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Abstract—Classical scheduling abstractions such as deadlines
and priorities do not readily capture the complex timing se-
mantics found in many real-time cyber-physical systems. Time
utility functions provide a necessarily richer description of timing
semantics, but designing utility-aware scheduling policies using
them is an open research problem. In particular, optimal utility
accrual scheduling design is needed for real-time cyber-physical
domains.

In this paper we design optimal utility accrual scheduling poli-
cies for cyber-physical systems with periodic, non-preemptable
tasks that run with stochastic duration. These policies are
derived by solving a Markov Decision Process formulation of
the scheduling problem. We use this formulation to demonstrate
that our technique improves on existing heuristic utility accrual
scheduling policies.

I. INTRODUCTION

Computing systems increasingly interact with the physical
world through sensing, actuation, or both. Timing constraints
imposed by these interactions are of paramount concern for the
safe and correct operation of these cyber-physical systems.

Because size, weight, power consumption or other physi-
cal restrictions may strongly influence their deployment and
operation, such cyber-physical systems may be resource con-
strained and different jobs may contend for their shared
common resources. When that happens, a scheduling policy
must arbitrate access to shared resources while satisfying
system timing and other constraints.

Real-time systems traditionally model timing constraints as
deadlines. In hard real-time systems [1] any deadline miss may
be considered equivalent to total system failure, or at least
to the loss of any value from the corresponding job. Such a
system is not feasibly schedulable unless all jobs meet all their
deadlines. In contrast, soft real-time systems do not assume
deadline misses are catastrophic. This implies some flexibility
in how missed deadlines are handled. In some soft real-time
systems, a deadline miss may mean that the job simply should
be aborted. In others a late job should be completed with
as little overrun as possible. However, none of these cases
cover the full range of possible timing semantics that may be
inherent to cyber-physical systems.

Time utility functions (TUFs) are a powerful abstraction
for expressing more general timing constraints [2], [3], which
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characterize the utility of completing particular jobs as a func-
tion of time and thus capture more complex semantics than
simple deadlines. To satisfy temporal constraints in a system
whose semantics are described by time utility functions, a
scheduling policy must maximize system-wide utility accrual.

However, jobs in cyber-physical systems have other features
that complicate the scheduling problem. Specifically, jobs in
many cyber-physical systems may be non-preemptable and
may have stochastic duration. For example, jobs may involve
actuation, such that preemption of a job may require restoring
the state of a physical apparatus such as a robot arm. In
such cases the cost of preemption may be unreasonably high.
Therefore scheduling algorithms for cyber-physical systems
must be able to consider non-preemptable jobs. Interaction
with the physical environment also may lead to unpredictable
job behavior, most notably in terms of job durations. A
scheduling policy should anticipate this variability not only
by considering the worst case execution time (as is often
done in deadline-based scheduling) but also the probabilistic
distribution of job durations. This is especially important when
the goal is to maximize utility accrual, which depends on the
timing of job completion.

Scheduling problems with these concerns may arise in a
variety of cyber-physical systems as well as in traditional real-
time systems. In mobile robotics, jobs competing for use of
a robotic arm must be scheduled for efficient alternation. In
CPU scheduling, quality of service (QoS) for an application
may be specified as a time utility function, and the jobs to be
scheduled may have long critical sections were preemption is
not allowed. Finally, in critical real-time systems access to the
bus by COTS peripherals may have to be scheduled in order
to guarantee real-time performance [4].

In this paper we extend our previous work on Markov
Decision Process (MDP) based scheduling policy design [5]–
[7] to generate utility-aware scheduling policies appropriate
for real-time cyber-physical systems with non-preemptable
jobs that run with stochastic duration. This extension enables
us to derive optimal utility-aware scheduling policies for this
important class of systems. It also improves on current state
of the art utility accrual schedulers, which rely on heuristics
and do not take advantage of predictable future job releases
such as jobs released under a periodic task model.

This paper is organized as follows. In Section II we provide
a brief survey of related work. In Section III we describe



our system and task model. In Section IV we formulate
the scheduling problem as a Markov decision process and
describe our solution approach. In Section V we examine the
performance of scheduling policies for different classes of time
utility functions in our system model. We offer conclusions in
Section VI and propose directions for further investigation.

II. RELATED WORK

Utility accrual scheduling primarily has been restricted
to heuristics based on maximizing instantaneous potential
utility density, which is the expected utility of running a job
normalized by its expected duration [2].

The Generic Benefit Scheduler (GBS) [8] schedules tasks
under resource contention using the potential utility density
heuristic without assigning deadlines. If there is no resource
contention, the proposed scheduling policy simply greedily
schedules jobs according to the highest potential utility density.

Locke’s Best Effort Scheduling Algorithm (LBESA) [9]
schedules jobs with stochastic durations and non-convex time
utility functions using a variation of Earliest Deadline First
(EDF) [10], where jobs with the lowest potential utility density
are dropped from the schedule if the system becomes over-
loaded. This technique requires an assignment of job deadlines
along their time utility curves; optimal selection of those
deadlines is itself an open problem.

Other research on utility accrual scheduling has crucially
relied on restricting the shapes of the time utility curves to a
single class of functions. The Dependent Activity Scheduling
Algorithm (DASA) [11] assumes time utility functions are
non-increasing downward step functions. The Utility Accrual
Packet Scheduling Algorithm (UPA) [12], which extends an
algorithm presented by Chen and Muhlethaler [13], assumes
time utility functions can be approximated using a strictly
linearly decreasing function. Gravitational task models [14]
assume that the shapes of the time utility functions are
symmetric and unimodal. In addition it is assumed that utility
is gained when the non-preemptable job is scheduled, which is
equivalent to assuming deterministic job durations with utility
gained on job completion.

No existing utility accrual scheduling approach anticipates
future job arrivals. Therefore, existing techniques are subop-
timal for systems in which future arrivals can be accurately
predicted, such as those encountered under a periodic task
model [10].

MDPs have been used to model sequential decision prob-
lems including applications in cyber-physical domains such
as helicopter control [15], [16] and mobile robotics [17],
[18]. Our previous work [5]–[7] formulated MDPs to de-
sign scheduling policies in soft real-time environments with
always-available jobs, but did so only for simple utilization-
share-based semantics. In this work we extend such use
of MDPs to design new classes of utility-aware scheduling
policies for periodic tasks with stochastic duration.

Several other attempts have been made to address the
difficulties that arise from non-preemptive and stochastic tasks
in real-time systems. Statistical Rate Monotonic Scheduling

(SRMS) [19] extends the classical Rate Monotonic Scheduling
(RMS) [10] algorithm to deal with periodic tasks with stochas-
tic duration. Constant Bandwidth Servers (CBS) [20] allow
resource reservation in real-time systems where tasks have
stochastic duration. Manolache, et al. [21], estimate deadline
miss rates for non-preemptive tasks with stochastic duration.
These works use classical scheduling abstractions such as
priority and deadlines, rather than time utility functions, and
are thus not appropriate for systems with the more complex
timing semantics considered by our approach.

III. SYSTEM MODEL

We consider a system of non-preemptable jobs with stochas-
tic durations and timing semantics formulated as time utility
functions (TUFs). More formally, in our system model n
periodic tasks (Ti)ni=1 require mutually exclusive use of a
single common resource. Each task Ti consists of an infinite
sequence of non-preemptable jobs, where Ji,j denotes the jth
job in Ti. A new job of Ti is added to the ready queue every
pi time units, where pi is the period of task Ti. Each job of a
task has stochastic duration distributed according to probability
density function Di, where Di(t) is the probability of the
job’s duration being exactly t. Each task has an associated
time utility function Ui(t) that maps the time elapsed since
the release time ri,j of job Ji,j to a real number representing
the utility of completing that job at time ri,j + t.

At each invocation the scheduler can choose to run any
available job Ji,j in the ready queue. Doing so results in the
job occupying the scheduled resource stochastically for some
number of quanta distributed according to Di. The scheduler
may instead choose to keep the resource idle for the next
quantum. The optimal scheduling policy under this system
model chooses scheduling actions (dispatching an available
job on the scheduled resource or keeping the resource idle
for a quantum) so as to maximize long term system utility
accrual. Note that schedules produced under this model need
not be work conserving (scheduling some job if any job
is available) since a work conserving schedule may not be
optimal given arbitrarily shaped time utility functions. For
example, unimodal TUF Ui may peak too late relative to job
Ji,j if the job were to be run at its earliest opportunity.

To make this MDP-based scheduling policy design approach
feasible we place additional constraints on the task duration
distribution, Di, and the time utility function Ui. We assume
that each task has a worst-case execution time wi that serves
as an upper bound on the support of Di. We also assume
that each task has a termination time tmi after which Ui(t)
becomes zero. At time ri,j+ tmi job Ji,j is removed from the
ready queue, if it hasn’t yet been chosen to be run. We discuss
these requirements in greater detail in Section IV based on the
illustrative example task set shown in Figure 1.

IV. SOLUTION APPROACH

In previous work [5]–[7] we presented methods for formu-
lating scheduling problems with non-preemptable jobs with
stochastic duration as MDPs. Using existing techniques from



Fig. 1. Example 3 task system. Periods pi, time utility curves Ui, and termination times tmi are shown for each task.

the operations research literature [22] we were able to derive
optimal policies for a particular class of scheduling prob-
lems. That work focused on scheduling always-available non-
preemptable jobs with stochastic durations to adhere to a
desired resource share. This was achieved by penalizing the
system in proportion to its deviation from the desired share
target.

In this work we extend those techniques to design utility-
aware rather than share-aware scheduling policies. In addition,
we extend our previous work from an always-available job
model to a periodic task model.

A. Markov Decision Processes (MDPs)

An MDP is a four-tuple (X ,A, P,R) consisting of a
collection of states X and actions A, a transition system
P that establishes the conditional probabilities P (y|x, a) of
transitioning from state x to y on action a, and a reward
function R that specifies the immediate utility of acting in each
state. The reward function R is defined over the domain of
state-action-state tuples such that R(x, a, y) is the immediate
reward for taking action a in state x and ending up in state y.

A policy π for an MDP maps states in X to actions in A.
At each discrete decision epoch k the agent observes the state
of the MDP xk, then selects an action ak = π(xk). The MDP
then transitions to state xk+1 with probability P (xk+1|xk, ak)
and the controller receives reward rk = R(xk, ak, xk+1).
Given a discount factor γ ∈ [0, 1), the value of a policy, written
V π , is the expected sum of long-term, discounted rewards
obtained while following that policy:

V π(x) = E

{ ∞∑
k=0

γkrk

∣∣∣∣∣x0 = x, ak = π(xk)

}
. (1)

Overloading notation, we let

R(x, a) =
∑
y∈X

P (y|x, a)R(x, a, y)

denote the expected reward when executing a in x. Then we
may equivalently define V π as the solution to the linear system

V π(x) = R(x, π(x)) + γ
∑
y∈X

P (y|x, π(x))V π(y)

for each state x. When |R(x, a)| is bounded for all actions in
all states, the discount factor γ prevents V π from diverging
for any choice of policy, and can be interpreted as the prior
probability that the agent survives from one decision epoch to
the next [23].

Our objective is find some policy π∗ that achieves maximal
value V ∗ in every state. V ∗ satisfies the Bellman equation

V ∗(x) = max
a∈A

R(x, a) + γ
∑
y∈X

P (y|x, a)V ∗(y)


There are numerous algorithms for computing V ∗ for MDPs
with finite state and action spaces [22]. Given V ∗, an optimal
policy can be obtained by choosing the action that results in
the greatest expected successor state value.

B. Utility-Aware Task Scheduling MDP

In our system model there are two salient features that
determine the scheduler state: the system time, and the set
of jobs available to run. We define our MDP over the set of
scheduler states. The scheduler state is composed of a variable
for tracking the elapsed time since the system was started, τ ,



and indicator variables qi for each task that track whether there
are any jobs of Ti in the ready queue.

For the experiments presented in Section V we assume that
tmi ≤ pi. In this case qi is defined over {0, 1} and is 1 if
there is a job of task Ti in the ready queue and 0 otherwise.
Because we require the termination time of the job to be less
than or equal to the task period, we need only reason about
one job per task at a time. For example, in Figure 1 tasks T1

and T3 have TUFs that satisfy this restriction, and so only a
single job of each task may be in the ready queue at any time.

If we allow tmi > pi but assume that jobs of the task must
be run in order, qi is an integer which counts the number of
jobs of Ti that are in the ready queue. The values that qi can
take are bounded by dtmi/pie, the maximum number of jobs
of Ti that can be in the ready queue. Note that this MDP is a
strict generalization of the case where tmi ≤ pi. For example,
in Figure 1 2p2 < tm2 < 3p2. Consequently, at most three
jobs of task T2 may be in the ready queue.

If we allow tmi > pi and also allow jobs of a task to be run
out of order, qi becomes an array in {0, 1}dtmi/pie that tracks
which of the dtmi/pie most recently released jobs of Ti are in
the ready queue. Note that this again is a strict generalization
of the previous two cases.

An action ai,j in our MDP is the decision to dispatch job
Ji,j and is only valid in a scheduler state if qi indicates Ji,j
is in the ready queue. If we assume that tmi ≤ pi (or that
jobs of Ti must be run in order), only a single job of Ti is
ever eligible to be run. In this case we can simplify our set of
actions to ai, the action that runs that eligible job. In addition
there is a special action aidle, available in every state, which
is the decision to advance time in the system by one quantum
without scheduling any job.

With this mapping from scheduler states to MDP states in
place, the transition function P (y|x, a) is the probability of
reaching scheduler state y from x when choosing action a.
We discuss the formulation of the reward function for our
utility aware task scheduling MDP next, in Section IV-C.

C. Reward Function

The reward function is defined similarly to the transition
function. The scheduler accrues no reward if the resource is
idled, i.e., R(x, aidle, y) is always zero. Otherwise, R(x, ai, y)
is the utility density of the job of Ti that was just run. The
utility density of a job Ji,j completed at system time τ is is
defined as Ui(τ − ri,j)/(τ − ri,j). Utility density is used as
the immediate reward as opposed to Ui(τ − ri,j) in order to
differentiate between jobs with different durations. It is then
possible to define the expected potential utility density for
running a job of Ti in terms of Di and Ui, as a function of
the age of the job t as shown in Equation 2.

wi∑
d=1

Di(d)Ui(d+ t)
d

(2)

An example calculation of the expected potential utility
density as a function of job age is shown in Figure 2. Task

Fig. 2. Expected potential utility density.

Ti has TUF Ui as shown in the upper graph. Di is defined
on the range [1, 2] with Di(1) = 0.5 and Di(2) = 0.5. The
bottom graph shows the result of applying Equation 2. This is
defined to be the expected immediate reward for selecting the
action that schedules a job of Ti with the given age.

If we assume tmi < pi, the age of the job of task Ti at
time τ is τ mod pi. Under this set of assumptions the expected
immediate reward R(x, ai) is:

R(x, ai) =
wi∑
d=1

Di(d)Ui(d+ (τ mod pi))
d

(3)

If we allow tmi > pi but assume that jobs must be run
in order the age of the job of task Ti scheduled by ai is
pi(qi − 1) + (τ mod pi) and the immediate reward is:

R(x, ai) =
wi∑
d=1

Di(d)Ui(d+ pi(qi − 1) + (τ mod pi))
d

(4)

D. Wrapped Utility-Aware Task Scheduling MDP

Because τ is not bounded the resulting MDP has an infinite
number of states. However, the hyperperiod H of the tasks,
defined as the least common multiple of the task periods,
allows us to wrap the state space of our MDP into a finite
set of exemplar states as follows. The intuition is similar to
that for hyperperiod analysis in classical real-time scheduling
approaches. Given two states x and y with identical qi for
all tasks and times that map to the same point in the system
hyperperiod, τx mod H = τy mod H , the two states will
have the same relative distribution over successor states and
rewards. This means that the optimal policy will be the same
at both states. Thus it suffices to consider only the finite subset
of states where τ < H . Anytime the MDP would transition
to a state where τ ≥ H it instead transitions to the otherwise
identical state with system time τ mod H .

An example of a wrapped utility-aware task scheduling
MDP is shown in Figure 3. In this example there are two tasks
T1 and T2 with deterministic quantum durations (D1(1) =



(a) Transitions between MDP states for action aidle (b) Transitions between MDP states for action a1

(c) Transitions between MDP states for action a2 (d) Set of reachable states

Fig. 3. Wrapped utility-aware task scheduling MDP for two tasks with periods p1 = 4 and p2 = 2, termination times equal to periods, and deterministic
single quantum duration.

D2(1) = 1), and termination times equal to their period
(tm1 = p1 = 4, and tm2 = p2 = 2). The states of the MDP
are projected so that states with the same τ are arranged in
columns, and states with the same tuple of indicator variables
(q1, q2) are arranged in rows. Figures 3(a), 3(b), and 3(c) show
the transitions between states for taking action aidle, a1 and
a2 respectively. The states where τ = 0 are duplicated on
the right side of each figure to illustrate our state wrapping
over the hyperperiod, which for the example shown is 4.
Figure 3(d) shows the set of reachable states from the state
where q1 = q2 = 1 and τ = 0, which is the system’s initial
state.

Such state wrapping bounds the values that each of the state
variables can take, and consequently bounds the size of the
MDP. If we assume tmi ≤ pi, an upper bound for the number
of states in the scheduling MDP is

2nH. (5)

If instead we allow tmi > pi but assume jobs of a task must
be run in order, an upper bound for the number of states in
the scheduling MDP is

H

n∏
i=0

dtmi/pie. (6)

If we allow tmi > pi but let jobs of a task run in arbitrary

order, an upper bound for the number of states is

H2
∑n

i=0
dtmi/pie. (7)

In each case, the wrapped MDP has finitely many states.
Consequently it can be solved using existing techniques from
the operations research literature, and the resulting policy for
this scheduling MDP is an optimal utility accrual scheduling
policy for the modeled system. However, the size of the state
space is sensitive not only to the number of tasks and their
constraints but also to the size of the hyperperiod. As such,
the solution approach presented in this paper is especially
appropriate for systems with harmonic tasks since in this case
H = max(p1, . . . , pn), which reduces the size of the state
space that must be considered.

V. EXPERIMENTAL EVALUATION

Although the solution outlined in Section IV can be applied
to arbitrary time utility functions, for the purposes of evalua-
tion we concentrate on three particular classes of representative
time utility functions, of the form shown in Figure 4.

These three classes of time utility functions are both able to
represent a wide range of timing constraints and suitable for
evaluating the approach presented in this paper. The first curve,
shown in Figure 4(a), is representative of time utility functions
for hard real-time jobs, whose utility remains constant up until



(a) Downward Step (b) Linear Drop

(c) Target Sensitive

Fig. 4. Representative time utility functions.

a deadline after which the job provides no utility1, e.g., jobs
in avionic or automotive control systems. In our experiments
this family of curves is parameterized by two variables: tmi,
a termination time after which the expected utility of the tasks
falls to zero, and ui the upper bound on the utility curve, which
for the experiments presented here was chosen uniformly at
random from the range [2,32].

The second curve, shown in Figure 4(b), is representative
of time utility functions for soft real-time jobs whose utility
degrades with time but suffers no sharp drop, e.g., calculation
of distant waypoints in on-board flight planning [24]. In our
experiments this family of curves is parameterized by three
variables: tmi, a termination time after which the expected
utility of the tasks falls to zero; ui the upper bound on the
utility curve (chosen uniformly at random from the range
[2,32]); and cpi the critical point at which the expected utility
of the job starts to fall linearly toward zero (chosen uniformly
at random from the range [0,tmi]).

The third curve, shown in Figure 4(c), is representative of
time utility functions for target sensitive jobs - jobs sensitive
to jitter but less sensitive to delays, e.g., in control systems
where inter-job jitter can cause instabilities and failure [25],
or in media-streaming applications in which buffering is not
possible since inter-frame jitter can cause degradation of
quality [26]. In our experiments this family of curves is
parameterized by three variables: tmi, a termination time after
which the expected utility of the tasks falls to zero; ui the
upper bound on the utility curve (chosen uniformly at random
from the range [2,32]); and cpi the critical point before which
the expected utility rises linearly toward ui and after which
the expected utility of the job starts to fall linearly toward zero
(chosen uniformly at random from the range [0,tmi]).

Task sets were created by randomly generating duration dis-
tributions and periods. Periods were randomly chosen factors
of 2400 in the range [100, 2400]. Choosing periods for tasks
this way ensured that the hyperperiod of the task set was at

1The case where a deadline miss implies system failure can be modeled
via a similar step-function TUF in which utility drops to −∞ instead of 0.

Fig. 5. Task duration distributions used in experiments.

most 2400.
The duration distributions are balanced as shown in Fig-

ure 5, and are parameterized by three values: a lower bound
li and upper bound ui on the duration, and a threshold point
thi such that:

thi∑
t=li

Di(t) = 0.80

wi∑
t=thi+1

Di(t) = 0.20

In addition, these points were chosen to meet the following
constraints:

wi/pi ≥ thi/pi ≥ li/pi ≥ 0.05

thi/pi ≥ 0.10

n∑
i=1

li/pi = 0.70

n∑
i=1

thi/pi = 0.90

n∑
i=1

wi/pi = 1.20

The values of the duration distribution are uniform in the
ranges [li, thi] and [thi + 1, ui]. Intuitively these constraints
ensure that the task load on the system is normally between
0.70 and 0.90, with occasional transient overloads up to 1.20.

To evaluate the performance of our approach we consider a
greedy policy πg that chooses the action that yields the best
immediate reward in expectation as defined in Equation 3.

πg(x) = argmax
a∈A

{R(x, a)}

As noted in Section IV-C taking the action with the highest
expected immediate reward from scheduler state x corresponds
to scheduling the job with the highest expected potential utility
density. As discussed in [8] this is equivalent to the scheduling
decision made by Generic Benefit Scheduler (GBS) in the
special case where there is no resource contention between
jobs. We use this policy as a baseline for comparing how much



Fig. 6. Comparison of greedy policy performance to MDP-based optimal
policies for 2 task scheduling problems for different classes of time utility
functions.

Fig. 7. Comparison of greedy policy performance to MDP-based optimal
policies for 3 task scheduling problems for different classes of time utility
functions.

improvement is made by solving for the optimal scheduling
policy over using a heuristic approach.

The quality of πg , and π∗, can be compared directly using
our MDP model by evaluating the value of each policy at the
initial state, denoted V πg (0) and V ∗(0) respectively.

Figures 6, 7, 8 and 9 show results of comparing these values
for a set of randomly generated task scheduling problems each
with 2, 3, 4 or 5 tasks respectively. For each task set size, 270
problem instances were generated: 90 for each time utility
function of the three classes shown in Figure 4. Each graph
shows the percentage of random problem instances where
V πg (0) was at least some percentage of V ∗(0). For example,
in the 3 tasks problem instances shown in Figure 7, almost all
the problem instances resulted in the πg having V πg (0) at least
25% or V ∗(0). In only about 20% of problem instances was
V πg (0) at least 90% of V ∗(0). There was very little variation
for the respective quality of the exact and heuristic scheduling

Fig. 8. Comparison of greedy policy performance to MDP-based optimal
policies for 4 task scheduling problems for different classes of time utility
functions.

Fig. 9. Comparison of greedy policy performance to MDP-based optimal
policies for 5 task scheduling problems for different classes of time utility
functions.

Fig. 10. Comparison of greedy policy performance to MDP-based optimal
policies for scheduling problem instances with increasing number of tasks.



approaches for the different classes of time utility functions.
However, target sensitive time utility functions resulted in
better performance overall for the optimal scheduling policy
compared to the heuristic scheduling policy. One reason for
this is that the greedy scheduling policy is work conserving,
and thus cannot let the scheduled resource become idle while
there is an available job. The optimal scheduling policy, on the
other hand, can delay the start of the job in order to maximize
the expected potential utility density.

Figure 10 shows the effect of the number of tasks on
the relative scheduling policy quality for the heuristic and
optimal approaches. As Figure 10 illustrates, as the number of
tasks increases the quality of the heuristic scheduling policy
deteriorates relative to optimal.

These experiments show that existing heuristic approaches
for utility accrual scheduling can perform poorly when tasks
are non-preemptable and have stochastic duration. This is
especially true as the number of tasks grows and if the jobs
are target sensitive. In contrast, the policies produced by our
approach maintain optimal solution quality in the face of these
concerns.

VI. CONCLUSIONS

In this paper we have introduced novel MDP based utility-
aware scheduling policy design techniques for systems with
periodic tasks and jobs that are non-preemptive and run
with stochastic duration. This approach yields optimal utility
accrual schedules appropriate for use in a variety of cyber-
physical systems. These techniques are especially appropriate
for systems with harmonic tasks, which reduces the size of
the state space for the scheduling MDP.

Our utility-aware task scheduling MDP formulation also
provides a framework for comparing the effectiveness of
heuristic utility-aware scheduling policies. Our experiments
demonstrate the superiority of MDP based optimal scheduling
policies over state of the art heuristic utility accrual schedulers
for several representative classes of time utility functions. Our
approach is especially well suited for system configurations
where the performance of heuristic policies is weakest: as the
number of tasks increases and when time utility functions for
the tasks are target sensitive. A more extensive characterization
of when existing heuristics perform poorly is an area that
merits further study.

Improving the scalability of the MDP based techniques
presented here also merits further investigation. We plan to
explore several approaches to that problem as future work. One
approach is to develop parameterized policies that approximate
the behavior of the optimal policies found by solving the
utility-aware task scheduling MDP. A second approach is to
look at simplified utility-aware task scheduling MDPs which
approximate the structure of the original while being less
sensitive to exponential growth in the number of states. A
third approach is to consider compositional and hierarchical
approaches, which use a polynomial number of exponentially
smaller MDPs.
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