
Washington University in St. Louis Washington University in St. Louis

Washington University Open Scholarship Washington University Open Scholarship

All Computer Science and Engineering
Research Computer Science and Engineering

Report Number: WUCSE-2007-50

2007

Perpetual: Byzantine Fault Tolerance for Federated Distributed Perpetual: Byzantine Fault Tolerance for Federated Distributed

Applications Applications

Sajeeva L. Pallemulle, Haraldur D. Thorvaldsson, and Kenneth J. Goldman

Modern distributed applications rely upon the functionality of services from multiple providers.

Mission-critical services, possibly shared by multiple applications, must be replicated to

guarantee correct execution and availability in spite of arbitrary (Byzantine) faults. Furthermore,

shared services must enforce strict fault isolation policies to prevent cascading failures across

organizational and application boundaries. Most existing protocols for Byzantine fault-tolerant

execution do not support interoperability between replicated services while others provide poor

fault isolation. Moreover, existing protocols place impractical limitations on application

development by disallowing long-running threads of computation, asynchronous operation

invocation, and asynchronous request processing. We present Perpetual, a protocol... Read Read

complete abstract on page 2. complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Pallemulle, Sajeeva L.; Thorvaldsson, Haraldur D.; and Goldman, Kenneth J., "Perpetual: Byzantine Fault
Tolerance for Federated Distributed Applications" Report Number: WUCSE-2007-50 (2007). All Computer
Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/150

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Washington University St. Louis: Open Scholarship

https://core.ac.uk/display/233233675?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F150&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F150&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F150&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F150&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F150&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F150&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F150&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/150?utm_source=openscholarship.wustl.edu%2Fcse_research%2F150&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/150

Perpetual: Byzantine Fault Tolerance for Federated Distributed Applications Perpetual: Byzantine Fault Tolerance for Federated Distributed Applications

Sajeeva L. Pallemulle, Haraldur D. Thorvaldsson, and Kenneth J. Goldman

Complete Abstract: Complete Abstract:

Modern distributed applications rely upon the functionality of services from multiple providers. Mission-
critical services, possibly shared by multiple applications, must be replicated to guarantee correct
execution and availability in spite of arbitrary (Byzantine) faults. Furthermore, shared services must
enforce strict fault isolation policies to prevent cascading failures across organizational and application
boundaries. Most existing protocols for Byzantine fault-tolerant execution do not support interoperability
between replicated services while others provide poor fault isolation. Moreover, existing protocols place
impractical limitations on application development by disallowing long-running threads of computation,
asynchronous operation invocation, and asynchronous request processing. We present Perpetual, a
protocol that facilitates unrestricted interoperability between replicated services while enforcing strict
fault isolation criteria. Perpetual supports both asynchronous operation invocation and asynchronous
request processing. Perpetual also supports long-running threads of computation, enabling Byzantine
fault-tolerant execution of services that carry out active computations. We present performance
evaluations demonstrating a moderate overhead due to replication.

https://openscholarship.wustl.edu/cse_research/150?utm_source=openscholarship.wustl.edu%2Fcse_research%2F150&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/150?utm_source=openscholarship.wustl.edu%2Fcse_research%2F150&utm_medium=PDF&utm_campaign=PDFCoverPages

Department of Computer Science & Engineering

2007-50

Perpetual: Byzantine Fault Tolerance for Federated Distributed
Applications

Authors: Sajeeva L. Pallemulle, Haraldur D. Thorvaldsson, and Kenneth J. Goldman

Corresponding Author: kjg@cse.wustl.edu

Web Page: http://dsys.cse.wustl.edu/

Abstract: Modern distributed applications rely upon the functionality of services from multiple providers.
Mission-critical services, possibly shared by multiple applications, must be replicated to guarantee correct
execution and availability in spite of arbitrary (Byzantine) faults. Furthermore, shared services must enforce strict
fault isolation policies to prevent cascading failures across organizational and application boundaries. Most
existing protocols for Byzantine fault-tolerant execution do not support interoperability between replicated
services while others provide poor fault isolation. Moreover, existing protocols place impractical limitations on
application development by disallowing long-running threads of computation, asynchronous operation
invocation, and asynchronous request processing.

We present Perpetual, a protocol that facilitates unrestricted interoperability between replicated services while
enforcing strict fault isolation criteria. Perpetual supports both asynchronous operation invocation and
asynchronous request processing. Perpetual also supports long-running threads of computation, enabling
Byzantine fault-tolerant execution of services that carry out active computations. We present performance
evaluations demonstrating a moderate overhead due to replication.

Type of Report: Other

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160

Perpetual: Byzantine Fault Tolerance for Federated Distributed Applications

Sajeeva L. Pallemulle Haraldur D. Thorvaldsson Kenneth J. Goldman
Department of Computer Science and Engineering

Washington University in St. Louis, St. Louis, MO 63130 USA
{sajeeva, harri, kjg}@cse.wustl.edu

ABSTRACT
Modern distributed applications rely upon the function-

ality of services from multiple providers. Mission-critical
services, possibly shared by multiple applications, must
be replicated to guarantee correct execution and availabil-
ity in spite of arbitrary (Byzantine) faults. Furthermore,
shared services must enforce strict fault isolation policies
to prevent cascading failures across organizational and ap-
plication boundaries. Most existing protocols for Byzan-
tine fault-tolerant execution do not support interoperabil-
ity between replicated services while others provide poor
fault isolation. Moreover, existing protocols place imprac-
tical limitations on application development by disallowing
long-running threads of computation, asynchronous opera-
tion invocation, and asynchronous request processing.

We present Perpetual, a protocol that facilitates unre-
stricted interoperability between replicated services while
enforcing strict fault isolation criteria. Perpetual supports
both asynchronous operation invocation and asynchronous
request processing. Perpetual also supports long-running
threads of computation, enabling Byzantine fault-tolerant
execution of services that carry out active computations. We
present performance evaluations demonstrating a moderate
overhead due to replication.

KEY WORDS
Byzantine fault tolerance, replicated services, long-running
threads, asynchronous invocation, asynchronous processing

1 Introduction
Fault tolerance requires replication. Mission-critical ser-

vices must handle failures at time scales too short for hu-
man oversight. Fail-stop failures, such as host crashes, can
be handled by switching to auxiliary host(s). However, a
host under the control of an attacker may work to disrupt
the application, possibly in collusion with other hosts. Al-
though tolerating such arbitrary (Byzantine) faults is more
expensive1 than tolerating crash failures, recent research
has yielded practical algorithms [1, 2] for Byzantine fault-

13f+1 state machine replicas are needed to tolerate f Byzantine faults.

tolerant execution of deterministic state machines. Most no-
tably, Castro and Liskov [1] have presented a protocol for
Byzantine fault-tolerant replication of passive services that
update their state in response to external requests.

Growing adoption of service oriented architectures
(SOA) [3] has resulted in services that perform common
tasks for multiple distributed applications. Such services
range from simple mapping services (e.g., Google Maps) [4]
to mission-critical services such as payment gateways (e.g.,
Google Checkout [5], Amazon FPS [6]). Previous attempts
to support Byzantine fault-tolerant execution of mission-
critical services have failed to gain traction due to several
major limitations:

Service interoperability: Most prior protocols, including
CLBFT, do not support replicated calling services that issue
requests to target services that process requests. Similarly,
most prior protocols do not support target services that pro-
cess requests from replicated calling services. SOA appli-
cations require interoperability between services regardless
of their degrees of replication.

Safety and liveness: Even Byzantine fault-tolerant repli-
cated services may become compromised2 over time. Most
prior protocols guarantee safety3 and liveness4 of target ser-
vices even when calling services are compromised. How-
ever, no prior protocol guarantees both safety and liveness
of calling services if target services are compromised. Con-
sequently, a compromised target service can violate safety
of a calling service by sending different results to different
calling replicas. Moreover, it can violate liveness of a call-
ing service by not responding to outstanding requests. This
model is clearly inadequate for services shared among many
distributed applications since faults can propagate across or-
ganizational and application boundaries. If all calling repli-
cas can be guaranteed to agree upon the same result values
(safety), the calling logic can use application level verifi-
cation strategies (e.g., queries to multiple target services)
to establish the integrity of result values (and take compen-

2A compromised Web Service has more than f faulty replicas.
3If state of all non-faulty replicas is identical after each execution step.
4If scheduled tasks execute eventually.

satory actions if necessary). If requests issued to unrespon-
sive target services can be deterministically aborted by all
non-faulty calling replicas (liveness), the calling logic can
issue requests to alternate target services instead.

Programming model: BFT protocols only support deter-
ministic services. However, prior BFT protocols place an
additional restriction by disallowing long-running compu-
tations at replicated services. This model is inadequate to
support services that perform a variety of active mission-
critical tasks (e.g., network monitoring, Web Services or-
chestration) in long-running threads of computation.

Performance: BFT replication requires multiple rounds of
voting, increasing operation latency. Asynchronous invo-
cation by replicated callers allows services to continue to
process pending tasks instead of being blocked waiting for
results. To process incoming requests, a target service may
need to issue requests to another service and wait for re-
sults. If asynchronous processing is supported, then target
services may deterministically choose to complete such re-
quests at a later time and start processing other requests. By
supporting both asynchronous invocation and asynchronous
processing, the throughput of replicated services can be in-
creased substantially. No prior approach supports asyn-
chronous invocation or processing.

This paper presents Perpetual, a practical solution for
Byzantine fault-tolerant replication of deterministic ser-
vices. Perpetual enables interaction between replicated ser-
vices with any degree of replication. We enforce strict
fault isolation between services, ensuring both safety and
liveness in spite of Byzantine faults. Perpetual supports
long-running active threads of computation as well as asyn-
chronous invocation and processing, leading to improved
coverage and performance over prior protocols. This pa-
per contributes (1) significant modifications of our previous
work [7] to support asynchronous invocation and processing
to mask latency, (2) an efficient extensible implementation
using Java, and (3) thorough performance evaluation exper-
iments on both a local area network and the PlanetLab [8]
research network.

An immediate use for Perpetual would be in the man-
agement of networks and distributed applications. These
types of systems are growing more complex and costly
to administer and are increasingly targeted by attackers
[9, 10]. These factors have spurred research into systems
and networks regulated by highly autonomous configuration
management and monitoring services [11, 12, 13]. Fault-
tolerance concerns argue against centralizing such func-
tions, since the failure of a management service may put
an entire enterprise at risk. However, it is fundamentally
difficult to design decentralized algorithms for tasks such as
resource allocation, load balancing, and intrusion detection.
Hance, logically centralized control algorithms actively ex-
ecuting on replicated Byzantine fault tolerant services are

an attractive alternative.
The rest of this paper is organized as follows. Section 2

compares Perpetual with prior work in the field. Section 3
provides background information before we present the Per-
petual algorithm in Section 4. Sections 5, 6, and 7 describe
the architecture, API, and main design choices in our imple-
mentation. Section 8 shows the results of our microbench-
marks. We conclude in Sections 9 and 10 with a summary
and directions for future work.

2 Related Work
We build upon the Castro and Liskov Byzantine Fault

Tolerance (CLBFT) algorithm [1] to develop a practical, ef-
ficient, and comprehensive protocol for BFT execution of
services. In this section, we present unique properties of
Perpetual in the context of related work. In particular, we
compare Perpetual to the work of Fry and Reiter [14], Im-
mune [15], SWS [16], BFT-DNS [17], and Thema [18].

Replicated service interoperability: Perpetual, Immune, and
SWS enable unrestricted interoperability among services
with differing degrees of replication. In contrast, CLBFT
only supports replicated services that process requests from
unreplicated callers. Unlike Immune, Perpetual requires
only a constant number of message hops per request regard-
less of replica group sizes, leading to better performance in
large replica groups. Thema enables replicated callers to is-
sue requests to an unreplicated targets, but does not support
interaction between replicated services. The approach of
Fry and Reiter is a quorum-replication technique that only
supports simple read/write operations, whereas Perpetual
supports state machine replication.

Fault isolation: Perpetual guarantees the safety and live-
ness of all non-faulty services even when interacting with
potentially compromised services. Immune, Thema, and
BFT-DNS guarantee both safety and liveness of target ser-
vices when calling services are compromised whereas SWS
does not guarantee safety or liveness of target services if
calling services are compromised. BFT-DNS and Immune
only guarantee safety of calling services when target ser-
vices are compromised. Both Thema and SWS guarantee
neither safety nor liveness of calling services when target
services are compromised.

Asynchronous invocation: Similar to prior protocols, Per-
petual supports synchronous requests where a calling ser-
vice must wait for the result of the previous request before
issuing another request to the same target service. In addi-
tion, Perpetual also supports asynchronous requests where
calling services may achieve higher throughput by issuing
new requests without waiting for results of outstanding re-
quests. No other approach (including CLBFT) supports
asynchronous requests.

Asynchronous processing: In Immune, SWS, BFT-DNS,

2

and Thema, the processing of incoming requests is serial-
ized. However, services may have to issue requests to other
services and wait for results while processing external re-
quests. Perpetual enables the service to process other re-
quests and replies (or perform internal active computations)
while waiting for results.

Efficient message authentication: Perpetual employs mes-
sage authentication codes (MAC) [19] to authenticate all
regular communication between replicas. Consequently,
Perpetual enjoys a significantly lower authentication delay
than Immune, SWS, and BFT-DNS that employ full digi-
tal signature schemes in some or all of their communica-
tion. The approach of Fry and Reiter also has low scalability
due to exclusive use of digital signatures and an exponential
growth in the cost of authentication for each nested step in
remote invocations.

Modular implementation: As shown in Section 5, the Per-
petual implementation is highly modular. Our implementa-
tion is not tightly coupled with any cryptographic or trans-
port technology. Such low-level concerns are encapsulated
within modules that can be replaced easily. In contrast, the
CLBFT, Thema, and BFT-DNS implementations are tightly
coupled with a UDP transport medium and the SFS [20]
cryptographic library. Since Immune only seeks to provide
Byzantine fault tolerance to CORBA [21] servers it is also
tightly integrated within the CORBA framework. Imple-
mentation details are not avialable for SWS.

3 Background

The Castro-Liskov Byzantine fault tolerance (CLBFT)
[1] algorithm supports passive deterministic target services
that interact only with unreplicated callers. CLBFT services
require 3f + 1 replicas to tolerate Byzantine faults in up to
f replicas. Messages between replicas can be delayed, re-
ordered, duplicated, or retransmitted but must be eventually
delivered.

In CLBFT, when a caller sends a request to a designated
primary target replica, the primary assigns a sequence num-
ber to the request and forwards it to other replicas in a pre-
prepare message. Since the primary may be faulty, the repli-
cas send a prepare message to each other to ensure they all
received the same request and sequence number. Upon re-
ceiving 2f prepare messages matching the pre-prepare it re-
ceived from the primary, a replica sends a commit message
to all replicas. When a replica has matching commit mes-
sages from 2f + 1 replicas (including itself), it executes the
request and sends the result to the caller. Upon receiving
f + 1 matching replies, the caller accepts the result.

If a caller times out waiting for a reply (e.g., due to a
faulty primary), it sends the original request directly to all
target replicas. If a target replica has not yet received a cor-
responding pre-prepare message, it forwards the request to
its primary and starts a progress timer. If progress under the

current primary is unsatisfactory, the target replicas switch
to a new primary in a view change operation. Since view
changes are expensive, progress timers adapt to prevent fre-
quent view changes.

4 Perpetual Algorithm
Perpetual enables a replicated service to both accept re-

quests from and issue requests to any number of other repli-
cated services (possibly of size one). For ease of exposi-
tion, though, we describe the algorithm in terms of a target
service t, comprised of nt = 3ft + 1 replicas t1, . . . , tnt ,
and a calling service c comprised of nc = 3fc + 1 replicas
c1, . . . , cnc

, where ft and fc are the upper bounds on the
number of faulty replicas tolerated by the target and call-
ing services, respectively. Our formal I/O Automata [22]
model, assumptions, and proof sketch may be found in [23].

Each replica i (target or calling) is composed of a voter
vi and a driver di. The voters and the drivers form two dis-
tinct replica groups with the voter and driver of a particular
replica co-existing on a single host. Voters of a service s
use CLBFT to agree on replies to requests originated by s
as well as external requests sent to s by other services.

Each driver contains an executor, a black box capturing
application behavior. Executors model deterministic appli-
cations that: (1) request operations on target services and
process their replies and (2) execute operations requested
by calling services and send back replies. The requests may
be synchronous (blocking) or asynchronous (non-blocking).
Since executors are deterministic, we are guaranteed that if
two correct executors (of the same replica group) have gone
through the same sequence of requests and replies, the next
request or reply issued by those executors will match.

Replicas of a particular replica group may receive ex-
ternal requests, or replies for outstanding requests at differ-
ent times. Yet we require their executors to consume all
incoming requests and replies in the same exact order. Ad-
ditionally, since some replicas in the group may be faulty or
external services may be compromised, replicas must carry
out Byzantine agreement on both reply values and external
requests. Both of these requirements are met by the vot-
ers. Each voter participates in the agreement on replies and
external requests and places them in a local event queue in
the order of agreement. Each queue is consumed by the
local executor in a blocking operation. Since all executors
issue the same sequence of requests (including requests to
dequeue items from the event queue), all executors of non-
faulty replicas process the same external requests or out-
standing replies at the same points in their executions.

4.1 Normal Operation

We illustrate the algorithm in Figure 1 by tracing the ex-
ecution of a request in the non-faulty case. When the ex-
ecutor at calling replica cj requests an operation to be per-
formed by t, the driver dj will send the request to the voter

3

Calling drivers send request to
target voter primary.

Target voters forward reply to
responder.

Calling drivers forward result
to calling voter primary.

Calling drivers learn the result
from co-located calling voters.

Target voter replicas run
CLBFT to agree on request

Calling voters run CLBFT to
agree on the result.

1.

2.

5.

7.

8.

9.

d1 vP d2 v2 d3 v3 d4 v4 d1 vP d2 vR d3 v3 d4 v4

 c1 c2 c3 c4 t1 t2 t3 t4 Stages of the Algorithm

Target voters agree on request

Target voters pass the request
to co-located target drivers

3.

Target drivers calculate and pass
result to co-located target voters

4.

Responder sends reply bundle
to calling drivers.

6.

Calling voters agree on result

Figure 1. The stages of a normal (non-faulty) request. Ellipses show passive voters (v) and rectangles show active drivers (d) of
service replicas. The primaries (P) of both voter groups and the responder (R) of the target voter group are also shown.

primary of t (Stage 1). The voter primary of t will wait for
at least fc + 1 matching requests before starting CLBFT to
agree on the request (Stage 2). Upon agreement, each voter
vk of t will pass the request to its co-located driver dk (Stage
3) using the local event queue. The executor at dk will de-
queue the request, execute it (possibly by issuing external
requests) and send the result back to voter vk via driver dk

(Stage 4). Note that the executor at dk is not required to fin-
ish executing a request before starting the execution of the
next request. The executor at dk, for example, may deter-
ministically choose to start the execution of the next request
while waiting for replies to external requests that were is-
sued during the execution of the previous request.

Under CLBFT, each replica of t would send its reply di-
rectly to c. However, c is replicated and we wish to avoid
the nt ∗ nc messages that would result from having all vot-
ers of t send replies to all drivers of c. Therefore, each voter
of t will forward its reply to a particular voter of t, known
as the responder (Stage 5). The responder, specified in the
original request messages from the drivers of c, will col-
lect ft + 1 matching replies and forward the reply bundle
to each driver of c (Stage 6). When a driver dj of calling
replica cj receives this message, it will authenticate the re-
ply bundle and forward the result to the primary of c’s voter
group (Stage 7) that will use CLBFT to agree on the reply
(Stage 8). Once agreement has been reached, each voter of
c will enqueue the result in the local event queue (Stage 9).
When an executor of c deterministically decides to consume
the result of a request, it will pull that result from the event

queue, blocking if necessary until a result for that request is
available in the queue.

4.2 Fault Handling

Driver dj of calling replica cj starts an operation timer
upon sending a request to t. If the timer expires before a
reply is received, there are three possible explanations: (1)
The voter primary of t is faulty and discarded the request;
(2) The responder of t is faulty and didn’t send the reply to
some or all of the calling replicas; or (3) The timeout value
is too low for current network conditions.

When dj times out waiting for a reply, it re-sends the re-
quest to all nt voters of t. If a voter vk of target replica
tk receives matching requests from at least fc + 1 differ-
ent calling drivers, it checks whether its primary has started
agreement on the request. If not, vk forwards the request
(including the bundle of fc + 1 signatures) to its primary. It
also starts a view-change timer, as defined in CLBFT. Once
the executor at target replica tk has successfully executed
the operation (potentially under a new primary among the
voters of t), voter vk multicasts the reply to all drivers of c.
If there are no more than ft faulty target replicas, each driver
of c eventually receives at least ft +1 matching replies, and
the reply is then processed as in the normal case.

4.2.1 Compromised Calling Group

If c is compromised (if more than fc replicas of c are faulty),
it should not be able to violate the correctness of t. Since the

4

Encrypted Communication

RESULT

VOTE
REQ.

Perpetual Driver
Algorithm

RPC
OP.A

p
p

li
ca

ti
o

n Calling Service Logic

RESULT

Perpetual Voter Logic

RESULT

(14)

CLBFT
REP.

CLBFT Algorithm

Perpetual Voter Algorithm

VOTE
REQ.

CLBFT
MSG.

CLBFT
 MSG.

VOTE
REQ.

RES.

(16)

(16)

Caller

BFTAdapter

V
o

te
rQ

u
eu

eL
is

te
n

er

ChannelListener

D
ri

v
er

E
n

g
in

e

(2)(11)

 RPC
 REQ.

OutputChannel

(10)

RPC
REP.

C
h

an
n

el
A

d
ap

te
r

(1)

A
p

p
li

ca
ti

o
n

Application

(14)

CLBFT
MSG.

(15)(12)

B
F

T
E

n
g

in
e

BFTMessageListener

VoterMessageChannel

ChannelListener

(12)V
o

te
rE

n
g

in
e (11)(13)

OutputChannel

(11) (13)

CLBFT
 MSG.

Connection

RPC OP.

RES.
RPC OP.

Perpetual Voter Logic

RPC OP.

(6)

CLBFT
REP.

CLBFT Algorithm

Perpetual Voter Algorithm

RPC
REQ.

CLBFT
MSG.

Connection

CLBFT
 MSG.

RPC
REQ.

RPC
OP.

(8)

Target

V
o

te
rQ

u
eu

eL
is

te
n

er

OutputChannel

A
p

p
li

ca
ti

o
n

Application

(6)

CLBFT
MSG.

(7)(4)

BFTMessageListener

VoterMessageChannel

ChannelListener

(4)

(3) (5)

OutputChannel

(2) (5)

CLBFT
 MSG.

RPC
REP.

C
h

an
n

el
A

d
ap

te
r

V
o

te
rE

n
g

in
e

Perpetual Driver
Algorithm

A
p

p
li

ca
ti

o
n Target Service Logic

BFTAdapter

V
o

te
rQ

u
eu

eL
is

te
n

er

ChannelListener

D
ri

v
er

E
n

g
in

e

(9)

(10)

(8)

B
F

T
E

n
g

in
e

Figure 2. High-level modules (darkly shaded on the left) and interfaces (rectangles at module edges) of the Perpetual architecture.
The numbered arrows show the flow of messages during fault-free execution.

voters of t only start agreement upon receiving matching re-
quests from at least fc + 1 different replicas of c, the case
of a compromised calling group c reduces to the case of a
single faulty unreplicated caller in CLBFT, and safety is en-
sured. A potential concern is replicas of c sending multiple
quorums (of size fc + 1) with matching requests but with
different designated responders. A faulty colluding voter
primary at t could selectively forward different quorums to
different replicas of t. In this case, replicas of t may for-
ward replies to different responders potentially preventing
any responder from collecting the ft + 1 matching replies
needed for forwarding the reply to c. This does not affect
correctness, though, since c is compromised to begin with.

4.2.2 Compromised Target Group

If t is compromised, it should not be able to violate the cor-
rectness of c nor inhibit its progress. Replicas of c indi-
vidually accept replies from t upon receiving ft + 1 valid
signatures for it, but t could send quorums of replies with
different result values to different replicas of c. If at least
fc + 1 replicas of c receive the same valid reply then that
reply may eventually be voted upon by the voters of c and
placed in the event queue for consumption by all executors
of c. However, if t does not send the same reply to at least
fc +1 replicas of c, the executors of c may deadlock waiting
for a reply that will never arrive. Therefore, at some point
after sending a request to t, each replica of c may choose
to abort the request by sending an abort request to the voter

primary of c. If at least fc +1 abort requests are received by
the voter primary of c before fc + 1 calling drivers forward
matching replies, then the abort request may be voted upon
and placed in the event queue instead of a reply from t.

4.3 Garbage Collection and Checkpoints

The state of replicas must be periodically checkpointed
to persistent storage to enable them to recover from crashes.
Also note that the algorithm as presented assumes unlim-
ited space. We leverage the checkpointing mechanism to
perform garbage collection and bound the amount of space
used. A detailed description of both mechanisms can be
found in [23].

5 System Architecture

This section describes the Perpetual system architecture.
We first present the motivations for our design. We then
describe the role that each major module plays in servicing
an operation request.

5.1 Design Drivers

Correctness: We have formally modeled our algorithm and
reasoned about its correctness using I/O Automata [23]. Our
architecture mirrors the formal model closely and pays care-
ful attention to the invariants established in the proof sketch.

Separation of Concerns: We separate high-level algorithmic
functions (e.g., message processing, quorum management)

5

from the low-level modules comprising their execution envi-
ronment (e.g, network connections, authentication, and en-
cryption)
Modularity: We employ a modular design that allows logi-
cally separate parts of the algorithm to be cleanly replaced.
In particular, our implementation is not bound to specific
communication or cryptographic technologies.

5.2 Modules and Interfaces

We now describe the modules and interfaces of the Per-
petual architecture by tracing the execution of a request dur-
ing fault-free execution, as shown in Figure 2. In stage (1),
the Calling Service passes a Remote Procedure Call (RPC)
Operation invocation to the DriverEngine module using the
BFTAdapter interface. The Perpetual Driver Algorithm aug-
ments the RPC message with the designated responder ID
and a Request ID, creating a RPC Request message. In
stage (2), the RPC Request message is passed to the Chan-
nelAdapter module using the OutputChannel interface. The
ChannelAdapter maintains networking information within
separate Connection modules. It adds authentication data
(see Section 7.3) and sends the resulting message to the
voter of the target primary.

The ChannelAdapter at the target primary receives and
authenticates the message and passes the enclosed RPC Re-
quest up to the VoterEngine module, using the ChannelLis-
tener interface. The Perpetual Voter Algorithm encapsu-
lated within the VoterEngine collects at least fc + 1 (where
c is the caller) matching RPC Requests before sending the
RPC Request to the BFTEngine module using the BFTMes-
sageListener interface, in stage (3). Stages (4) and (5) cor-
respond to the execution of the CLBFT algorithm. Once
CLBFT agreement has been reached on the RPC Request,
the BFTEngine passes the RPC Operation to the Applica-
tion module through the Application interface in stage (6).
The Perpetual voter logic (simple identity function) returns
the RPC Operation back to the CLBFTEngine. In stage
(7), the CLBFT algorithm wraps the RPC Operation in a
CLBFT Reply and passes it to the VoterEngine through
the VoterMessageChannel interface. The CLBFT Reply
is intercepted and the RPC Operation contained within it
is extracted and forwarded to the DriverEngine using the
VoterQueueListener interface, in stage (8). The Target Ser-
vice contained within the Application module at the target
driver fetches the RPC Operation through the BFTAdapter
interface and executes it. In stage (9), the Result is sent back
to the DriverEngine where it is encapsulated within a RPC
Reply message and sent to the ChannelAdapter through the
OutputChannel interface in stage (10) to be sent (possibly
via a designated responder) to the drivers of the caller.

The ChannelAdapter of each calling driver receives the
RPC Reply and passes it up to the DriverEngine module.
The DriverEngine collects at least ft + 1 (where t is the
target service) matching RPC Replies before extracting the

Result and constructing a Vote Request message. In stage
(11), that message is sent to the voter of the calling primary
using the ChannelAdapter. Stages (11) through (16) mirror
stages (2) through (8) exactly, and in stage (16), the Result
is consumed by the Calling Service.

6 Perpetual API

The Perpetual API, shown in Figure 3, is designed to pro-
vide a natural and flexible interface for software develop-
ment that hides the replication from the application devel-
oper.

A service invokes operations on remote services using
the invoke() method of the BFTInvoker interface. The
service is required to provide a request’s payload as a buffer
of bytes. The method returns an Invocation object, rep-
resenting the pending call.

Invocation objects implement Java’s Future interface,
parameterized by Result. The caller may call get()

on the invocation at a later time to obtain the results
of the operation. If the result is not yet available, the
call blocks until it arrives. If the operation is aborted,
an OperationAborted exception will be thrown. The
method invokeAndWait() implements synchronous calls
by invoking an operation, immediately calling get() on
the invocation, and returning the result. The non-blocking
isCancelled() and isDone() methods of Future throw
UnsupportedOperationExceptions. Their semantics
are not compatible with deterministic execution, since an
invocation may complete at different times at different repli-
cas.

An application may request a pending operation to be
aborted by calling cancel() on its invocation. Call-
ing get() with a timeout value will either return the op-
eration’s result or abort it after waiting for at least that
amount of time. Alternatively, applications may use the
setAbortPolicy() method to specify an abort policy ob-
ject embodying a policy for when to abort requests, replac-
ing the default policy of waiting indefinitely for replies (see
Section 4.2). Abort policies may be specified globally, per
service, or per request, using variants of invoke() and
setAbortPolicy() not shown. Although an abort pol-
icy may make its decisions non-deterministically (e.g. by
consulting the local clock) the voter group is used to en-
sure that an operation is aborted deterministically and con-
sistently on all calling replicas. It is important to note that
calling cancel() only requests the abort of an invocation,
the ultimate fate of an invocation is determined by agree-
ment within the voter group. Hence, it is necessary to call
get() on every invocation to learn the outcome.

A caller may request the next available result for any
pending request using the getNextResult() method,
making the invocation fully asynchronous. The method re-
turns the next available reply from the event queue, block-

6

interface BFTAdapter:
Invocation invoke(ID target, Operation op); // Sends the request without blocking.
Result invokeAndWait(ID target, Operation op); // Sends the request and waits for a reply.
Invocation getNextResult(); // Returns the next reply, blocking if none are available.
void setAbortPolicy(abortPolicy policy); // Sets the abort policy.
Operation getNextRequest(); // Returns the next request, blocking if none are available.
void sendResult(ID caller, Result res); // Asynchronously sends the reply.

interface Invocation: // Implements java.util.concurrent.Future.
Result get(); // Blocks if the result is not available.
Result get(long timeOut, TimeUnit unit); // Waits for the specified time and attempts to abort the request.
void cancel(); // Attempts to abort the pending request.

Figure 3. The Perpetual API provides methods to send and receive requests and replies.

ing, if necessary, until some result is available. Note that
calling the get() method of an invocation implicitly re-
moves that invocation from the queue.

A service that accepts incoming requests may use the
getNextRequest() method to obtain the next pending ex-
ternal request. Once the external request has been executed,
the service can use the sendResult() method to send the
result back to the caller.

We omit the details of the CheckpointListener inter-
face that the service must implement in order to divulge its
current state for checkpointing purposes.

7 Implementation
This section details the organization of the Perpetual li-

braries as well as performance-related aspects of the Perpet-
ual implementation. Perpetual is implemented completely
in Java. The code base is organized into three libraries, con-
taining the CLBFT code, the Perpetual code, and the Com-
munications layer code.

7.1 The CLBFT Library

Our initial strategy was to use the BASE [24] implemen-
tation of CLBFT, by giving the C++ BASE library a Java
Native Interface (JNI) wrapper. However, the BASE im-
plementation is not modular, tightly coupling the high-level
CLBFT algorithm with low-level (connections, cryptogra-
phy) concerns5. Therefore, we implemented our own ver-
sion of CLBFT in Java, which abstracts from cryptography
and network functions through interfaces. The CLBFT li-
brary contains the BFTEngine module.

7.2 The Perpetual Core Library

The Perpetual Core library contains the implementations
of the DriverEngine and VoterEngine modules. As with
the CLBFT library, the low-level cryptography and network
functions are delegated elsewhere.

7.3 The Communications Library

DriverEngines and VoterEngines communicate via the
ChannelAdapter (CA) module, which provides a high-level

5BASE also needs cryptography routines from the discontinued SFS
[20] project

connectionless group-oriented messaging interface. The
CA, contained in the Communications Library, encapsulates
all networking, authentication, and encryption functions. It
uses Java’s JCE framework, permitting easy substitution of
cryptography provider libraries. The current CA imple-
mentation uses SSL/TLS [25] over TCP/IP. We favor flow-
and congestion-controlled TCP over connectionless trans-
ports such as UDP, to best support geographically dispersed
replica groups. However, the CA’s architecture allows dif-
ferent transport protocols to be plugged in. Although de-
signed for Perpetual, the CA is general enough to be useful
for other systems needing secure group communication.

The CA guarantees exactly-once (possibly out-of-order)
delivery of messages between correct replicas, as required
by Perpetual. The TCP/SSL transport assigns 64-bit se-
quence numbers to messages and uses explicit message ac-
knowledgements to ensure delivery, even when connections
break and are re-established. Acknowledgements are in-
serted into the data stream every n messages, efficiently en-
coded as 16-bit integers indicating the number of messages
received since the last acknowledgement.

The CA guarantees the authenticity and privacy of mes-
sages. Replicas are identified with RSA public keys, which
are used to establish SSL sessions. Direct messages be-
tween pairs of replicas need no further authentication, but
the CA must also guarantee authenticity of messages that
are sent indirectly via forwarding through (possibly mali-
cious) intermediary replicas. To this end, a CA includes
with each forwardable message a MAC authenticator [19]
for each end-destination recipient replica, preventing the
intermediary replica from altering the message before for-
warding it. A correct intermediary CA collects the MACs
from all incoming copies of a message and then sends to
each end-recipient the MACs intended for it (i.e., one MAC
from each of the original sending replicas.) The relaying
call includes all MACs from all replicas, to enable the relay
receiver to forward them on.

7.4 Optimizations

Our implementation is designed to efficiently scale
to thousands of concurrent connections. It uses the
Java NIO asynchronous I/O library, worker thread

7

pooling through the ExecutorService frame-
work, and pooling of ByteBuffers using wait-free
ConcurrentLinkedQueues.

We strive to minimize data copying as messages are
passed through different modules by utilizing the “gather”
calls of SocketChannel and SSLEngine. This allows
the application layer, the Perpetual layer and CA layer to
provide their respective message headers without additional
copying.

8 Experimental Results and Analysis

The main purpose of our experiments was to show that
Perpetual is scalable and efficient. We began by measur-
ing operation throughput as the number of calling and target
replicas was varied, using groups of size 1, 4, 7, and 10, tol-
erating f = 0, 1, 2, and 3 Byzantine faulty replicas, respec-
tively. We then measured the performance as network la-
tency was varied to simulate the behavior of Perpetual mid-
dleware in both Local Area Network (LAN) and Wide Area
Network (WAN) settings. Experimental results for related
work in the field have only shown the performance on LANs
to the best of our knowledge. However, achieving true
replica failure independence requires replicas to be hosted
in geographically dispersed locations and subnetworks. To
validate our simulated latency results, we repeated a subset
of our experiments on the PlanetLab [8] research network.
Finally, we performed experiments to evaluate the effects of
non-zero execution time and bandwidth load on Perpetual,
as well as evaluating the performance gains made possible
by Perpetual’s support for asynchronous parallel operations.

Our LAN experiments were performed on a dedicated
Washington University testbed [26] made up of 2GHz
Opteron machines with 512 MB of RAM, connected via a
Netgear GSM7352S Gigabit Ethernet router (with the ping
tool reporting 85µs pairwise RTTs). All machines ran Red-
Hat Desktop 4 (kernel version 2.6.9-42.0.3.EL). The WAN
experiments were carried out on PlanetLab nodes running
Fedora Core 4 (kernel version 2.6.12-1.1398 FC4) with our
slice reserved using the Sirius Calendar. We used two
groups of PlanetLab nodes, chosen to have as similar pair-
wise latencies as possible, using data from the S3 Scalable
Sensing Service [27]. The nodes in the “fast group” had
an average pair-wise latency of 23.52ms, whereas the “slow
group” had an average pair-wise latency of 41.68ms, as
measured by the replicas themselves during runs. All tests
used Java Runtime version 1.6.0 01. The only additional
run-time parameter was to cap the heap size at 128MB. The
SSL ciphersuite used was RSA/RC4/MD5.

8.1 Replica scalability

In our first set of experiments we varied the number of
calling and target replicas executing a particular test. In
all our tests (save for the asynchronous test in Section 8.4)

the calling service invokes an operation that increments an
integer value stored in the target service by a parameter-
specified value. The target computes the new value, stores
it in the target’s state and sends the new value in its reply to
the caller. The caller invokes the operation to increment the
value one thousand times in sequence, invoking the opera-
tion again as soon as it has received the reply to the previous
invocation. It then sends one thousand requests to decre-
ment the value, verifying at the end of the test that the target
is back to the original value.

Figure 4 shows the throughput in operations per second
on the vertical axis, while running on the LAN, computed as
the number of operations executed divided by the total time
to complete the test. The horizontal axis shows the different
calling group sizes and the bars correspond to different sizes
of target groups. Figure 5 shows the same test running on
PlanetLab wide area “fast” nodes.

Observe that the first bar, showing the case of a single
target replica and single calling replica, corresponds to a
baseline case of a non-fault-tolerant caller calling a non-
fault-tolerant target. A singleton group in our implemen-
tation does not go through any rounds of Perpetual protocol
messages but processes requests and replies immediately,
so only the overhead of authentication and encryption is in-
curred. The other bars in the first group, with a singleton
calling group and replicated targets, correspond to the base-
line case of a non-fault-tolerant caller calling a replicated
passive CLBFT service.

On the LAN, the overhead of CLBFT replication over no
replication is 213%. The overhead of Perpetual replication
over CLBFT(which does not replicate the caller), however,
is 62%, 89% and, 95%, in the cases of 4, 7, and 10 calling
and target replicas, respectively. The wide-area results paint
a similar picture, validating our testbed results. The pair-
wise latencies varied greatly on the WAN, with a standard
deviation of 28.7ms, so the bars involving only a few repli-
cas are not highly significant. The first bar, for ns = nc = 1

 0

 200

 400

 600

 800

 1000

 0 5 10 15 20 25 30 35 40

R
e
q
u

e
s
t
C

o
m

p
le

ti
o
n
 T

im
e
 (

m
s
/o

p
)

Uniform Latency (ms)

LAN nt = nc = 1
LAN nt = nc = 4
LAN nt = nc = 7

LAN nt = nc = 10
WAN nt = nc = 4
WAN nt = nc = 7

Figure 6. Effects of uniform latency

8

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

1 4 7 10

T
h
ro

u
g
h
p
u
t
(o

p
s
/s

e
c
)

Number of calling replicas (nc)

nt = 1
nt = 4
nt = 7

nt = 10

Figure 4. LAN replica scalability

 0

 5

 10

 15

 20

 25

1 4 7 10

T
h

ro
u

g
h

p
u

t
(o

p
s
/s

e
c
)

Number of calling replicas (nc)

nt = 1
nt = 4
nt = 7

nt = 10

Figure 5. WAN replica scalability

is essentially arbitrary, since different pairs of replicas could
have achieved a significantly higher or lower throughput.

The graph confirms what we would expect from Perpet-
ual, which has a constant number of message hops per re-
quest. It scales well to high degrees of replication, with min-
imal decreases in throughput as group sizes increase. Note,
though, that these results represent the worst-case overhead,
since operations execute almost instantly. As the graphs in
Section 8.4 demonstrate, the relative overhead is much less
with non-trivial operations.

8.2 Effects of latency

We ran experiments designed to measure the effects of
latency on the performance of Perpetual replica groups. In
our first set of tests, we uniformly varied the latency be-
tween all pairs of replicas by testing on the LAN but arti-
ficially delaying the sending of messages. Figure 6 plots
average operation execution times (elapsed time divided by
number of operations) for selected latencies and group sizes.
Increases in latency have a much greater effect on the repli-
cated cases than on the unreplicated case, which does not
go through rounds of agreement. The size of replica groups,
however, does not make a big difference. In fact, the lines
for n = 7 and n = 10 coincide. The graph includes our
data points from our PlanetLab WAN experiments, for the
cases of n = 4 and n = 7 nodes from the “fast” and “slow”
groups. The higher performance is explained by the high
variance of pair-wise latencies and the fact that the fastest
2f + 1 replicas effectively dictate the performance.

8.3 Effects of load

For the experiments in sections 8.1 through 8.2, the
operations were essentially null-operations requiring small
amounts of CPU time and network bandwidth. In the next
set of experiments, we investigate the performance and

overhead of Perpetual as CPU load and bandwidth use are
varied.

We used the same test as before but with additional pro-
cessing time and/or delay for each operation. Figure 7 plots
average request completion times for various CPU loads,
with groups of 4, 7, and 10 replicas. We created loads by
computing SHA-1 hashes of random data buffers of varying
sizes, calibrating their size as to achieve our desired oper-
ation processing times. The graph also shows the relative
overhead of Perpetual replication, defined as replica group
operation completion time divided by non-replicated com-
pletion time. Figure 9 shows the same test but this time half
of the processing time is created through hash computations
while the other half is created by letting the thread sleep,
simulating disk I/O time.

The request completion time is linear in operation execu-
tion time, but note that the relative overhead of using BFT
rapidly diminishes as operation execution time increases.
For example, with a 6ms mixed operation roughly corre-
sponding to a disk access and some processing, Perpetual
replication with nt = nc = 4 adds around 25% of overhead
over the case with no replication.

Figure 8 plots average completion times for various sizes
of operation requests. Requests were inflated by padding
them with random data. The completion times grow lin-
early with request sizes, up until the point where network
processing becomes the bottleneck.

8.4 Effects of asynchronous invocation

For the experiments in sections 8.1 through we used syn-
chronous requests, where a caller waits for the reply to each
request before issuing a new one. We also performed an ex-
periment to gauge performance when issuing asynchronous
requests. We modified the experiment so that instead of is-
suing one request at a time, callers would issue a batch of
requests and then wait for all of them to complete, before

9

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10 12 14 16 18 20
 0

 1

 2

 3

 4

 5

 6

R
e

q
u

e
s
t

C
o

m
p

le
ti
o

n
 T

im
e

 (
m

s
/o

p
)

R
e

la
ti
v
e

 o
v
e

rh
e

a
d

Operation Execution CPU Time (ms/op)

Request Completion Time

Relative Overhead

nt = nc = 1
nt = nc = 4
nt = nc = 7

nt = nc = 10

Figure 7. Effects of CPU load

 0

 5

 10

 15

 20

 0 2000 4000 6000 8000

O
p
e
ra

ti
o
n
 C

o
m

p
le

ti
o
n
 T

im
e
 (

m
s
/o

p
)

Request Size (Bytes)

nt = nc = 1
nt = nc = 4
nt = nc = 7

nt = nc = 10

Figure 8. Effects of request size

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10 12 14 16 18 20
 0

 1

 2

 3

 4

 5

 6

R
P

C
 C

o
m

p
le

ti
o

n
 t

im
e

 (
m

s
/o

p
)

R
e

la
ti
v
e

 o
v
e

rh
e

a
d

CPU and I/O Intensive Operation Execution time (ms/op)

Request Completion Time

Relative Overhead

nt = nc = 1
nt = nc = 4
nt = nc = 7

nt = nc = 10

Figure 9. Effects of mixed load

 0

 100

 200

 300

 400

 500

 600

 700

1 5 10 20 25

T
h

ro
u

g
h

p
u

t
(o

p
s
/s

e
c
)

Number of Parallel Asynchronous Requests

nt = nc = 4
nt = nc = 7

nt = nc = 10

Figure 10. Effects of asynchronous requests

issuing the next batch. The size of parallel request batches
was varied from 1 to 50. As can be seen in Figure 10, this
results in a significant increase in throughput. In the case
of n = 4, the improvement is more than threefold, which
bodes well for applications that can take advantage of con-
current requests. The benefits begin to taper off around 25
parallel requests. We believe the replicas become compute-
bound at that point but intend to investigate this more thor-
oughly in the future.

9 Conclusion

We have presented the algorithm, implementation, and
performance evaluations of Perpetual, middleware that sup-
ports correct execution of complex deterministic services in
spite of Byzantine faults. The results demonstrate that Per-
petual has moderate overhead for non-trivial operations, and
it scales well to large replica groups. Perpetual’s support for
interoperability of services with differing degrees of fault-

tolerance and all the major application communication mod-
els paves the way for deployment of Byzantine fault tolerant
replication of critical distributed applications.

We are currently working toward providing Byzantine
fault tolerance to existing middleware technologies such as
SOAP [28] and CORBA [21]. Although some work has
been done in this field [15, 18, 16], our approach will be
uniquely suited for developing practical systems that require
interaction between replicated services.

10 Acknowledgements

We thank Charlie Wiseman, Ken Wong, and the rest of
the ONL team for their support in using ONL. We also thank
Michael Groner, Bob Lozano, and Justin Honold at Appistry
Inc. for the use of their testbed as well as Sergey Gorin-
sky for his assistance with PlanetLab. The researchers were
supported in part by National Science Foundation grants
0305954, 0618266, and 0722328.

10

References

[1] M. Castro and B. Liskov. Practical Byzantine Fault
Tolerance. In Proc. 3rd Symp. on Operating Systems
Design and Implementation, pages 173–186, 1999.

[2] G. R. Goodson, J. J. Wylie, G. R. Ganger, and M. K.
Reiter. Efficient Byzantine-Tolerant Erasure-Coded
Storage. In Proc. 5th Intl. Conf. on Dependable Sys-
tems and Networks, pages 135–144, 2004.

[3] E. Newcomer and G. Lomow. Understanding SOA
with Web Services (Independent Technology Guides).
Addison-Wesley Professional, 2004.

[4] Google Inc. Google Maps API Concepts, October
2007.

[5] Google Inc. Google Checkout XML API Developer’s
Guide, 2007.

[6] Amazon Web Services. Amazon Flexible Payments
Service, January 2007.

[7] S. Pallemulle, I. Wehrman, and K. Goldman. Byzan-
tine Fault Tolerant Execution of Long-running Dis-
tributed Applications. In 18th IASTED Paralell and
Distributed Computing and Systems, 2006.

[8] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson,
M. Wawrzoniak, and M. Bowman. Planetlab: an over-
lay testbed for broad-coverage services. SIGCOMM
Comput. Commun. Rev., 33(3):3–12, 2003.

[9] Computer Emergency Response Team Coordina-
tion Center (CERT/CC). Statistics 1988-2006,
http://www.cert.org.

[10] Symantec corporation. Symantec internet security
threat report, volume x, September 2006.

[11] A.G. Ganek and T. A. Corbi. The dawning of the auto-
nomic computing era. IBM Systems Journal, 42(1):5–
18, 2003.

[12] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. My-
ers, J. Rexford, G. Xie, H. Yan, J. Zhan, and H. Zhang.
A clean slate 4d approach to network control and man-
agement. SIGCOMM Comput. Commun. Rev., 35(5),
2005.

[13] Ioannis Georgiadis, Jeff Magee, and Jeff Kramer. Self-
organising software architectures for distributed sys-
tems. In WOSS ’02: Proceedings of the first workshop
on Self-healing systems, pages 33–38, 2002.

[14] C. Fry and M. Reiter. Nested Objects in a Byzantine
Quorum-Replicated System. In Proc. 23rd Intl. Symp.
on Reliable Distributed Systems, pages 79–89, 2004.

[15] P. Narasimhan, K. P. Kihlstrom, L. E. Moser, and
P. M. Melliar-Smith. Providing Support for Survivable
CORBA Applications with the Immune System. In
Proc. 19th Intl. Conf. on Distributed Computing Sys-
tems, pages 507–516, 1999.

[16] W. Li et. al. A Framework to Support Survivable Web
Services. In Proc. of the 19th IEEE Intl. Parallel and
Distributed Processing Symp., pages 93–102, 2005.

[17] S. Ahmed. A Scalable Byzantine Fault Tolerant Se-
cure Domain Name System, 2001. Master’s thesis,
Massachusetts Institute of Technology.

[18] M. G. Merideth, A. Iyengar, T. Mikalsen, S. Tai,
I. Rouvellou, and P. Narasimhan. Thema: Byzantine-
Fault-Tolerant Middleware forWeb-Service Applica-
tions. In Proc. 24th Symp. on Reliable Distributed Sys-
tems, pages 131–140, 2005.

[19] B. Prenel and P. van Oorschot. MDx-MAC and Build-
ing Fast MACs from Hash Functions. In Proc. 15th
Conf. on Advances in Cryptology, pages 1–14, 1995.

[20] D. Maziores, M. Kaminsky, M. F. Kaashoek, and
E. Witchel. Separating key management from file sys-
tem security. In SOSP ’99: Proceedings of the sev-
enteenth ACM symposium on Operating systems prin-
ciples, pages 124–139, New York, NY, USA, 1999.
ACM Press.

[21] Object Management Group. The Common Object Re-
quest Broker: Architecture and Specification, 2.5 edi-
tion, September 2001.

[22] N. A. Lynch and M. R. Tuttle. Hierarchical correct-
ness proofs for distributed algorithms. In PODC ’87:
Proceedings of the sixth annual ACM Symposium on
Principles of distributed computing, pages 137–151,
New York, NY, USA, 1987. ACM Press.

[23] I. Wehrman, S. L. Pallemulle, and K. J. Goldman.
Extending Byzantine Fault Tolerance to Replicated
Clients. Technical Report WUCSE-2006-7, Washing-
ton University, 2006.

[24] R. Rodrigues, M. Castro, and B. Liskov. BASE: Using
Abstraction to Improve Fault Tolerance. In Proc. 18th
Symp. on Operating Systems Principles, pages 15–28,
2001.

[25] T. Dierks. RFC 4346: the Transport Layer Security
(TLS) Protocol Version 1.1, 2006.

[26] J. DeHart, F. Kuhns, J. Parwatikar, J. Turner, C. Wise-
man, and K. Wong. The open network laboratory.
SIGCSE Proceedings, Mar 2006.

[27] P. Yalagandula, P. Sharma, S. Banerjee, S. Basu, and
S. Lee. S3: a scalable sensing service for monitor-
ing large networked systems. In INM ’06: 2006 SIG-
COMM workshop on Internet network management,
pages 71–76, New York, NY, USA, 2006. ACM Press.

[28] W3C. SOAP Version Messaging Framework, 1.2 edi-
tion, June 2003.

11

	Perpetual: Byzantine Fault Tolerance for Federated Distributed Applications
	Recommended Citation
	Perpetual: Byzantine Fault Tolerance for Federated Distributed Applications

	tmp.1415913124.pdf.PjD4m

