In this paper, we describe the CAST model and its operation. The
model assumes the use of a gossiping protocol to discover knowledge
about the motion of other hosts which is stored in a local knowledge base
and used to compute disconnected routes. Atop this, we offer Linda-like
coordination operations via a simple API. The remainder of the paper
is organized as follows. Section 2 provides background and a motivating
example. Section 3 formally describes the key concept of reachability
upon which disconnected routes are built, while Section 4 describes the
semantics of the operations we support. Section 5 covers related work in
coordination models before we conclude in Section 6.

2 Background and Motivation

Typically, a coordination model is characterized by its use of a shared
dataspace that offers the following operations: (1) out, which places data
in the shared space, (2) in which removes data from the shared space,

and (3) rd which creates a local copy of some data in the shared space.
An agent that wishes to interact with another agent places data in the
shared space which is subsequently retrieved by the target agent, thereby
completing the interaction. This basic functionality, while sufficient for
supporting applications that need simple message passing, is not suited
to more sophisticated scenarios, specifically those where space and time
are an inherent facet of the application.

Consider the example of a construction site where many people work
in a highly dynamic environment. Each person carries a PDA that serves
as a multi-purpose mobile computing platform. No fixed computing re-
sources are available since there is no safe, suitable location for them.
SynchroTask is an application that is used by construction supervisors
on-site to manage day to day issues. SynchroTask allows supervisors and
workers to manage and exchange project activities through opportunistic
sharing of information.

Take for instance, the case of two shift supervisors needing to pass on
lists of outstanding concerns. The problem is that shifts seldom overlap
due to lunch breaks, etc. However, the construction site does have a
rudimentary ready room which is used by the crew to rest and almost
always has someone occupying it. The configuration is shown pictorially
in Figure 1.

Ready Room

Bob

Chris
David

Eric
in @ 1:05 PM

by Eric

transfer @ 1 PM
to maintain tuple in

ready room

out @ 12 PM
to ready room

Chris leaves ready room
at 1 PM and David arrives

Fig. 1. Example of CAST in action

Towards the end of the shift, Bob uses SynchroTask to make notes
on his PDA which lists the tasks requiring attention on a priority ba-
sis by the supervisor of the afternoon shift. As he leaves at 12 PM, he
asks SynchroTask to forward the list to the afternoon supervisor. Since
the afternoon supervisor has not yet arrived, SynchroTask requests that
CAST, the middleware atop which it is executing, to store the informa-
tion in a location where the incoming supervisor can easily retrieve it.

The information is stored in the ready room. When Eric arrives to su-
pervise the next shift at 1:10 PM, he retrieves the information from the
ready room. Supporting such interactions requires features not available
in current coordination technology. The next two sections describe the
CAST model that is designed to support applications such as Synchro-
Task.

3 A Model for Disconnected Coordination

The notion of coordinating across time and space is the distinguishing
feature of CAST. By coordination we mean the execution of Linda-like
operations on tuple spaces that may be either local or remote. For sim-
plicity, we will assume that each tuple space is uniquely associated with
a particular mobile host; this allows us to talk about coordination among
hosts while ignoring the structural aspects of the host software. The scope
of the coordination is controlled by which remote hosts can be reached
at any given time. CAST assumes that hosts move according to some
locally controlled plan called a motion profile, i.e., for a finite duration
of time the host knows where it is heading and will not change its mind
mid course. At first glance, the concept of using motion profiles might
appear restrictive and impractical. However, motion profiles can be built
automatically from individual schedules, thus avoiding the need for ad-
ditional input by the user. Additionally, motion profiles are not practical
only when the motion of hosts is completely random. When motion has
even a simple pattern, motion profiles can be effectively exploited. Infor-
mation about motion profiles is shared freely among hosts thus allowing
them to build an egocentric view of where hosts might be in the future.
Each host maintains such information in a knowledge base, which is a
collection of the motion profiles of other hosts that the reference host is
aware of. It is this information that makes it possible to identify discon-
nected routes which are used to transfer data and operation requests to
a wider set of hosts than otherwise might be possible.

By exploiting disconnected routes, CAST makes it possible to reach
out into the future and to coordinate across expanses of space. Coordi-
nation across time is associated with the ability to specify a lifetime for
both data and operations in terms of a starting and an ending point.
Coordination across space relates to the ability to identify a specific
location or area in which the operation or the data is to exist, either
initially or throughout its lifetime; the latter situation is complicated by
the mobility of hosts in and out of the area of interest.

At this point it is reasonable to ponder whether the central enabling no-
tion of computing and disseminating motion profile is reasonable. There
exist some situations in which hosts follow prescribed patterns over ex-
tended periods of time because the application itself demands it: ex-
plorers follow a certain plan for safety and in order to accomplish their
daily tasks; unmanned vehicles are restricted to a specific mission plan;
robots are engaged in repetitive and redefined activities; office workers
make their calendars public, etc. Despite these considerations, we must
acknowledge that a study of coordination under uncertainty of motion
profiles is intellectually exciting, but is out of the scope of this paper.

The remainder of this section is dedicated to a formal abstract descrip-
tion of the CAST model. We present the formalization initially from a
global oracular point of view, where all available knowledge in the system
is known to us. We show how the system evolves from this perspective.
We then examine the model from an egocentric host perspective, where
the available knowledge is a subset of the knowledge that exists in the
system as a whole. A discussion of how to extend this formalization to
cover the set of operations available in CAST is postponed to Section 4.

3.1 Underlying Computational Model

The core concept in our definition of the CAST model is the notion of
motion profile. At the most basic level it is simply a function from time
to space denoting the expected location of a particular host at some time
in the future. Because it is mathematically convenient to work with total
functions, we augment the space domain with the symbol ⊥ (unknown
location) and allow the motion profile to be a function from time to the
augmented space:

µ : T → S+

where
T denotes the time domain
S denotes the space domain
⊥ signifies an unknown location
S+ is defined as S ∪ {⊥}

We consider both time and space to be discrete. The time domain
is modeled as the set of natural numbers and space is defined as the
Cartesian product of two integer domains. Since we assume a global
notion of time, we model the current time simply as an integer variable
τ . The current location of a host is given by evaluating the motion profile
at time τ . In general, we assume that motion profiles associated with
specific hosts are defined starting from the current time up to some point
in the future and nowhere else:

〈∃te : τ ≤ te :: 〈∀t :: t ∈ [τ, te] ⇔ µ(t) 6=⊥〉〉

We abuse language by referring to points in time when the motion profile
takes the value ⊥ as being ”undefined” from an application point of
view, even though mathematically speaking the function is defined for
all values in T .

As a first approximation, we define a system of coordinating hosts as
a set of hosts H and their respective motion profiles. The state of the
system is formally characterized by its configuration C, a function that
maps hosts to their respective motion profiles

C : H → (T → S+)

The system configuration evolves in response to two different kinds
of actions. First, hosts may explicitly update their motion profiles by
extending them into the future as in

C := C[i/µ] where C(i) � µ

The condition captures the fact that the new motion profile µ for host
i is defined everywhere the old motion profile C(i) is defined. Formally,
the relation � is expressed as

µ1 � µ2 ≡ 〈∀t :: µ1(t) 6=⊥=⇒ µ2(t) 6=⊥〉

Second, time may advance affecting the value of the variable τ

τ := τ + 1

Time advance has an implicit global impact on the system configuration
because all host motion profiles that are older must become undefined.

C := C[i/C(i)[(τ − 1)/ ⊥]] ∀i ∈ H
where τ − 1 refers to the old value of τ

3.2 Disconnected Routes

Given a configuration C, one could (in principle) determine whether it
is possible to transfer data from host i1 to host i2. The first step involves
identifying when hosts are close enough and, therefore, able to communi-
cate. We assume that communication is possible whenever the distance
between two hosts is less than the communication range of the wireless
transmitters, some constant δ. In reality, transmission distances vary a
great deal and rarely conform to an idealized circular pattern. Neverthe-
less, it is always possible to select a conservative value for δ, one that
offers a high probability for successful communication between any two
hosts. The time intervals during which hosts can exchange data are called
communication windows and are formally captured in the definition of
the relation w below:

i1 w[t1, t2] i2 = 〈∀t : t ∈ [t1, t2] ::
C(i1, t) 6=⊥ ∧ C(i2, t) 6=⊥ ∧ |C(i1, t)− C(i2, t)| < δ〉

Disconnected communication is established by having data move from
one host to another during such periods of communication. Since we do
not expect all hosts to be end-to-end connected, the data is temporarily
buffered on an intermediate host until a communication window to the
next host is available. In this manner a route is established between a
source and a destination. It is called disconnected because the hosts along
the route may never be simultaneously connected. A host along the route
may obtain data from a peer and then become completely isolated for
an extended period of time before handing off the same data to another
peer. A disconnected route is said to exist between two hosts i1 to in from
time t1 to tn if there exists a set of hosts (i2 to in−1) and communication
windows between them such that data can travel from the origin to the
destination as described above. Formally, a disconnected route r is a
temporally ordered sequence of communication windows:

r = (i1, i2, t1, t1′), ..., (in−1, in, tn−1, tn′−1)
subject to the constraint

ti < ti′ < ti+1 ∧ ii w[ti, ti′] ii+1 for i = 1, ..., n - 1

The corresponding disconnected path is defined as the sequence of hosts
involved in defining the route. In this case, the hosts involved in the
disconnected route above define the disconnected path

(i1, i2, ...in−1, in)

Computing disconnected routes from locally available knowledge about
the system configuration is central to our model. The brute force ap-
proach to accomplishing this entails building a directed graph which
includes a vertex for each host/time pair denoting the start and the
end of a communication window and an edge between any two vertices
whose corresponding hosts can communicate in the respective time in-
terval, i.e., two vertices (i1, t1) and (i2, t2) are connected by an edge only
if i1 w[t1, t2] i2. Once the graph is constructed, finding a disconnected
route is simply a matter of identifying a path in the graph between the
source and the destination vertices. However, the algorithms involved in
accomplishing this are outside the scope of this paper. For now, all we
need to consider is the fact that a disconnected route can be computed,
if one exists, given the current knowledge of the motion profiles of hosts
in the system. Post facto one may discover that many more routes were
actually established but planning can use only what is known at the time
some coordination action is initiated.

3.3 Reachability

In the most abstract sense, disconnected routes expand the definition
of reachability, which has been used in the past to determine the maximal
set of hosts with which a reference host can coordinate. We introduce a
relation ρ to formally capture this notion of reachability that is based
on successive communication windows. The definition is recursive with
the base case being reachability within a communication window, which
includes the default case of a host being able to “communicate with
itself” across any interval of time by holding the data for future delivery:

i1ρ[t1, t2]i2 ≡ i1w[t1, t2]i2 ∨ 〈∃i, t : t1 ≤ t ≤ t2 ::
i1ρ[t1, t]i ∧ iρ[t, t2]i2〉

It should be immediately obvious that prior forms of reachability differ
from this definition in two fundamental ways. First and foremost, earlier
definitions of reachability are not parametrized with respect to a time
interval; they can be seen as having an implicit time parameter defined
by a single point in time. Second, in such definitions w holds true if the
hosts are collocated, form a connected group, or are subject to other
similar restrictions.

The other distinctive feature of CAST is the ability to coordinate
across the spatial domain without explicit knowledge of the other par-
ticipating hosts. A new notion of reachability needs to be introduced in
order to accommodate this capability, one that captures the idea that a
specific point or region is reachable within the constraints of a partic-
ular time interval. Clearly, the presence of some host operating in that
space is implicit and the extensions we are introducing below make this
fact evident in their respective formalizations. The simplest extension
considers a point p ∈ S to be reachable from some reference host in a
specific time interval whenever a reachable host exists at that point in
space. The new relation is called σ and it is defined as follows:

i1 σ[t1, t2] p ≡ 〈∃i : C(i, t2) = p :: i1 ρ[t1, t2] i〉

Similarly, a region r ⊆ S is considered reachable if it contains a point
that is reachable:

i1 σ[t1, t2] r ≡ 〈∃p : p ∈ r :: i1 σ[t1, t2] p 〉

Still other notions of reachability can be introduced to capture more
subtle aspects of the semantics of coordination across space. We conclude
this section with one such example. In some situations we may need to
assert that data can be disseminated to any host entering a specific
region throughout a particular interval in time. A region is said to be
continuously covered with respect to some host i holding the critical
data at the start if all the hosts in the required area are reachable from
it during the specified time interval

i1 ν[t1, t2] r ≡ C(i1, t1) ∈ r ∧
〈∀i, t : t ∈ [t1, t2] ∧ C(i, t) ∈ r :: i1 ρ[t1, t2] i 〉

The presentation thus far has focused on considering reachability given
global knowledge. Such a view, while helpful for illustration purposes,
does not mirror the reality of a MANET where hosts have egocentric
perspectives. Hosts in the MANET have access only to a subset of the
motion profiles that make up the global knowledge. The difference be-
tween the local and global knowledge determines how effective a host
is at coordinating with other hosts in the MANET over disconnected
routes. Since disconnected routes are calculated from motion profiles, a
dearth of motion profiles on a given host results in it having access to
fewer disconnected routes, which translates into fewer opportunities for
disconnected coordination. In such a situation, a host is stymied with
respect to operations that it wants to carry out in the future and at
locations other than its own location. This is why the knowledge base on
each individual host becomes critical to its functionality. The closer the
host’s local knowledge is to the global knowledge, the more effective the
host is, the caveat being that in some situations, even global knowledge
may not be sufficient. For instance, if all global knowledge only looks 1
second into the future, there are no opportunities for disconnected co-
ordination beyond that time. Motion profiles that extend reasonably far
into the future allow for timely dissemination and better planning.

3.4 The Egocentric Perspective

In this section we make the transition from unattainable global knowl-
edge to maintainable local knowledge bases. Formally, the kind of infor-
mation being held locally is of the same type as the global configuration
described earlier, but what is known locally is only an approximation
of the instantaneous global configuration of the system. The fact that
the formalization is identical is helpful in system analysis. Properties of
the system can be stated in terms of global configurations and proven
using local knowledge. During this transition we make one fundamental
change in the characterization of the individual hosts. Recall that so far
a host i has been characterized by its unique identifier and a motion
profile µ. The change consists of replacing the local motion profile with

a more general knowledge base M(i) of the same type as the system
configuration C but which is always a subset thereof.

As expected, the motion profile of i in the global view C is identical
to the motion profile in its own knowledge base M(i). In other words,
a host i always knows its own motion profile fully, which is proper as i
establishes its own motion profile:

M(i, i) = C(i)

The situation changes when we consider the knowledge that host i has
regarding the motion profile of some other host j:

〈∀j :: M(i, j) � C(j)〉
We use a gossiping protocol to exchange motion knowledge among

hosts. Whenever two hosts encounter each other, i.e., they are directly
connected, they exchange the contents of their knowledge bases (their
own motion profile and the motion profiles collected through previous
encounters). Hence, it is always the case that the motion profile of a
reference host as known at another host is most often less defined than
on the reference host; updates could have occurred on the reference host
after the motion profile was given away.

The system now evolves in three different ways: (1) implicitly through
the passage of time, (2) explicitly due to a change in a host’s own motion
profile where we define change to be an extension to the existing motion
profile rather than a complete replacement, and (3) by acquisition of
knowledge about other hosts as shown below:

M(i) := M(i) ∪M(j) where
〈∀l, MM : MM = M(i) ∪M(j) :: M(i, l) � MM(i, l) ∧M(j, l) �

MM(j, l) ∧ (M(i, l) = MM(i, l) ∨M(j, l) = MM(j, l))〉
When two hosts exchange knowledge bases, the motion profile for a

particular host as known by host i is compared against the motion profile
for the same host as known by host j. The profile that extends farthest
into the future is adopted as the “new” motion profile. In this way,
two hosts synchronize their knowledge bases thus improving the quality
of the information each holds. Even though this may seem to lead to
unbounded growth in terms of storage requirements, the progression of
time eliminates data that is older than a predefined limit.

4 Operations

Given the central role motion profiles play in planning interactions
among mobile hosts in our model, it is natural to employ a similar for-
malization for the operations which execute across disconnected routes.
The approach is attractive because it provides the opportunity to em-
ploy a unified knowledge-based treatment to describe all aspects of the
coordination model. Take for instance an out operation. A reference host
issues the operation, specifying a target for the operation. The target can
be a remote host as in traditional distributed systems, or simply a set of
spatiotemporal constraints that define a place and time where the oper-
ation must execute. Allowing hosts to perform remote operations can be

complicated since it requires synchronized access to the data state on the
target host. Thus, any operation that has a remote target is converted
to an operation request which is routed to the target host which queues
requests and sequentially performs the operations locally on behalf of
the originator of the operation.

At this point we must consider how the operation is routed to its target.
In CAST, the system formulates a plan for moving the operation request
to the target. A plan is simply a motion profile that the operation request
must follow to reach its target. This motion profile can be easily derived
from the reachability information that is contained in the knowledge base
of the originating host as described in Section 3. However, using the same
type of motion profile for operations as is used for hosts is not possible.
This is because the motion profile of a host can be arbitrary whereas
the motion profile of an operation must always map to a location where
a host is present. To remedy this, we use an allocation profile which is
similar to a motion profile but returns the host on which the operation
is to be located at a particular time rather than a physical location.
This motivates the need for a separate knowledge base that contains all
operations which are transferred between hosts at the same time they
are gossiping to exchange host motion profiles.

The final issue we must consider is the actual insertion of the tuple
in the target tuple space. At a basic level, we can build this action into
the system itself. However, we can gain much more expressive power by
allowing actions to be customized according to the task at hand. Consider
an out operation to a physical space. The semantics of this operation call
for each host in the physical area to receive a copy of the tuple associated
with the out operation. However, the allocation profile yields a path to
only one host among those present in the target area. The built-in action
would simply place the tuple in the tuple space of that one host. To
overcome this, we introduced the concept of an operation function, which
operates on the data state of all target hosts. This concept is especially
important as it allows a great deal of flexibility when specifying the effects
of coordination operations. In the case of the out operation, operation
function places the tuple in the tuple space of the host that is reachable
via the allocation profile. After this, the function uses the knowledge
base on the host to compute which other hosts are in the target area
and sends them copies of the tuple using out operations to those specific
hosts. Thus, the operation function encapsulates the basic operation and
the maintenance of the operation in its target scope.

An in operation is a three phase operation that requires three paths
between the originator and the target. During the first phase, the in

operation can be routed to its target destination in the same manner as
the out operation. The only difference between the two is the operation
function which determines what action must be taken at the target. Here
again, we emphasize the importance of the operation function which
helps separate the concerns related to routing of the operation to its
target from the actual effect of the operation. This allows CAST to treat
all operations uniformly during the routing phase, with the actual effect
of the operation being hidden until the target is reached, which is the only
time that it is relevant. The in operation is a more complex operation

than the out because an in request to multiple hosts could result in
multiple tuples being removed which is inconsistent with the semantics of
the operation. Thus, once an in request reaches its target, it searches for
tuples that match the required template, which specifies the data being
searched for. Every tuple that matches the template, is removed from
the main data tuple space to a temporary tuple space by the operation
function of in. The function then formulates, for each tuple, an out

operation targeted towards the originator of the in function containing
copies of the matching tuples. These out operations are routed to the
originator in the standard way. Upon arrival, the operation function in
the out operation places the copies in temporary storage on the originator
since placing them in the main tuple space would indicate that this
data is available for use. The system then chooses one of the copies
returned non-deterministically. This completes the second phase of the
operation. During the last phase, the host that owns the original of the
copy selected is sent yet another operation request which destroys the
original tuple in the temporary storage of that host. All others are sent
a different operation that restores the original to the main data space.
The copies of the tuples that were not chosen during the second phase
are destroyed. Thus at the end of the in operation, only one tuple is
removed from the system. The system registers a reaction on behalf of
the calling application on the temporary storage space of the originator
to return the result of the in to the caller.

We have seen how a knowledge base consisting solely of motion profiles
is not sufficient since it does not account for the operational and data
aspects of the coordination model. Thus, we split K(i) as follows:

M(i) - the set of motion profiles known to the local host (Section 3)
O(i) - the set of operation requests that are on the local host
D(i) - the data state of the local host
T(i) - temporary storage space (not accessible to applications)

M(i) holds tuples that contain motion profiles, O(i) holds tuples that
contain operation requests while D(i) and T(i) can hold any type of data
tuple. The separation of these knowledge bases is key since M(i) is modi-
fied using a gossiping protocol, D(i) and T(i) are modified only locally by
operation requests, and O(i) is modified by either 1) operations requests
moving from one host to another, 2) operation requests being serviced,
or 3) operation requests expiring. We have already described the nature
of the contents of M(i), while D(i) and T(i) contain generic data tuples.
O(i) contains operation requests that are generated by hosts to have an
operation execute on their behalf. To summarize the presentation above,
each generic operation request is formulated as a 6-tuple as follows:

a unique identifier for the request
the allocation profile of the operation
the time at which the operation becomes active
the time at which the operation becomes inactive
the operation function
the originator of the operation request

The unique identifier is required to distinguish requests for similar
operations by different hosts, and more importantly, to distinguish the
results so that a host does not mistakenly collect the results of a sim-
ilar operation issued by another host. The allocation profile describes
the hosts on which the operation is resident at a given time. The time
of activation and deactivation indicate the time interval for which the
operation is valid and able to be executed. There are two points of note:
(1) in most cases, there is an implicit dependency between activation
time and the allocation profile since the activation time cannot precede
the time at which the operation reaches the target host as given by the
allocation profile and (2) a bounded deactivation time in effect makes
every operation in CAST a polling operation because the system waits
for the result of an operation only for the duration that it is active. If the
current time exceeds the time at which the operation becomes inactive,
the system unblocks and lets the execution continue. The operation func-
tion is a constant function that encodes the effect of the operation on the
knowledge state of the target host and may also manage adequate cover-
age of the operation in a physical space. Examples of operation functions
for out and in have already been described.

Before concluding, we return to SynchroTrack, presented in Section
2. SynchroTask uses various facilities provided by CAST to deliver the
intended functionality. Consider the time when Bob placed the message
in the ready room. CAST’s spatial out operation was used to deliver the
tuple to the ready room. The CAST system’s knowledge base on Bob’s
PDA was used to determine that Chris will be in the ready room from 12
PM to 1 PM and David from 1 PM to 2 PM. This information resulted
in the message being moved from Bob to Chris at 12 PM and from Chris
to David at 1 PM, allowing a message to be associated with a physical
area rather than be associated with any particular host. SynchroTask on
Eric’s PDA used a spatially targeted in operation to retrieve the infor-
mation when he came in. The entire structure allowed the person that
fulfilled the role of the afternoon supervisor to retrieve the information.
If an operation was targeted specifically to Alice (the expected afternoon
supervisor), then Eric would have not gotten the message.

5 Related Work

Since the work presented in this paper is a new approach to coordina-
tion built on top of a novel MANET routing protocol, we address related
work in two areas–coordination models and MANET routing protocols.
The first example of a coordination model was Linda [6]. In Linda, coor-
dination is characterized by a centralized coordination mechanism while
the application that uses it may be distributed. In modern implementa-
tions of the coordination concept, such as JavaSpaces [7] and TSpaces
[8], various parts of the application coordinate with each other by means
of a tuple space maintained at a central location.

Coordination models have also found favor in agent-based systems.
TuCSoN [9] introduced multiple tuple spaces called tuple centers while in
MARS [10], mobile agents are provided upon arrival on a particular host

with a handle to the local tuple space, which is shared among all agents
present on the same host. Ara [11] introduced a constrained rendezvous
type of coordination: some agents assume the role of coordination servers
and represent meeting points where agents can ask for services

More recently, coordination models have been adapted to novel com-
putational environments [12], [13], [14], and [15], which highlights their
versatility. One such environment where coordination models were in-
troduced in support of new classes of applications was MANETs. LIME
[3] proposed the idea of multiple (local) tuple spaces that were tran-
siently shared to form a federated shared dataspace when hosts are in
communication range. Limone [4] is a lightweight alternative to LIME
implemented to offer fewer guarantees. TOTA [16] uses spatially dis-
tributed tuples, injected in the networks and propagated according to
applications specific patterns.

Coordination models adapted for MANETs often support only peer-
to-peer connections. To support multihop connections, they need to be
combined with MANET routing protocols which fall into four broad cat-
egories: (1) proactive protocols such as DSDV[17], WRP[18], CSGR[19],
which constantly maintain and update routes using routing tables at the
cost of high bandwidth usage; (2) reactive protocols such as AODV[20],
TORA[21], ABR[22], DSR[23], which only search for routes when they
are required at the cost of low responsiveness; and (3) disconnected rout-
ing such as Epidemic[24], Message Relay[25], which allow messages to be
sent via a gossiping protocol.

Most of the protocols mentioned above use broadcasts for route dis-
covery and maintenance. Recent developments have targeted the use of
location information to reduce the overhead required to discover and
maintain routes. This has resulted in a new family of routing protocols
called geographic routing protocols [26], [27]. The basic idea is to greedily
forward the message to the next hop neighbor physically the closest to
the destination. The greedy approach fails often in local optima that be-
come dead-ends before the target is reached. This problem has multiple
solutions in the form of the GPSR protocol [28], terminode routing [29],
among others. Our work is different from geographic routing protocols in
that (1) we do not use location information to optimize routing tasks, (2)
we do not enforce an end-to-end route, and (3) common problems with
geographic routing such as topology holes and local minima do not affect
our approach. Location information is important to us for the purpose of
determining when hosts are going to be connected with each other and
are an integral part of the model (along with time).

6 Conclusions

In this paper, we have presented Coordination Across Space and Time
(CAST), a new coordination model tailored for MANETs that enables
coordination across the reaches of space and time. CAST achieves this
functionality by its use of 1) disconnected routing, which allows two
hosts that are not in direct contact to coordinate with each other, 2)
spatiotemporal operations that enable operations to execute at specific

locations in space and at any point in time, and 3) a knowledge driven ar-
chitecture that unifies the treatment of motion of hosts, operations, and
data state. The next steps in our investigation are a formal examination
of the model’s expressive power and an engineering effort to deliver the
model’s functionality in the form of an operational middleware.

Acknowledgments. This research was supported in part by ONR-
MURI research contract N00014-02-1-0715. Any opinions, findings, and
conclusions expressed in this paper are those of the authors and do not
necessarily represent the views of the sponsors.

References

1. Cabri, G., Leonardi, L., Zambonelli, F.: MARS: A programmable co-
ordination architecture for mobile agents. IEEE Internet Computing
4 (2000) 26–35

2. de Nicola, R., Ferrari, G.L., Pugliese, R.: klaim: a kernel language
for agents interaction and mobility. IEEE Transactions on Software
Engineering (Special Issue on Mobility and Network Aware Com-
puting) (1998)

3. Murphy, A., Picco, G., Roman, G.C.: Lime: A middleware for phys-
ical and logical mobility. In: Proc. of the 21st Int’l Conf. on Dis-
tributed Computing Systems. (2001) 524–533

4. Fok, C.L., Roman, G.C., Hackmann, G.: A lightweight coordination
middleware for mobile computing. In: Proceedings of COORDINA-
TION 2004. Volume 2949 of LNCS., Springer Verlag (2004) 135–151

5. Peine, H., Stolpmann, T.: The architecture of the Ara platform for
mobile agents. In Popescu-Zeletin, R., Rothermel, K., eds.: First
International Workshop on Mobile Agents MA’97. Volume 1219 of
Lecture Notes in Computer Science., Berlin, Germany, Springer Ver-
lag (1997) 50

6. Gerlenter, D.: Generative communication in Linda. ACM Comput-
ing Surveys 7 (1985) 80–112

7. Microsystems, S.: Javaspace specification.
(http://java.sun.com/products/jini/specs)

8. Wyckoff, P.: Tspaces. IBM System Journal 37 (1998) 454–474
9. Omicini, A., Zambonelli, F.: The TuCSoN coordination model for

mobile information agents. In: Proceedings of the 1st Workshop on
Innovative Internet Information Systems, Pisa, Italy (1998)

10. Cabri, G., Leonardi, L., Zambonelli, F.: MARS: A programmable co-
ordination architecture for mobile agents. IEEE Internet Computing
4 (2000) 26–35

11. Peine, H., Stolpmann, T.: The architecture of the Ara platform for
mobile agents. In Popescu-Zeletin, R., Rothermel, K., eds.: First
International Workshop on Mobile Agents MA’97. Volume 1219 of
Lecture Notes in Computer Science., Berlin, Germany, Springer Ver-
lag (1997) 50–61

12. Papadopoulos, G.A., Arbab, F.: Coordination models and languages.
In: 761. Centrum voor Wiskunde en Informatica (CWI) (1998) 55

13. Papadopoulos, G.: Models and technologies for the coordination of
internet agents: A survey (2000)

14. Cabri, G., Leonardi, L., Zambonelli, F.: The impact of the coordina-
tion model in the design of mobile agent applications. In: Proceed-
ings of the 22nd International Computer Software and Application
Conference. (1998) 436–442

15. Fok, C.L., Roman, G.C., Lu, C.: Software support for application de-
velopment in wireless sensor network. In: Mobile Middleware. CRC
Press (2005)

16. Mamei, M., Zambonelli, F., Leonardi, L.: Tuples on the air: a middle-
ware for context-aware computing in dynamic networks. In: Proceed-
ings of the 2nd International Workshop on Mobile Computing Mid-
dleware at the 23rd International Conference on Distributed Com-
puting Systems (ICDCS). (2003) 342–347

17. Perkins, C., Bhagwat, P.: Highly dynamic destination-sequenced
distance-vector routing (DSDV) for mobile computers. In: ACM
SIGCOMM’94 Conference on Communications Architectures, Pro-
tocols and Applications. (1994)

18. Murthy, S., Garcia-Luna-Aceves, J.J.: An efficient routing protocol
for wireless networks. Mobile Networks and Applications 1 (1996)
183–197

19. Chiang, C., Wu, H., Liu, W., Gerla, M.: Routing in clustered mul-
tihop, mobile wireless networks. In: IEEE Singapore International
Conference on Networks. (1997) 197–211

20. Perkins, C.: Ad-hoc on-demand distance vector routing. In: MIL-
COM ’97 panel on Ad Hoc Networks. (1997)

21. Park, V.D., Corson, M.S.: A highly adaptive distributed routing
algorithm for mobile wireless networks. In: Proceedings of INFO-
COM’97. (1997) 1405–1413

22. Toh, C.K.: A novel distributed routing protocol to support ad-hoc
mobile computing. In: Fifteenth Annual International Phoenix Con-
ference on Computers and Communications. (1996) 480–486

23. Johnson, D.B., Maltz, D.A.: Dynamic source routing in ad hoc wire-
less networks. Mobile Computing 353 (1996)

24. Vahdat, A., Becker, D.: Epidemic routing for partially connected ad
hoc networks. Technical Report CS-200006, Duke University (2000)

25. Li, Q., Rus, D.: Communication in disconnected ad hoc networks
using message relay. Parallel and Distributed Computing 63 (2003)
75–86

26. Imielinski, T., Navas, J.: Rfc 2009 - gps-based addressing and rout-
ing. http://rfc2009.x42.com/ (1996)

27. Navas, J.C., Imielinski, T.: GeoCast – geographic addressing and
routing. In: Mobile Computing and Networking. (1997) 66–76

28. Karp, B., Kung, H.T.: GPSR: greedy perimeter stateless routing for
wireless networks. In: Mobile Computing and Networking. (2000)
243–254

29. Blazevic, L., Boudec, J.Y.L., Giordano, S.: A location-based routing
method for mobile ad hoc networks. IEEE Transactions on Mobile
Computing 4 (2005) 97–110

	Tuple Space Coordination Across Space & Time
	Recommended Citation
	Tuple Space Coordination Across Space & Time

	tmp.1418149444.pdf.Gr7Cn

