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The notion of a proof is central to all of mathematics. In the language of

formal logic, a proof is a finite sequence of inferences from a set of axioms, and any

statement one yields from such a finitistic procedure is called a theorem. For better

or for worse, this is far from the form a traditional mathematical proof takes. Mathe-

maticians write proofs that omit routine logical steps, and details deemed tangential

to the central result are often elided. These proofs are fuzzy and human-centric, and

a great amount of context is assumed on the part of the reader. While traditional

proofs are not overly symbolic or syntactic, and hence are easily understood, such

informal proofs are susceptible to logical errors – Fermat’s Last Theorem and the

Four Color Theorem being prime examples. In light of this, there has been significant

interest in producing formal proofs of mathematical theorems: proofs in which every

intermediate logical step is supplied. Drawing on ideas from Computational Logic,

Type Theory and the theory of Automated Deduction, we are able to guaranteed the



correctness of these proofs.

The formalization of mathematics is an endeavor that has enjoyed very encour-

aging progress in recent years. Major achievements include the complete formalization

of the Four Color Theorem, the Prime Number Theorem, Goedel’s Incompleteness

Theorem, the Jordan Curve Theorem (all within the past five years!). This thesis

presents our work in formalizing the meta-theory of Peter Andrews’ classical higher-

order logic Q0 in a higher-order typed lambda calculus. Our development is a com-

pletely formal one – in addition to formalizing Q0’s logical meta-theory, we have also

developed and formalized the syntactic meta-theory of Q0. Our syntactic meta-theory

allows for the reasoning of notions such as variable occurrences, scope and variable

binding, linear replacement, etc. Our formalization is carried out in the interactive

proof assistant Coq, developed as part of the LogiCal Project in INRIA. Coq is built

upon the Calculus of Inductive Constructions, an extension of Coquand and Huet’s

seminal Calculus of Construction with support for inductive data types. As far as we

know, this thesis presents the first effort to formalize Andrews’ logical system.
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Chapter 1

Introduction

1.1 The Formalization of Mathematics

1.1.1 Proofs and Truth

I was interviewed in the Israeli Radio for five minutes and I said that more

than 2000 years ago, Euclid proved that there are infinitely many primes.

Immediately the host interrupted me and asked: “Are there still infinitely

many primes?”

Noga Alon

The centrality of the notion of a proof in mathematics cannot be overstated. In

the language of formal logic, a proof is a finite sequence of inferences from a set of

axioms. Any statement one yields from this finitistic procedure is called a theorem,

and theorems are acknowledged as unequivocal mathematical truth. The finality and

permanence of a proof is what distinguishes mathematics from all other scientific

pursuits – theorems are irrefutable once established. Euclid proved in 300 BC that

for any finite set {p1, . . . pk} of primes, there exists a prime p greater than all of

them. The infinitude of primes still holds as mathematical truth today, and the same

will be true tomorrow. Such is the importance of proofs that an entire branch of

meta-mathematics and philosophy, known as Proof Theory, is devoted precisely to

the study of proof and mathematical truth. Proof theorists treat proofs as mathe-

matical objects, and reason syntactically about the power of proof and logical systems.
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Readers acquainted with theoretical computer science will know that the no-

tion of a proof is also the basis of computational complexity theory [10]. In complexity

theory, one is concerned with how efficiently a proof can be found mechanically, and

further, if the validity of proofs can be checked quickly; efficiency in both cases is

measured in terms of time and space. We recall that the complexity class P is pre-

cisely the collection of all decision problems whose proofs can be found in polynomial

time, and NP is the collection of all decision problems with polynomial-sized proofs.

The P versus NP question, which asks if the class P is equal in power to NP , has

distinguished itself as the central question in theoretical computer science for nearly

four decades now.

1.1.2 The Importance of Being Formal

What then, is a formal proof? As mentioned in the previous section, a proof is a finite

sequence of logic inferences, such as modus ponens, starting from a set of axioms,

typically Zermelo-Frankel with Choice (ZFC). This is akin to the how elementary

facts in plane geometry are established in high-school mathematics classes. However,

this is in fact far from the form a mathematical proof takes in practice. Professional

mathematicians write proofs that are fuzzy and human-centric. Pedantic details

deemed tangential to the core of the result are often conveniently elided. To further

underscore the distinction between formal proofs and proofs mathematicians write in

practice, we quote Thomas Hales [9].

Traditional mathematical proofs are written in a way to make them easily

understood by mathematicians. Routine logical steps are omitted. An

enormous amount of context is assumed on the part of the reader . . . In a

formal proof, all the intermediate logical steps are supplied. No appeal is

made to intuition, even if the translation from intuition to logic is routine.

Thus, a formal proof is less intuitive, and yet less susceptible to logical

errors.

This is the notion of a formal proof we will adopt from here on out — a formal proof

is one in which all logical steps are provided.

We bring the readers’ attention to the last sentence of the above quote, where

Hales claims that “a formal proof is less intuitive, and yet less susceptible to logical



3

errors.” Setting aside for a moment doubt about the validity of such an assertion,

we point out that herein lies the motivation behind all work in the formalization of

mathematics: Formal proofs provide us with greater, if not total, confidence that a

purported theorem is indeed true.

The field of mathematics is certainly no stranger to alleged proofs of theorems

that were later found to contain logical errors. Perhaps the most famous incident in

recent years is Andrew Wiles’ proof of Fermat Last Theorem. After announcing his

proof in a dramatic series of three lectures at Cambridge University in June of 1993,

Wiles received world-wide recognition for having resolved what was undoubtedly the

biggest open question of our times, left open from the 17th century. Unfortunately,

however, a serious technical error in Wiles’ proof was uncovered not long after. Wiles

consequently spent a year fixing his proof and, with the help of his former student

Richard Taylor, Fermat’s Last Theorem was finally put to rest in September of 1994.

Readers familiar with the history of the Four Color Theorem will know that prior to

Appel and Haken’s 1976 proof, the question was twice assumed to have been settled.

Both claims turned out to be based on erroneous proofs — the first is due to Alfred

Kempe in 1879, and the second, Peter Tait in 1880. In both cases, the false proofs

were universally accepted by the mathematical community and stood unchallenged

for over a decade before a counter-example was found!

1.2 The Meta-Theory of Q0 in Coq

This thesis presents our contributions to the aforementioned efforts in the formaliza-

tion of mathematics. We present our work in formalizing the meta-theory of Peter

Andrews’ classical higher-order logic Q0 in the Calculus of Inductive Constructions.

Q0 is a minimal classical logic based on untyped lambda calculus, with all its theory

built on just five axioms and one inference rule. Our formalization is carried out in the

interactive proof assistant Coq, developed as part of the LogiCal Project in INRIA.

Coq is built upon the Calculus of Inductive Constructions, an extension of Coquand

and Huet’s seminal Calculus of Construction with support for inductive data types.

Our first contribution is a complete formalization of the primitive basis of Q0.

The core of Q0 consists of Q0 types, variables, constants and terms, definitions of log-

ical operators and syntactic abbreviations, its five axioms and the rule of inference.
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Q0’s rule of inference, Rule R, is a rule for linear replacement of terms that allows

for variable capture.

The main contribution of this thesis work is the development and formaliza-

tion of Q0’s syntactic meta-theory. While Peter Andrews is impressively meticulous

in his presentation of logical derivations in the meta-proofs of Q0, many syntactic

derivations that are arguable intuitive have been elided. However, in a completely

formal development such as ours, all derivations, be they logical or syntactic, have to

be made explicit in the formalization. Hence, we have developed and formalized in

Coq a meta-theory of Q0’s syntactic notions, including variable occurrences, binding

and scope, linear and full replacement etc. Further, we have implemented tactics

and tacticals that automate the process of searching and building proofs syntactic

properties. We are able to guarantee soundness and completeness for our tactics and

tacticals.

Last, having formalized the syntactic meta-theory of Q0 in Coq, we have since

gone on to provide formal proofs of some of the elementary meta-theorems of Q0.

This includes basic properties of equality in Q0, such as reflexivity, symmetry and

transitivity, along with restricted and generalized versions of beta- and eta-reduction

in Q0. It is our hope that this project will culminate in the proving of the Deduction

Theorem of Q0. To the best of our knowledge, this is the first successful effort to

formalize the meta-theory of Peter Andrews’ logic.
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Chapter 2

Type Theory

An effectively calculable function of the positive integers is a λ-definable

function of the positive integers.

Church’s Thesis

2.1 Lambda Calculus

The λ-calculus is a formal mathematical system developed to formalize and reason

about the notions of computation and computability. The Entscheidungsproblem,

German for “decision problem”, is an ideal set forth by Gottfried Leibniz in the sev-

enteenth century centered around a philosophical question which asked if there is a

way to solve all problems formulated in a universal language, such as the language

of set theory and first order predicate logic. This question was again posed by David

Hilbert in 1928 in continuation of his program initiated at the turn of the century,

and is therefore also commonly known as Hilbert’s Entscheidungsproblem.

The Entscheidungsproblem was answered in the negative in 1936 independently

by Alonzo Church and Alan Turing. In his seminal paper “On computable numbers,

with an application to the Entscheidungsproblem”, Turing introduced the construc-

tion of a universal computing machine, called a Turing Machine, with which he used to

formalize the notion of computability. Church, in his papers “An unsolvable problem

of elementary number theory” and “A note on the Entscheidungsproblem”, invented

a the λ-calculus and studied the notion of computable functions via this system. It is
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a consequence of the celebrated Church-Turing thesis that these two approaches are

in fact equivalent.

2.1.1 Untyped Lambda Calculus

Central to the aesthetic appeal of lambda calculus is its simplicity and elegance. The

syntax of lambda calculus consists of just three sorts: variables, function abstraction,

and application.

Formally, the set of all λ-terms, denoted Λ, is built up from a countably infinite

set of variables V = {v1, v2, . . .} using application and function abstraction. We define

Λ inductively as follows.

x ∈ V ⇒ x ∈ Λ

M,N ∈ Λ ⇒ (MN) ∈ Λ

M ∈ Λ, x ∈ V ⇒ λx.M ∈ Λ

The convention we adopt is for x, y, z, . . . to denote variables in V and for M,N,L, . . .

to denote arbitrary λ-terms.

For a λ-term M , the set of free variables of M , denoted FV (M), is defined

inductively as follows

FV (x) = {x}
FV (MN) = FV (M) ∪ FV (N)

FV (λx.M) = FV (M) − {x}

If x ∈ FV (M), we say that x is free in M . A variable in M that is not in FV (M) is

bound in M . M is called a closed λ-term, or combinator if FV (M) = ∅. The set of

closed λ-terms is denoted by Λ0.
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The result of substituting N for all free occurrences x in M , denoted M [x 7→ N ],

is defined inductively as follows.

x[x 7→ N ] ≡ N

y[x 7→ N ] ≡ y if x 6= y

(M1M2)[x 7→ N ] ≡ (M1[x 7→ N ])(M2[x 7→ N ])

(λy.M1)[x 7→ N ] ≡ λy(M1[x 7→ N ])

We would like to develop a formal notion of equivalence between λ-terms.

Equivalence in the theory of λ-calculus is given by three axiom schemes. First, α-

conversion rule formalizes the notion that renaming bound variables yield the same

λ-term. For example, we would naturally want λx.x and λy.y to be considered the

same term. Therefore, we have

α-equivalence: λx.M =α λy.M [x 7→ y], provided y does not occur in M .

Next, the β-reduction rule expresses the idea of function application. This is the

principle axiom scheme of the theory of λ-calculus.

β-reduction: (λx.M)N →β M [x 7→ N ]

Last, the η-conversion rule expresses the notion of extensionality. That is, two func-

tions are considered the same if they agree on all input arguments.

η-conversion: λx.(Mx) →η M , provided x /∈ FV (M).

2.1.2 Typed Lambda Calculus

Thus far, we have considered what is known as type-free λ-calculus, where every ex-

pression can be applied to every other expression, the former considered as a function

and the latter, an argument. For example, the identity function λx.x may be applied

to any λ-term to yield the term itself; in particular, λx.x may be applied to itself as

follows

(λx.x)(λx.x) →β λx.x

For an even more interesting example, consider the following λ-term

(λx. x x)(λx. x x)
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It is easy to see the above λ-term β-reduces to itself. Hence, we have the infinite

chain of reductions

(λx. x x)(λx. x x) →β (λx. x x)(λx. x x) →β . . .

It is left to the reader to consider the result of applying the λ-term (λx. x (xx)) to

itself.

While undoubtedly an expressive and elegant system, we are often times in-

terested in several properties that untyped λ-calculus does not possess. For example,

we might want all terms to have a normal form. That is,

for all terms N , there exists a term N̂ such that N →∗

β N̂ and N̂ does not

β-reduce to any other term.

Systems possessing such a property are called normalizing. It is easy to see from the

examples above that untyped λ-calculus is certainly not normalizing. In particular,

(λx.(xx))(λx.(xx)) does not have a normal form. For this reason and many others,

we are keenly interested in typed versions of λ-calculus. We first consider the most

basic, and in many ways canonical, form of typed λ-calculus known as simply typed

lambda calculus. The only form of connective in simply typed lambda calculus is

the function type →. This system, denoted by λ→, was developed independently by

Curry in 1934 and Church in 1940.

We will introduce the notion of a typing relation R that associates with each

λ-term in Λ its type. If M is a λ-term and a type σ is assigned to M , we say that ‘M

has type σ’ and also that ‘σ is inhabited by M.’ This judgment is typically denoted

M : σ

We will inductively defined the set of types T of λ→. First, we have the collec-

tion B of type constants for basic types such as Nat, the type of natural numbers,

and Bool, the type of booleans. We also have a denumerable set of type variables

V = {α, α′, α′′, . . .}. Instead of the somewhat cumbersome way of indexing α with

apostrophes to differentiate between type variables, we often use lower-case Greek

alphabets α, β, γ, . . . to denote arbitrary distinct types. T is then defined inductively

as follows.
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α ∈ V ⇒ α ∈ T
B ∈ B ⇒ B ∈ T

σ, τ ∈ T ⇒ (σ → τ) ∈ T

We often adopt the following more concise syntax, easily seen to be equivalent to the

inductive definition above.

T = V | B | T → T
V = α | V

Finally, a context is a set of typing assumptions from which new type assign-

ments can be derived. Contexts are typically denoted by Γ and often also ∆. If the

type assignment M : σ is derived from the context Γ, we say that ‘M : σ is derivable

from Γ’ and denote this judgment as

Γ ⊢ M : σ

If M : σ is derived from an empty set of assumptions, we write ⊢ M : σ as a shorthand

for ∅ ⊢ M : σ.

We may now define the typing relation R ⊂ Λ×T of λ→ by giving the axioms

and inference rules for type derivations in this system. Notice that they correspond

exactly to the three production rules in our inductive definition of Λ.

x : σ ∈ Γ var
Γ ⊢ x : σ

Γ ∪ {x : σ} ⊢ M : τ
abs

Γ ⊢ λx : σ. M : σ → τ

Γ ⊢ M : σ → τ Γ ⊢ N : σ app
Γ ⊢ M N : τ

For example, we have

⊢ λx : α. x : α → α

⊢ λx : α. λy : β. x : α → (β → α)
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⊢ λx : α → β → γ. λy : α → β. λz : α. x z (y z) : (α → β → γ) → (α → β) → α → γ

We note that the λ-term (λx. xx) is untypable in λ→. That is, ((λx. x x), α) /∈
R for all α ∈ T . In fact λ→ is strongly normalizing, and consequently, βη-equivalence

is decidable. Here we state without proof six important properties of λ→.

Uniqueness of Types

If Γ ⊢ M : σ and Γ ⊢ M : τ , then σ = τ .

Subject Reduction

If Γ ⊢ M : σ and M →βη N , then Γ ⊢ N : σ.

Strong Normalization

If Γ ⊢ M : σ, then all βη-reductions from M terminate.

Substitution Property

If Γ ∪ ∆ ∪ {x : τ} ⊢ M : σ and Γ ⊢ N : τ , then Γ ∪ ∆ ⊢ M [x → N ] : σ.

Weakening

If Γ ⊢ M : σ and Γ ⊂ ∆, then ∆ ⊢ M : σ.

Strengthening

If Γ ∪ {x : τ} ⊢ M : σ and x /∈ FV (M), then Γ ⊢ M : σ.

Given any type system, several natural questions may be asked. In particular, we

would like algorithms for the following problems.

1. Given a context Γ, a term M and a type σ, is it true that Γ ⊢ M : σ?

2. Given a context Γ and a term M , does there exist a type σ such that Γ ⊢ M : σ?

3. Given a type σ, does there exist a term M such that ⊢ M : σ?

The above problems are known as the Type Checking, Type Synthesis and Type In-

habitation problems respectively. They are typically denoted as

Γ ⊢ M : σ? Type Checking Problem (TCP)

Γ ⊢ M :? Type Synthesis Problem (TSP)

Γ ⊢? : σ Type Inhabitation Problem (TIP)

We note that TCP, TSP and TIP are all decidable for λ→, and TSP is in fact equiva-

lent to TCP. We note also that TIP is typically undecidable even in the most modest

extensions of λ→. For example, TIP is undecidable in Girard and Reynold’s poly-

morphic lambda calculus System F.
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Chapter 3

The Calculus of Inductive

Constructions and Coq

3.1 Calculus of Constructions

The Calculus of Constructions (CoC) [7] is a higher-order typed lambda-calculus,

developed jointly by Thierry Coquand and Gerard Huet in 1986. The CoC is intended

as a higher-order formalism for constructive proofs in natural deduction style. In

the spirit of the Curry-Howard correspondence as advocated by Martin-Löf Type

Theory, every proof is a λ-expression in the Calculus of Constructions, typed with

propositions of the underlying logic. In fact, CoC can be seen as an extension of the

the Curry-Howard correspondence. The Curry-Howard correspondence establishes an

isomorphism between terms in simply typed lambda calculus with natural-deduction

style proofs in intuitionistic propositional logic; CoC extends this isomorphism to

proofs in full intuitionistic predicate calculus.

3.2 The Interactive Proof Assistant Coq

Coq is an interactive proof assistant for the development of formal machine-checked

proofs [5, 6, 14]. Developed as part of the LogiCal Project based in INRIA in France,

it is written in the Objective Caml programming language. The Calculus of Inductive

Constructions, an extention of CoC with inductive datatypes, is underlying theory

that the Coq proof assistant works within.
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Coq has made outstanding contributions to two broad fields within just two

decades of its inception. First, Coq has been used extensively and effectively by

mathematicians, logicians and computer scientists alike to produce formal proofs of

mathematical theorems. Theorems that have been successfully formalized in Coq

range from the simple and straightforward, such as the irrationality of
√

2, to the

deep and profound, such as the Four Color Theorem, Gödel’s Incompleteness Theo-

rem, and the Fundamental Theorem of Algebra. Beyond its contributions to the field

of formalized mathematics, Coq has also been of great interest to software engineers

interested in applying formal methods to the development of provably correct code

and zero-fault software. To this end, Coq is used to first formally state software

specifications, and then prove that corresponding code does indeed meet the desired

specifications. Admittedly, it can be argued that these two fields are in fact unified –

or rather, the second can be seen to be subsumed by the first – by the Curry-Howard

correspondence.

Our work falls into the former category. It should be noted, though, that our

project differs significantly in spirit to almost all previous work in the area. Most

projects have been concerned with the formalization of mathematical theorems in

Coq. Just as in mainstream mathematical practice, such formalizations implicitly

assume an underlying logic and axiomatic system and work within the logical system.

In this thesis, however, we are interested not in producing formal proofs of theorems,

but instead in verifying the correctness of a particular logical system – our work is thus

driven by foundational interests. In particular, our goal is to formalize the syntactic

and logical meta-theory of Q0, and to produce formal proofs of meta-theorems such as

alpha-equivalence, beta-reduction and the deduction theorem. To draw an analogy,

we are interested in proving properties about a programming language, instead of

the correctness of code written in a programming language. In fact, the spirit of our

project is very much akin to work done in Twelf [11, 12], an implementation of the

logical framework LF is used extensively for the verification of programming language

meta-theory.
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Chapter 4

Q0 in Coq

Science is what we understand well enough to explain to a computer,

Art is all the rest.

Don Knuth

4.1 Peter Andrew’s Classical Higher Order Logic

Q0

Introduced by Peter Andrews in the 1960’s [2, 3], Q0 is a classical higher-order logic

based on simply-typed lambda calculus. There are several reasons why we are inter-

ested in formalizing the meta-theory of Q0.

• A formal proof of Q0’s correctness would be of significant foundational interest.

Peter Andrews uses Q0 as a formal framework to develop core areas of the foun-

dations of mathematics, including cardinals and the axiom of infinity, Peano’s

postulates, primitive recursive functions, etc.

• Q0 is an elegant logical system with significant aesthetic appeal. It is a minimal

logic based only on equality, with all its theory built on just 5 axiom schema

and 1 inference rule.

• The complex syntax of Q0 makes it impossible for its correctness to be checked

by hand. Consider, for example, the following definition of the ∧ operator

[λxoλyo � [λgooo � goooTT ] = [λgooo � goooxoyo]]
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Peculiar syntactic conventions such as linear replacement allowing for variable

capture pose additional challenges.

• Issues such as variable binding and replacement which we have to deal with

explicitly are of contemporary interest in the programming language theory

community. In particular, this is one of the central concerns of researchers

working in mechanized meta-theory of programming languages.

4.2 A Central Challenge: Formalizing the Syntac-

tic Meta-Theory

In studying Peter Andrews’ formalism of Q0, one notices that all logical derivations

are made very explicit and carried out meticulously. In fact, one is immediately im-

pressed by how such a high level of detail and accuracy is attained without the aid

of the multitude of theorem provers and proof assistants available for our use today.

However, although logical derivations are made explicit, Andrews chooses to

keep most syntactic derivations implicit in the meta-proofs of Q0. This poses a

challenge for our work on producing machine-checked proofs of the meta-theorems.

Consider the following example of a syntactic derivation kept implicit in Andrews’

formalism:

If A′ is the result of replacing all free occurrences of x by y in a well-

formed formula A, and if x does not occur free in A, then we have that

A′ is the same as A.

Such syntactic lemmas are arguably intuitive and straightforward and therefore are

understandably kept implicit even a formalism as thorough and meticulous as An-

drews’. However, in a completely formal development such as ours all derivations, be

they logical or syntactic, have to be made explicit to the theorem prover. Considering

again the above example, we see that even the statement of such a straightforward

lemma in a theorem prover entails the encoding and formalizing of syntactic notions

such as variable occurrence, variable binding, and the equivalence of terms. Q0’s

complex syntactic notions pose additional challenges. Typically, substitutions al-

lowed by replacement rules of logical systems are non-linear, meaning all occurrences
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are replaced, and variable capture avoiding. Substitution in Q0, however, allows for

variable capture in certain cases, and only replaces a single occurrence.

4.2.1 Previous work: The Sublogic in RSP

We briefly mention as an aside how the syntactic meta-theory of Q0 is encoded in

our formalism in Rogue-Sigma-Pi (RSP) [13]. The approach we chose to take there

was to encode an underlying logical system — what we called a sublogic — within

our logical framework RSP. With the added expressiveness of this sublogic in our

logical framework, we then formalize various syntactic relations among Q0 terms and

variables, which allow us to build proofs of meta-theoretic properties resulting from

these relations. The proofs of these syntactic lemmas are used to provide explicit

syntactic derivations in the meta-proofs of Q0’s meta-theorems.

Our sublogic in RSP is a multi-sorted classical first-order natural deduction

system. The primitive sorts of our sublogic are Q0 types, variables, constants, terms,

as well as positions in terms and variable numbers. The sublogic permits quantifica-

tion over all primitive sorts. Also, we take a small set of basic syntactic notions as

primitive. Every derived syntactic notion is then defined by a first-order formula of

our sublogic, and carrying out syntactic derivations corresponds to building proofs in

our natural deduction system.

sl_o :: type. # sublogic formula

sl_pf :: sl_o => type. # sublogic proof

Therefore, a sublogic formula A is true if and only if the type sl pf A is inhabited.

Our development of the syntactic meta-theory of Coq is very similar to the approach

mentioned here, except that we adopt the primitive intuitionistic logic of the Calculus

of Constructions as our sublogic.

4.3 The Primitive Basis of Q0

4.3.1 Q0 types, constants and terms

In this section, we will discuss the embedding of the primitive basis of Q0 in the

Calculus of Inductive Constructions. A presentation of Q0 types, variables, constants
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and terms will run parallel with a discussion of their corresponding representations

in the interactive theorem prover Coq.

The types of Q0 are defined recursively as shown below.

types t ::= ı type of individuals

| o type of truth values

| (αβ) type of functions from elements

of type β to elements of type α

We bring to the reader’s attention a peculiarity in the definition given above. One

might find it counter-intuitive that the type of functions from elements of type β to

elements of type α is denoted by (αβ) instead of the seemingly more natural (βα).

The motivation behind this choice of notation does become apparent when one con-

siders the function application of a term of type (βα), denoted Aαβ, to an argument.

First, note that our typing rules dictate that the argument to Aαβ necessarily has

type β and hence we denote it as Bβ. Now, we see that the function application

denoted by AαβBβ in fact explicitly underscores the agreement of types, and we see

how this is in some sense a better notation than AβαBβ.

We now give the definition of Q0 types as encoded in our formalism in Coq.

We note the impressively close correspondence between the inductive mathematical

definition presented in Andrews’ formalism on paper, and the inductive definition

entered into a theorem prover as shown below.

1. Inductive q0_type : Set :=

2. I : q0_type

3. | O : q0_type

4. | Fun : q0_type -> q0_type -> q0_type.

The Coq keywords Inductive and Set in Line 1 denote the start of an inductively

defined set of objects. Lines 2 and 3 correspond to the base cases of the inductive

definition; they encode 0-arity constructors I and O that construct objects represent-

ing the type of individuals and truth values respectively. Lastly, Line 4 defines the

constructor for types of functions. The type of a function is indexed by two other

types, the type of its domain and the type of its range; correspondingly, Fun takes in



17

two terms of type q0 type and returns a term of type q0 type.

With the exception of the abstraction operator λ and parentheses [ ], the only

primitive symbols of Q0 are variables and logical constants. For every type symbol

α, we have a countably infinite set of variables of type α:

vα, v′

α, v′′

α, v′′′

α , v′′′′

α , . . .

Accordingly, Q0 variables in Coq are indexed not only by their types, but also by a

natural number.

Inductive Var : q0_type -> Set :=

V_ : forall t, nat -> Var t.

Therefore, V is a constructor that takes in a type t and a natural number n and

returns the nth variable of type t. For example, (V O 1) gives us the first variable

of type O, and (V (Fun O I) 5) gives us the fifth variable of type (Fun O I).

For every type α, we have a corresponding logical constant Q((oα)α) denoting the

identity relation between elements of type α. Also, there is the description operator

(also known as a selection operator) ι(ı(oı)). First, we note that the semantics assigned

to these logical constants do in fact correspond to the intuition given to us by their

types. Q((oα)α) is the curried version of a function that takes in two terms of type

α and returns a truth value (we remind our readers once again that the types of

functions should be read from right to left.) In other words, for terms Aα and Bα of

type α, (Q(oα)α)Aα)Bα is a term of type o, the type of truth values. The description

operator ι(ı(oı)) takes in a function from individuals to truth values, and returns an

individual. One may therefore view ι(ı(oı)) as a function mapping subsets of the set of

all individuals to individuals — hence its name the selection operator. The encoding

of Q((oα)α) and ι(ı(oı)) in Coq is shown below.

Inductive Const : q0_type -> Set :=

Q_ : forall t, Const (Fun (Fun O t) t)

| Iota_ : Const (Fun I (Fun O I)).

Notice that the constant Q((oα)α) is indexed by a type symbol α. Correspondingly, our

constructor Q is universally quantified over the set of all objects of type q0 type; for
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example, the term (Q (Fun I O)) is the identity relation between elements of type

(ιo) and its own type is (o(ιo))(ιo).

In Q0, well-formed formulas, also known as terms, are indexed by their corre-

sponding types. We shall adopt Andrews’ convention of denoting well-formed formu-

las with uppercase letters subscripted by their types — for example, Aα, Bβ and Cαβ

represent well-formed formulas of types α, β and (αβ) respectively. Further, we abbre-

viate the collection of all well-formed formulas of type α by wffα. The type symbol o is

usually elided, and we will use A, B, C as syntactic variables for well-formed formu-

las of type o. The recursive definition of well-formed formulas is then given as follows.

1. A primitive variable or constant of type α is a wffα.

2. AαβBβ is a wffα denoting the application of the function Aαβ to Bβ.

3. λxβAα is a wff(αβ) denoting a lambda abstraction.

Again, we note that our encoding of the logical constants of Q0 in Coq is virtually

isomorphic to the mathematical definition given above.

Inductive Trm : q0_type -> Set :=

_v : forall t, Var t -> Trm t

| _c : forall t, Const t -> Trm t

| Lambda : forall s t, Var s -> Trm t -> Trm (Fun t s)

| Apply : forall s t, Trm (Fun s t) -> Trm t -> Trm s.

The constructors v and c allow us to cast variables and constants as terms. For

example, the following are the terms (with type Trm) corresponding to the two logical

constants of Q0.

Definition Iota := _c Iota_.

Definition Q := fun (t : q0_type) => _c (Q_ t).

Similarly, v (V O 3) and v (V (Fun O I) 15) have type Trm in our formalism.

Check ( v (V O 3)).

v (V O 3) : Trm O

Check ( v (V (Fun O I) 15)).

v (V (Fun O I) 15) : Trm (Fun O I).
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4.3.2 Definitions of Logical Operators in Q0

As mentioned in the previous section, the only primitive non-trivial symbols of Q0

are variables and the logical constants Q((oα)α) and ι(ı(oı)). All other logical operators,

such as ∧, ∨, ⊃, and ∼ are defined in terms of primitive symbols. We list here all

abbreviations and definitions of logical operators in Q0. The square dot � represents a

left bracket, where the corresponding right bracket is as far right as possible without

violating any other pairings already present.

[Aα = Bα] stands for [QoααAαBα]

[A ≡ B] stands for [QoooAB]

To stands for [Qooo = Qooo]

Fo stands for [λxoT ] = [λxoxo]

Πo(αα) stands for [Qo(oα)(oα)[λxαT ]]

[∀xαA] stands for [Πo(oα)[λxαA]]

∧ooo stands for [λxoλyo � [λgooo � goooTT ] = [λgooo � goooxoyo]]

[A ∧ B] stands for [∧oooAB]

⊃ooo stands for [λxoλyo � xo = �xo ∧ yo]

[A ⊃ B] stands for [⊃ooo AB]

∼oo stands for [QoooF ]

∨ooo stands for [λxoλyo � ∼ � [∼ xo] ∧ [∼ yo]]

[A ∨ B] stands for [∨oooAB]

[∃xαA] stands for [∼ ∀xα ∼ A]

[Aα 6= Bα] stands for [∼ �Aα = Aα]

The above abbreviations and definitions have all be formalized in Coq. Due to space

considerations, we will only give the first few encodings here.

Definition Equals (t : q0_type)

:= fun (A:Trm t)(B:Trm t) => Apply (Apply (Q t) A) B.

Definition Equiv

:= fun (A B:Trm O) => Apply (Apply (Q O) A) B.

Definition True := Equals (Q O) (Q O).

Definition False

:= Equals (Lambda (V O) True) (Lambda (V O) (_v (V O))).
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Definition Pi (t : q0_type)

:= Apply (Q (Fun O t)) (Lambda (V t) True).

Definition Forall (t : q0_type)

:= fun (x : Var t)(A:Trm O) => Apply (Pi t) (Lambda x A).

4.3.3 Axioms and Inference Rules

Q0 has five axioms, three of which (2α, 3αβ and 41 − 45) are axiom schemata.

Axioms for Q0

(1) gooTo ∧ gooFo = ∀xo � gooxo

(2α) [xα = yα] ⊃ � hoαxα = hoαyα

(3αβ) fαβ = gαβ = ∀xβ � fαβxβ = gαβxβ

(41) [λxαBβ]Aα = Bβ where Bβ is a primitive constant or variable distinct

from xα

(42) [λxαxα]Aα = Aα

(43) [λxα � BβγCγ ]Aα = [[λxαBβγ]Aα][[λxαCγ]Aα]

(44) [λxα � λyγBδ]Aα = [λyγ � [λxαBδ]Aα] where yγ is distinct from xα and

from all variables in Aα

(45) [λxα � λxαBδ]Aα = [λxαBδ]

(5) ιι(oι)[Qoιιyι] = yι

Axiom 1 states that we are working in a bimodal logic. That is, Truth and Falsehood

are the only truth values in our logical system, or equivalently, To and Fo are the only

well-formed formulas of type o. Axiom Schemata 2 and 41−45 give us basic properties

about equality and λ, respectively. Axiom Schema 3αβ states the Q0 equivalent of

the Axiom of Extensionality, while Axiom 5 gives us the Q0 equivalent of the Axiom

of Descriptions.

After instantiating the variables goo, xo and meta-variables xα, yα, hoα, fαβ, gαβ,

Axioms 1, 2α and 3αβ are dealt with routinely.

Axiom axiom_1 :
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Pf (Equals (And (Apply (_v g_oo) True) (Apply (_v g_oo) False))

(Forall O x_o (Apply (_v g_oo) (_v x_o)))).

Axiom axiom_2a : forall (a : q0_type),

Pf (Implies (Equals (_v (x_a a)) (_v (y_a a)))

(Equals (Apply (_v (h_oa a)) (_v (x_a a)))

(Apply (_v (h_oa a)) (_v (y_a a))))).

Axiom axiom_3ab : forall (a b : q0_type),

Pf (Equals (Equals (_v (f_ab a b)) (_v (g_ab a b)))

(Forall _ (x_a b)

(Equals (Apply (_v (f_ab a b)) (_v (x_a b)))

(Apply (_v (g_ab a b)) (_v (x_a b)))))).

Axiom Schema 41, however, is not as straightforward. In order to state the restric-

tion that Bβ is a primitive constant or variable distinct from xα, we need a notion

of equality between variables. Fortunately, this simple enough. Variables in Q0 are

indexed by a type and a natural number; hence, two variables are considered equiv-

alent if and only if they are of the same type and are indexed by the same number.

Now equality of variables is reduced to equality of types and natural numbers.

Inductive eqvar : forall a b, Var a -> Var b -> Prop :=

eqvar_ax : forall a b n1 n2,

a = b ->

n1 = n2 ->

eqvar a b (V_ a n1) (V_ b n2)).

Two variables are considered different simply when they are not equal.

Definition diffvar (a b: q0_type)(A : Var a)(B : Var b)

:= ~(eqvar A B).

With this, we may now state Axiom Schema 41. We split 41 up into 41v and 41c,

mirroring the case split on whether Bα is a variable or a constant.

Axiom axiom_41v :

forall (a b : q0_type), forall (x : Var a),

forall (A : Trm a), forall (v: Var b),

diffvar x v ->

Pf (Equals (Apply (Lambda x (_v v)) A) (_v v))).
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Axiom axiom_41c :

forall (a b : q0_type), forall (x : Var a),

forall (A : Trm a), forall (c : Const b),

Pf (Equals (Apply (Lambda x (_c c)) A) (_c c)).

The statement of 44 poses yet another challenge.

(44) [λxα � λyγBδ]Aα = [λyγ � [λxαBδ]Aα] where yγ is distinct from xα

and from all variables in Aα

Equivalent to formalizing the notion that yγ is distinct from all variables in Aα is

being able to state the following property of Aα

forall t, forall v : Var t, occurs ( v v) A => diffvar v y

We will set this aside and press ahead for now, noting that this is the first indica-

tion that an encoding of the syntactic meta-theory of Q0 is necessary before we can

proceed. By presenting more examples of the same flavor, we hope to make the case

that these syntactical issues can no longer be dealt with in an online fashion , but

instead, we need to develop and formalize a complete syntactic meta-theory.

Q0’s single rule of inference is a rule of replacement which allows for variable

capture. We remind our readers that A,B,C etc. are abbreviations for the wffos Ao,

Bo, Co etc.

Rule R From C and Aα = Bα to infer the result of replacing one occurrence

of Aα in C by an occurrence of Bα, provided that the occurrence of Aα

in C is not immediately preceded by λ.

We immediately see that the statement of Rule R poses several challenges. There are

three non-trivial syntactic notions, all of which have to be first explicitly dealt with

in our formalism before we can even state the rule.

1. Aα is a subterm of C at position p.

2. Replacing Aα by Bα in C at position p gives us D.

3. The occurrence of Aα in C is not immediately preceded by λ. Equivalently, if

Aα is a subterm of C at position p, then p is not a binding position in C.
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We note that the statement of Rule R is in fact trivial after we have formalized these

three syntactic judgments – this should not come as a surprise as the notion of linear

replacement as captured by Rule R is a purely syntactic one.

Axiom Rule_R :

forall a : q0_type, forall A B : Trm a,

forall p : Pos, forall C D : Trm O,

Pf C ->

Pf (Equals A B) ->

replace A B p C D ->

~ pos_binding p C ->

Pf D.

For a more elaborate example, consider the following generalization of Rule R.

Rule R’ From H ⊢ Aα = Bα and H ⊢ C to infer the result of replacing one

occurrence of Aα in C by an occurrence of Bα, provided the occurrence

of Aα in C is not immediately preceded by λ and the occurrence of Aα

in C is not in a wf part [λxβEγ] of C, where xβ is free in a member of

H and free in [Aα = Bα]

We hope it is now clear that in order for our development of Q0 in Coq to proceed, a

formalization of Q0’s syntactic meta-theory is necessitated. In fact, since the syntactic

details of Q0 were implicitly assumed in Peter Andrews’ presentation, we have to first

develop the snytactic meta-theory on paper, before formalizing it in Coq. In this way,

we will be able to provide formal proofs of syntactic judgments (including but not

limited to those mentioned above), which are then combined with logical derivations

to provide completely formal proofs of Q0’s meta-theorems.

4.4 The Syntactic Meta-Theory

In our syntactic meta-theory, we take several elementary notions as primitive: type-

equivalence, variable-equivalence, constant-equivalence, term-equivalence, and position-

equivalence, the subterm relationship and the prefix relationship between two posi-

tions. All other syntactic notions are derived from these basic primitive notions.

Our approach is built on the following ideal: All primitive notions should be simple
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enough that their correctness can be checked easily. Any notions entailing non-trivial

definitions (variable binding, for example) are derived from primitive notions.

We will walk through an example of defining and formalizing a primitive syn-

tactic notion. The subterm relationship is defined by a ternary judgment – A is

a subterm of B at position p, which we will denote as A ≺p B. First, we state

(informally, on paper) the axioms and inference rules corresponding to the subterm

judgment. We will let ǫ denote the empty position and 0 · p and 1 · p denote the

position we get by prefixing p by 0 and 1 (left and right) respectively.

subtrm-empty
A ≺ǫ A

T ≺p M
subtrm-apply0

T ≺0·p M N

T ≺p N
subtrm-apply1

T ≺1·p M N

T ≺p x
subtrm-lambda0

T ≺0·p λx.M

T ≺p N
subtrm-lambda1

T ≺1·p λx.M

Each rule then corresponds to a case in our inductive definition of subtrm – axioms

correspond to base cases, and inference rules correspond to inductive constructors.

Inductive subtrm : forall a b, Trm a -> Trm b -> Pos -> Prop :=

subtrm_empty : forall a A, subtrm a a A A empty

| subtrm_apply0 : forall a b t M N T p,

subtrm t (Fun a b) T M p ->

subtrm _ _ T (Apply M N) (P0 p)

| subtrm_apply1 : forall a b t M N T p,

subtrm t b T N p ->

subtrm _ a T (Apply M N) (P1 p)

| subtrm_lambda0 : forall a b t x M T p,

subtrm t a T (_v x) p ->

subtrm t (Fun b a) T (Lambda x M) (P0 p)

| subtrm_lambda1 : forall a b t x M T p,

subtrm t b T M p ->
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subtrm t (Fun b a) T (Lambda x M) (P1 p).

Naturally, building proofs of such syntactic judgments can be tedious and burden-

some. For instance, consider the following.

Qooo ≺011111001 [λxoλyo � [λgooo � gooo[Qooo = Qooo][Qooo = Qooo]] = [λgooo � goooxoyo]]

A proof of the above judgment, if it exists, should be easy to find mechanically. In fact,

Coq has language support for meta-level tactics that automate the building of such

proofs of judgments. We are able to guarantee total correctness of our tactics. That

is, the tactics we write all have the following soundness and completeness guarantees.

Soundness Every proof a tactic builds is valid.

Completeness If a proof exists, the tactics are guaranteed to find it.

We write a corresponding tactic for each judgment in our syntactic meta-theory. For

example, the tactic for subterm takes in arbitrary types α and β, terms Aα and Bβ, a

position p, and builds a proof of Aα ≺p Bβ if one exists. As our syntactic notions get

more complex and intricate, we have tacticals that call tactics as subroutines. Tactics

and tacticals therefore help relief the burden of having to build lengthy proofs by hand.

Having encoded a full syntactic meta-theory of Q0 in our formalism in Coq,

we are now able to state many syntactic notions integral to the development of the

theory of Q0. For example, let us consider again Rule R’, the generalization of Rule

R.

Rule R’ From H ⊢ Aα = Bα and H ⊢ C to infer the result of replacing

one occurrence of Aα in C by an occurrence of Bα, provided the

occurrence of Aα in C is not immediately preceded by λ and the

occurrence of Aα in C is not in a wf part [λxβEγ] of C, where xβ is

free in a member of H and free in [Aα = Bα]

Rule R’ can now be formally stated in Coq as follows.

1. Axiom Rule_R’ :

2. forall H, forall a, forall A B : Trm a, forall C D p,

3. HypPf H (Equals A B) ->

4. HypPf H C ->
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5. replace A B p C D ->

6. ~ pos_binding p C ->

7. forall p’: Pos, forall x, forall E,

8. (subtrm (Lambda x E) C p’) /\ (occurs A E) ->

9. (forall h, member h H -> ~ free_in x h)

10. \/ ~ (free_in x (Equals A B)))) ->

11. HypPf H D.

Lines 5-10 correspond to syntactic properties of our input. We have a tactical for the

Rule R’ that calls tactics corresponding are called for each of these syntactic proper-

ties. If proofs are successfully found and built for all of them, we are then allowed to

infer as a result of Rule R’ the linear replacement of one occurrence of Aα in H ⊢ C

by Bα.

We briefly mention here an interesting challenge that arises in the formalization

of Q0’s syntactic meta-theory. In the process of proving various syntactic properties of

Q0, we have on several occasions needed the following seemingly intuitive fact about

dependent types: If two dependent types are equal, then their corresponding indexing

terms have to be equal too. In the language of Coq, such an injectivity property can

be stated as follows.

Lemma projS2_eq :

forall (A : Set)(P : A -> Set)(x : A) (p1 p2 : P x),

existS P x p1 = existS P x p2 -> p1 = p2.

where existS is a construct for building nested subset types

Inductive sigS (A : Set) (P : A -> Set) : Set :=

existS : forall x : A, P x -> sigS A P.

Implicit Arguments sigS [A].

Somewhat surprisingly, Lemma projS2 eq above is in fact independent of Coq’s type

theory, the reason being that it is equivalent to Streicher’s K axiom. Hence, we have

had to include this injectivity property as an axiom in our formalism.

4.5 The Meta-Theorems of Q0

Having developed and formalized the syntactic meta-theory of Q0, we have since

proceeded to encoding formal proofs of Q0’s meta-theorems in Coq. Examples of
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meta-theorems proved in our formalism include reflexivity of equality, basic equality

rules, general and restricted versions of substitution in Q0 (such as β-reduction) as

well as η-conversion. Many of these meta-theorems rely heavily on the inductive

reasoning power of Coq and the Calculus of Inductive Constructions. For example,

consider the following statement of a form of β-reduction in Q0. Theorem 5203 states

that

⊢ [λxαBβ]Aα = Sxα

Aα

Bβ provided no variable in Aα is bound in Bβ

where Sxα

Aα

Bβ denotes the result of substituting free occurrences of xα by Aα in Bβ.

The proof of this theorem is done by induction on the form of Bβ, or equivalently,

the number of occurrences of [ in Bβ.

Having completed this phase of the project, proving the meta-theorems of Q0

has become the main emphasis of our work. However, as new syntactic notions arise

in the statement and proofs of Q0’s meta-theorems, we certainly expect that the

syntactic meta-theory we have developed will be revisited frequently and perhaps

supplemented from time to time. It is our hope that our work will culminate in the

proving of the Deduction Theorem of Q0.
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Chapter 5

Conclusion

Informal proofs mathematicians write are susceptible to logical errors – routine logical

steps are left out, and a great amount of context is assumed on the part of the reader.

Traditionally, the correctness of a proof has been verified by peer review, where the

reviewer fills in some of the logical gaps herself and skips over the others. This process

cannot provide us with absolute guarantees of the total correctness proofs. In light

of this, there has been significant interest in producing formal proofs of mathemat-

ical theorems. Formal proofs are proofs in which every intermediate logical step is

supplied, and no appeal is made to intuition. Naturally, such proofs can become over

symbolic and syntactic, and hence burdensome to build by hand. Fortunately, the

advent of automated theorem provers and interactive proof assistants have made the

building of formal proofs a tractable endeavor. In fact, advances in such technology

have gone a long way in making the process akin to writing an informal proof on

paper. Drawing on ideas from Type Theory, Computational Logic and the theory of

Automated Deduction, these theorem provers and proof assistants are able to guar-

antee the total correctness of our proofs.

In this thesis, we have discussed our contributions to the formalization of math-

ematics. We discussed our effort to formalize the meta-theory of Peter Andrews’ clas-

sical higher-order logic Q0 based on typed lambda calculus. There are several reasons

why a formal proof of Q0’s correctness is of significant interest and importance. First,

Q0 is the formal framework within which Peter Andrews develops cores areas in the

foundations of mathematics, including cardinals and the axiom of infinity, Peano’s

postulates and primitive recursive functions. Second, Q0 is an elegant logical system

with significant aesthetic appeal – it is a minimal logic based only on equality, with
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all its meta-theory built on just 5 axioms and 1 inference rule. Third, the complex

syntax of Q0 makes it impossible for us to check its meta-theorems by hand. Such

challenges lend themselves very naturally to the use of interactive proof assistants and

automated theorem provers. Last, issues such as variable binding and replacement

which we have to deal with explicitly in our formalism are of contemporary interest

in the programming language community. In particular, this has become a primary

concern of researchers working in mechanized meta-theory of programming languages.

Our formalization is carried out in the interactive proof assistant Coq, based

on the Calculus of Inductive Construction. The Calculus of Inductive Construction

is an extension of Coquand and Huet’s Calculus of Constructions with support for

inductive data types. Both systems are based on higher-order typed lambda calculus,

and are designed for the building of proofs in full intuitionistic predicate calculus. Coq

has been a major force in the formalization of mathematics; the full formal proofs of

the Four Color Theorem and Gödel’s Incompleteness Theorem, among hundreds of

others, have both been encoded in Coq.

A central challenge that arose in the formalizing of Q0 was having to explicitly

encode and reason about its various syntactic notions. Although Peter Andrews

was impressively careful in his development of Q0’s logical meta-theory, providing all

logical derivations in great detail, the syntactic meta-theory was kept implicit in his

presentation. In a completely formal development such as ours, all derivations, logical

and syntactic, have to be made explicit; even just the statement of many of Q0’s

meta-theorems necessitate reasoning about complex syntactic notions. Therefore,

we first developed and encoded the syntactic meta-theory in our formalism in Coq.

Within this framework, we were then able to encode and reason about Q0’s syntactic

notions such as scope, variable binding, and replacement. This allowed us to explicitly

carry out syntactic derivations kept implicit in Andrews’ presentation and to provide

completely formal proofs of Q0’s meta-theorems. As far as we know, this thesis

presents the first effort to formalize Peter Andrews’ logical system Q0.
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Appendix

Attached in this appendix is the Coq source code for our formalization of Q0. As this is

still very much work in progress, the most updated version may be obtained either on-

line at http://cl.cse.wustl.edu, or by contacting the author at lytan@wustl.edu.

The Core of Q0: Types, Variables, Constants and Terms

(* Q0 types *)

Inductive q0_type : Set :=

I : q0_type

| O : q0_type

| Fun : q0_type -> q0_type -> q0_type.

(* Q0 variables *)

Inductive Var : q0_type -> Set :=

V_ : forall t, nat -> Var t.

(* Q0 constants *)

Inductive Const : q0_type -> Set :=

Iota_ : Const (Fun I (Fun O I))

| Q_ : forall t, Const (Fun (Fun O t) t).

(* Q0 terms *)

Inductive Trm : q0_type -> Set :=

_v : forall t, Var t -> Trm t

| _c : forall t, Const t -> Trm t

| Lambda : forall s t, Var s -> Trm t -> Trm (Fun t s)

| Apply : forall s t, Trm (Fun s t) -> Trm t -> Trm s.

Implicit Arguments _v.

Implicit Arguments _c.

Implicit Arguments Lambda.

Implicit Arguments Apply.

Definition V := fun (t : q0_type) => V_ t 0.
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Definition Iota := _c Iota_.

Definition Q := fun (t : q0_type) => _c (Q_ t).
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Basic Syntactic Notions

(* Equality between types, variables, constants and terms *)

Inductive eqtp : q0_type -> q0_type -> Prop :=

eqtp_ax : forall a b : q0_type,

a = b ->

eqtp a b.

Definition difftp (a b : q0_type) := ~(eqtp a b).

Inductive eqvar : forall a b, Var a -> Var b -> Prop :=

eqvar_ax : forall a b n1 n2,

eqtp a b -> n1 = n2 ->

eqvar a b (V_ a n1) (V_ b n2).

Definition diffvar (a b: q0_type)(A : Var a)(B : Var b)

:= ~(eqvar A B).

Inductive eqtrm : forall a b, Trm a -> Trm b -> Prop :=

eqtrm_var : forall a b v1 v2,

eqvar v1 v2 ->

eqtrm a b (_v v1) (_v v2)

| eqtrm_const: forall a b, forall A : Const a, forall B : Const b,

eqtp a b ->

eqtrm a b (_c A) (_c B)

| eqtrm_apply: forall a b c d M1 N1 M2 N2,

eqtrm (Fun a b) (Fun c d) M1 M2 ->

eqtrm _ _ N1 N2 ->

eqtrm _ _ (Apply M1 N1) (Apply M2 N2)

| eqtrm_lambda :

forall a b c d,

forall x : Var a, forall y : Var c, forall M1 M2,

eqvar x y ->

eqtrm b d M1 M2 ->

eqtrm _ _ (Lambda x M1) (Lambda y M2).

Definition difftrm (a b : q0_type) (A : Trm a) (B : Trm b) :=

~(eqtrm A B).
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Implicit Arguments eqvar.

Implicit Arguments diffvar.

Implicit Arguments eqtrm.

Implicit Arguments difftrm.

Theorem eqtrm_imp_eqtp :

forall a b, forall A : Trm a, forall B : Trm b,

eqtrm A B -> eqtp a b.

Proof.

intros.

induction H.

elim H.

auto.

assumption.

inversion IHeqtrm1.

assumption.

elim H.

intros.

exact (eqtp_Fun _ _ _ _ IHeqtrm H1).

Qed.

(* Positions *)

Inductive Pos : Set :=

empty : Pos

| P0 : Pos -> Pos

| P1 : Pos -> Pos.

Inductive eqpos : Pos -> Pos -> Prop :=

eqpos_empty : eqpos empty empty

| eqpos_0 : forall p1 p2, eqpos p1 p2 -> eqpos (P0 p1) (P0 p2)

| eqpos_1 : forall p1 p2, eqpos p1 p2 -> eqpos (P1 p1) (P1 p2).

Definition diffpos (p1 p2 : Pos) := ~ eqpos p1 p2.

Inductive pos_left : Pos -> Pos -> Prop :=
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pos_left_empty : pos_left empty (P0 empty)

| pos_left_0 : forall p1 p2,

pos_left p1 p2 -> pos_left (P0 p1) (P0 p2)

| pos_left_1 : forall p1 p2,

pos_left p1 p2 -> pos_left (P1 p1) (P1 p2).

Inductive prefix : Pos -> Pos -> Prop :=

prefix_empty : forall p, prefix empty p

| prefix_0 : forall p1 p2, prefix p1 p2 -> prefix (P0 p1) (P0 p2)

| prefix_1 : forall p1 p2, prefix p1 p2 -> prefix (P1 p1) (P1 p2).

Definition disjoint (p1 p2 : Pos)

:= ~ (prefix p1 p2) /\ ~ (prefix p2 p1).

(* Subterm *)

Inductive subtrm : forall a b, Trm a -> Trm b -> Pos -> Prop :=

subtrm_empty : forall a A, subtrm a a A A empty

| subtrm_apply0 : forall a b t M N T p,

subtrm t (Fun a b) T M p ->

subtrm _ _ T (Apply M N) (P0 p)

| subtrm_apply1 : forall a b t M N T p,

subtrm t b T N p ->

subtrm _ a T (Apply M N) (P1 p)

| subtrm_lambda0 : forall a b t x M T p,

subtrm t a T (_v x) p ->

subtrm t (Fun b a) T (Lambda x M) (P0 p)

| subtrm_lambda1 : forall a b t x M T p,

subtrm t b T M p ->

subtrm t (Fun b a) T (Lambda x M) (P1 p).

Implicit Arguments subtrm.

Definition pos_binding (p : Pos)(a : q0_type)(A : Trm a) :=

exists p2, exists s, exists t,

exists x : Var s, exists M : Trm t,

(pos_left p2 p) /\ (subtrm (Lambda x M) A p2).
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Implicit Arguments pos_binding.

Definition occurs (a t : q0_type)(x : Var a)(T : Trm t) :=

exists p, subtrm (_v x) T p.

Implicit Arguments occurs.

Definition replace

(a t : q0_type)(A B : Trm a)(p : Pos)(T1 T2 : Trm t) :=

(subtrm A T1 p) /\ (subtrm B T2 p) /\ forall p’, (disjoint p p’ ->

forall q, forall Q : Trm q,

(subtrm Q T1 p’ <-> subtrm Q T2 p’)).

Implicit Arguments replace.

Definition bound (a b : q0_type)(x : Var a)(B: Trm b) :=

exists p, exists t, exists M : Trm t, (subtrm (Lambda x M) B p).

Implicit Arguments bound.

Definition free (a b : q0_type)(x : Var a)(B : Trm b) :=

occurs x B /\ ~ bound a b x B.

Implicit Arguments free.

Definition var_in (t a: q0_type) (x: Var t) (A: Trm a) :=

exists p, subtrm (_v x) A p.

Implicit Arguments var_in.

Definition var_in_ (t a: q0_type) (x: Var t) (A: Trm a) (p: Pos) :=

subtrm (_v x) A p.

Implicit Arguments var_in_.

Definition free_in (t a: q0_type) (x: Var t) (A: Trm a) :=

exists p, (var_in_ x A p /\

forall p’, forall t2: q0_type, forall M: Trm t2,

prefix p’ p -> ~ (subtrm (Lambda x M) A p’)).

Implicit Arguments free_in.
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Definition free_in_ (t a: q0_type) (x: Var t) (A: Trm a) (p: Pos) :=

(var_in_ x A p /\

forall p’, forall t2: q0_type, forall M: Trm t2,

prefix p’ p -> ~ (subtrm (Lambda x M) A p’)).

Implicit Arguments free_in_.

Definition bound_in (t a: q0_type) (x: Var t) (A: Trm a) :=

exists p, (var_in_ x A p /\

exists p’, exists t2:q0_type, exists M: Trm t2,

prefix p’ p /\ (subtrm (Lambda x M) A p’)).

Implicit Arguments bound_in.

Definition bound_in_ (t a: q0_type) (x: Var t) (A: Trm a) (p: Pos):=

(var_in_ x A p /\

exists p’, exists t2:q0_type, exists M: Trm t2,

prefix p’ p /\ (subtrm (Lambda x M) A p’)).

Implicit Arguments bound_in_.

Inductive replace_all :

forall a b, Var a -> Trm a -> Trm b -> Trm b -> Prop :=

ra_eqvar : forall a x A,

replace_all a a x A (_v x) A

| ra_diffvar : forall a b x A y,

diffvar x y ->

replace_all a b x A (_v y) (_v y)

| ra_const : forall a b x A c,

replace_all a b x A (_c c) (_c c)

| ra_lambda_eqvar : forall a b x A M,

replace_all a (Fun b a) x A (Lambda x M) (Lambda x M)

| ra_lambda_diffvar : forall a b c x A y M M’,

diffvar x y ->

replace_all a b x A M M’ ->

replace_all a (Fun b c) x A (Lambda y M) (Lambda y M’)

| ra_apply : forall a b c x A M N M’ N’,

replace_all a (Fun b c) x A M M’ ->
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replace_all a c x A N N’ ->

replace_all a b x A (Apply M N) (Apply M’ N’).

Implicit Arguments replace_all.
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Logical Operators and Abbreviations

Definition Equals (t : q0_type)

:= fun (A:Trm t)(B:Trm t) => Apply (Apply (Q t) A) B.

Implicit Arguments Equals.

Definition Equiv

:= fun (A B:Trm O) => Apply (Apply (Q O) A) B.

Definition True := Equals (Q O) (Q O).

Definition False

:= Equals (Lambda (V O) True) (Lambda (V O) (_v (V O))).

Definition Pi (t : q0_type)

:= Apply (Q (Fun O t)) (Lambda (V t) True).

Definition Forall (t : q0_type)

:= fun (x : Var t)(A:Trm O) => Apply (Pi t) (Lambda x A).

Definition g_ooo := V (Fun (Fun O O) O).

Definition x_o := V O.

Definition y_o := V_ O 1.

Definition And_

:= Lambda x_o (Lambda y_o

(Equals (Lambda g_ooo

(Apply (Apply (_v g_ooo) True) True))

(Lambda g_ooo

(Apply (Apply (_v g_ooo) (_v x_o)) (_v y_o))))).

Definition And := (fun (A B:Trm O) => Apply (Apply And_ A) B).

Definition Implies_

:= Lambda x_o (Lambda y_o

(Equals (_v x_o) (And (_v x_o) (_v y_o)))).

Definition Implies

:= (fun (A B:Trm O) => Apply (Apply Implies_ A) B).

(* Abbreviations contd: De Morgan’s *)

Definition Not_ := Apply (Q O) False.

Definition Not := fun (A:Trm O) => Apply Not_ A.

Definition Or_

:= Lambda x_o (Lambda y_o

(Not (And (Not (_v x_o)) (Not (_v y_o))))).
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Definition Or := fun (A B:Trm O) => Apply (Apply Or_ A) B.

Definition Exists (t : q0_type)

:= fun (x : Var t)(A : Trm O) => Not (Forall t x (Not A)).

Definition Neq (t : q0_type)

:= fun (A B : Trm O) => Not (Equals A B).
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The Axioms of Q0

Variable Pf : Trm O -> Set.

Definition g_oo := V (Fun O O).

Definition x_a (a : q0_type) := V a.

Definition y_a (a : q0_type) := V_ a 1.

Definition h_oa (a : q0_type) := V (Fun O a).

(* Law of Bivalence *)

Axiom axiom_1 :

Pf (Equals (And (Apply (_v g_oo) True) (Apply (_v g_oo) False))

(Forall O x_o (Apply (_v g_oo) (_v x_o)))).

Axiom axiom_2a : forall (a : q0_type),

Pf (Implies (Equals (_v (x_a a)) (_v (y_a a)))

(Equals (Apply (_v (h_oa a)) (_v (x_a a)))

(Apply (_v (h_oa a)) (_v (y_a a))))).

Definition f_ab (a b : q0_type) := V (Fun a b).

Definition g_ab (a b : q0_type) := V_ (Fun a b) 1.

(* Axiom of Extensionality *)

Axiom axiom_3ab : forall (a b : q0_type),

Pf (Equals (Equals (_v (f_ab a b)) (_v (g_ab a b)))

(Forall _ (x_a b)

(Equals (Apply (_v (f_ab a b)) (_v (x_a b)))

(Apply (_v (g_ab a b)) (_v (x_a b)))))).

(* Beta-reduction in Q0 *)

Axiom axiom_41v : forall a b : q0_type, forall x : Var a,

forall A : Trm a, forall v: Var b,

diffvar x v ->

Pf (Equals (Apply (Lambda x (_v v)) A) (_v v))).

Axiom axiom_41c : forall a b : q0_type, forall x : Var a,

forall A : Trm a, forall c : Const b,

Pf (Equals (Apply (Lambda x (_c c)) A) (_c c)).
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Axiom axiom_42 : forall a : q0_type,

forall x : Var a, forall A : Trm a,

Pf (Equals (Apply (Lambda x (_v x)) A) A).

Axiom axiom_43 : forall a b g x, forall B : Trm (Fun b g),

forall C, forall (A : Trm a),

Pf (Equals (Apply (Lambda x (Apply B C)) A)

(Apply (Apply (Lambda x B) A)

(Apply (Lambda x C) A))).

Axiom axiom_44 : forall a g d, forall x : Var a, forall y : Var g,

forall B : Trm d, forall A,

diffvar y x ->

~ (occurs y A) ->

Pf (Equals (Apply (Lambda x (Lambda y B)) A)

(Lambda y (Apply (Lambda x B) A))).

Axiom axiom_45: forall a d, forall x : Var a,

forall B : Trm d, forall A,

Pf (Equals (Apply (Lambda x (Lambda x B)) A) (Lambda x B)).

(* Axiom of Descriptions / Axiom of Unique Choice *)

Axiom axiom_5 : forall y,

Pf (Equals (Apply Iota (Apply (Q I) y)) y).
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Syntactic Lemmas and Tactics

Axiom projS2_eq :

forall (A : Set)(P : A -> Set)(x : A) (p1 p2 : P x),

existS P x p1 = existS P x p2 -> p1 = p2.

Ltac existS_tac H :=

let x := type of H in

match x with

existS ?F ?T ?T1 = existS ?F ?T ?T2 =>

assert (T1 = T2);

[apply (projS2_eq q0_type F T T1 T2); assumption | idtac ];

clear H

end.

Ltac rm_existS_tac :=

match goal with

| H: existS ?f ?tp ?T = existS ?f ?tp ?T |- _ =>

clear H; try rm_existS_tac

| H1: ?tp1 = ?tp2,

H2: existS _ ?tp1 (existS _ _ _) =

existS _ ?tp2 (existS _ _ _) |- _ =>

subst tp1; existS_tac H2; try rm_existS_tac

| H: existS _ _ (existS _ _ _) =

existS _ _ (existS _ _ _) |- _ =>

existS_tac H; try rm_existS_tac

| H1: ?tp1 = ?tp2, H2: existS _ ?tp1 ?T1 = existS _ ?tp2 ?T2 |- _ =>

subst tp1; existS_tac H2; subst T1; try rm_existS_tac

| H: existS _ _ ?T1 = existS _ _ ?T2 |- _ =>

existS_tac H; subst T1; try rm_existS_tac

end.

Lemma prefix_p_empty :

forall p, prefix p empty -> p = empty.

Proof.

intro.
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case p; intros.

trivial.

elimtype Logic.False.

inversion H.

elimtype Logic.False.

inversion H.

Qed.

Lemma disjoint_empty :

forall p, ~ (disjoint empty p).

Proof.

unfold disjoint.

intros p [H1 H2].

apply H1; exact (prefix_empty p).

Qed.

Lemma disjoint_symm :

forall p1 p2, disjoint p1 p2 -> disjoint p2 p1.

Proof.

unfold disjoint; intros p1 p2 [H1 H2].

auto.

Qed.

Lemma disjoint_0 :

forall p1 p2, disjoint (P0 p1) (P0 p2) -> disjoint p1 p2.

Proof.

unfold disjoint.

intros p1 p2 [np1 np2].

split; intro.

apply np1.

exact (prefix_0 p1 p2 H).

apply np2.

exact (prefix_0 p2 p1 H).

Qed.
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Lemma disjoint_1 :

forall p1 p2, disjoint (P1 p1) (P1 p2) -> disjoint p1 p2.

intros p1 p2 [np1 np2].

split; intro.

apply np1.

exact (prefix_1 p1 p2 H).

apply np2.

exact (prefix_1 p2 p1 H).

Qed.

Lemma replace_empty :

forall a, forall A B : Trm a, replace A B empty A B.

Proof.

unfold replace.

intros; split.

apply subtrm_empty.

split.

apply subtrm_empty.

intros.

elimtype Logic.False;

exact (disjoint_empty p’ H).

Qed.

Lemma replace_apply0 :

forall a, forall A B : Trm a, forall p,

forall b c, forall M1 M2 : Trm (Fun b c), forall N : Trm c,

replace A B p M1 M2 -> replace A B (P0 p) (Apply M1 N) (Apply M2 N).

Proof.

unfold replace.

intros a A B p b c M1 M2 N [H1 [H2 H3]].

split.

exact (subtrm_apply0 b c a M1 N A p H1).

split.

exact (subtrm_apply0 b c a M2 N B p H2).

intro p1; case p1.
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intro.

elimtype Logic.False.

apply (disjoint_empty (P0 p)).

apply disjoint_symm; assumption.

intros.

assert (disjoint p p0).

apply disjoint_0; assumption.

assert (subtrm Q0 M1 p0 <-> subtrm Q0 M2 p0).

exact (H3 p0 H0 q Q0).

elim H4.

intros.

split; intro; apply subtrm_apply0.

apply H5.

inversion H7.

inversion H8; simpl.

subst b0.

assert (M = M1).

rm_existS_tac; trivial.

rm_existS_tac; assumption.

inversion H7.

rm_existS_tac.

apply H6; assumption.

intros.

split; intro; apply subtrm_apply1;

inversion H0; simpl;

inversion H4; simpl; assumption.

Qed.

Lemma replace_apply1 :

forall a, forall A B : Trm a, forall p,

forall b c, forall M : Trm (Fun b c), forall N1 N2 : Trm c,

replace A B p N1 N2 ->

replace A B (P1 p) (Apply M N1) (Apply M N2).

Proof.

unfold replace.
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intros a A B p b c M N1 N2 [H1 [H2 H3]].

split.

apply subtrm_apply1; assumption.

split.

apply subtrm_apply1; assumption.

intro p1; case p1.

intro.

elimtype Logic.False.

apply (disjoint_empty (P1 p)).

apply disjoint_symm; assumption.

Focus 2.

intros.

assert (disjoint p p0).

apply disjoint_1; assumption.

assert (subtrm Q0 N1 p0 <-> subtrm Q0 N2 p0).

exact (H3 p0 H0 q Q0).

elim H4.

intros.

split; intro; apply subtrm_apply1.

apply H5.

inversion H7; simpl.

inversion H8; simpl.

assumption.

apply H6.

inversion H7; simpl.

inversion H8; simpl.

assumption.

intros.

split; intro; apply subtrm_apply0;

inversion H0; inversion H4; simpl.

rm_existS_tac; assumption.

rm_existS_tac; assumption.

Qed.

Lemma replace_lambda1 :
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forall a, forall A B : Trm a, forall p,

forall b c, forall x : Var b, forall N1 N2 : Trm c,

replace A B p N1 N2 ->

replace A B (P1 p) (Lambda x N1) (Lambda x N2).

Proof.

unfold replace.

intros a A B p b c M N1 N2 [H1 [H2 H3]].

split.

apply subtrm_lambda1; assumption.

split.

apply subtrm_lambda1; assumption.

intro p1; case p1.

intro.

elimtype Logic.False.

apply (disjoint_empty (P1 p)).

apply disjoint_symm; assumption.

Focus 2.

intros.

assert (disjoint p p0).

apply disjoint_1; assumption.

assert (subtrm Q0 N1 p0 <-> subtrm Q0 N2 p0).

exact (H3 p0 H0 q Q0).

elim H4.

intros.

split; intro; apply subtrm_lambda1.

apply H5.

inversion H7; simpl;

inversion H12; simpl;

inversion H14; simpl;

assumption.

apply H6.

inversion H7; simpl.

inversion H12; simpl.

inversion H14; simpl.

assumption.
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intros.

split; intro; apply subtrm_lambda0;

inversion H0;

inversion H4; simpl;

subst b0.

inversion H8; simpl.

inversion H9; simpl.

assumption.

inversion H8; simpl.

inversion H9; simpl; assumption.

Qed.

Ltac replace_tac :=

match goal with

| |- replace _ _ empty _ _ =>

apply replace_empty; replace_tac

| |- replace _ _ (P0 ?p) (Apply _ _) (Apply _ _) =>

apply replace_apply0; replace_tac

| |- replace _ _ (P1 ?p) (Apply _ _) (Apply _ _) =>

apply replace_apply1; replace_tac

| |- replace _ _ (P1 ?p) (Lambda _ _) (Lambda _ _) =>

apply replace_lambda1; replace_tac

end.

Lemma pos_non_binding_empty :

forall a, forall A : Trm a, ~ (pos_binding empty A).

Proof.

repeat intro.

elim H; intros.

elim H0; intros.

elim H1; intros.

elim H2; intros.

elim H3; intros.

elim H4.
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intros.

inversion H5.

Qed.

Lemma pos_non_binding_apply0 :

forall p s t, forall M : Trm (Fun s t), forall N,

~ (pos_binding p M) ->

~ (pos_binding (P0 p) (Apply M N)).

Proof.

unfold pos_binding.

intros p s t M N H [p2 [s0 [t0 [x [M0 [H1 H2]]]]]].

apply H.

inversion H1.

subst p2.

elimtype Logic.False.

inversion H2.

rewrite H6 in H8; discriminate.

subst p2.

exists p1; exists s0; exists t0; exists x; exists M0.

split.

assumption.

inversion H2.

inversion H3; simpl.

rm_existS_tac; assumption.

Qed.

Lemma pos_non_binding_apply1 :

forall p s t, forall M : Trm (Fun s t), forall N,

~ (pos_binding p N) ->

~ (pos_binding (P1 p) (Apply M N)).

Proof.

unfold pos_binding.

intros p s t M N H [p2 [s0 [t0 [x [M0 [H1 H2]]]]]].

apply H.

inversion H1.
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subst p2.

exists p1; exists s0; exists t0; exists x; exists M0.

split.

assumption.

inversion H2; simpl.

inversion H3; simpl.

assumption.

Qed.

Lemma pos_non_binding_lambda1 :

forall p s t, forall x : Var s, forall N : Trm t,

~ (pos_binding p N) ->

~ (pos_binding (P1 p) (Lambda x N)).

Proof.

unfold pos_binding.

intros p s t M N H [p2 [s0 [t0 [x [M0 [H1 H2]]]]]].

apply H.

inversion H1.

subst p2.

exists p1; exists s0; exists t0; exists x; exists M0.

split.

assumption.

inversion H2; simpl.

inversion H8; simpl.

inversion H10; simpl.

assumption.

Qed.

Ltac pos_non_binding_tac :=

match goal with

| |- ~ (pos_binding empty ?A) =>

apply pos_non_binding_empty

| |- ~ (pos_binding (P0 ?p) (Apply ?M ?N)) =>

apply pos_non_binding_apply0; pos_non_binding_tac

| |- ~ (pos_binding (P1 ?p) (Apply ?M ?N)) =>
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apply pos_non_binding_apply1; pos_non_binding_tac

| |- ~ (pos_binding (P1 ?p) (Lambda ?x ?N)) =>

apply pos_non_binding_lambda1; pos_non_binding_tac

end.

Lemma pos_binding_apply0 :

forall p s t, forall M : Trm (Fun s t), forall N,

pos_binding p M ->

pos_binding (P0 p) (Apply M N) .

Proof.

unfold pos_binding.

intros.

elim H; intros.

elim H; intros.

elim H1; intros.

elim H2; intros.

elim H3; intros.

elim H4. intros x4 [H5 H6].

exists (P0 x0).

exists x1.

exists x2.

exists x3.

exists x4.

split.

exact (pos_left_0 _ _ H5).

exact (subtrm_apply0 _ _ _ _ _ _ _ H6).

Qed.

Lemma pos_binding_apply1 :

forall p s t, forall M : Trm (Fun s t), forall N,

pos_binding p N ->

pos_binding (P1 p) (Apply M N).

Proof.

unfold pos_binding.

intros.
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elim H; intros.

elim H0; intros.

elim H1; intros.

elim H2; intros.

elim H3. intros x3 [H4 H5].

exists (P1 x).

exists x0; exists x1; exists x2; exists x3.

split.

exact (pos_left_1 _ _ H4).

exact (subtrm_apply1 _ _ _ _ _ _ _ H5).

Qed.

Lemma pos_binding_lambda1 :

forall p s t, forall x : Var s, forall M : Trm t,

pos_binding p M ->

pos_binding (P1 p) (Lambda x M).

Proof.

unfold pos_binding.

intros.

elim H; intros.

elim H0; intros.

elim H1; intros.

elim H2; intros.

elim H3. intros x4 [H4 H5].

exists (P1 x0).

exists x1; exists x2; exists x3; exists x4.

split.

exact (pos_left_1 _ _ H4).

exact (subtrm_lambda1 _ _ _ _ _ _ _ H5).

Qed.

Lemma pos_binding_lambda0 :

forall s t, forall x : Var s, forall M : Trm t,

pos_binding (P0 empty) (Lambda x M).

Proof.
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intros.

unfold pos_binding.

exists empty; exists s; exists t; exists x; exists M.

split.

exact pos_left_empty.

exact (subtrm_empty _ (Lambda x M)).

Qed.

Ltac pos_binding_tac :=

match goal with

| |- pos_binding (P0 ?p) (Apply ?M ?N) =>

apply pos_binding_apply0; pos_binding_tac

| |- pos_binding (P1 ?p) (Apply ?M ?N) =>

apply pos_binding_apply1; pos_binding_tac

| |- pos_binding (P0 ?p) (Lambda ?x ?M) =>

apply pos_binding_lambda0; pos_binding_tac

| |- pos_binding (P1 ?p) (Lambda ?x ?M) =>

apply pos_binding_lambda1

end.
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Inference Rules: Rule R and Rule R’

Axiom Rule_R :

forall a, forall A B : Trm a, forall p C D,

Pf C ->

Pf (Equals A B) ->

replace A B p C D ->

~ pos_binding p C ->

Pf D.

Implicit Arguments Rule_R [a A B C D].

Variable Hyp : Set.

Variable null_Hyp : Hyp.

Variable in_Hyp : Trm O -> Hyp -> Prop.

Variable HypPf : Hyp -> Trm O -> Set.

Axiom by_assumption: forall A H, in_Hyp A H -> HypPf H A.

Implicit Arguments by_assumption.

Axiom weaken : forall A H, Pf A -> HypPf H A.

Implicit Arguments weaken.

Definition R’_var_condition

(a : q0_type)(A B : Trm a)(p : Pos)(C : Trm O) (H : Hyp) :=

forall p2,

prefix p2 p /\ diffpos p2 p -> (*p2 is a proper prefix of p*)

forall b g, forall x : Var b, forall E : Trm g,

~ subtrm (Lambda x E) C p2 \/

(forall h, in_Hyp h H -> ~ free x h) \/

~ free x (Equals A B).

Implicit Arguments R’_var_condition.

Lemma R’_var_condition_lem :

forall a : q0_type, forall A B : Trm a, forall p : Pos,

forall C : Trm O, forall H : Hyp,

(forall p2,
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prefix p2 p /\ diffpos p2 p ->

forall b g, forall x : Var b, forall E : Trm g,

~ subtrm (Lambda x E) C p2) ->

R’_var_condition A B p C H.

Proof.

intros.

unfold R’_var_condition.

repeat intro; left.

apply H0.

assumption.

Qed.

Axiom Rule_R’ :

forall H, forall a, forall A B : Trm a, forall C D p,

HypPf H (Equals A B) ->

HypPf H C ->

replace A B p C D ->

~ pos_binding p C ->

R’_var_condition A B p C H ->

HypPf H D.

Implicit Arguments Rule_R’ [H a A B C D].

Ltac prefix_tac :=

match goal with

| H: ~ eqpos _ _ |- _ =>

elimtype Logic.False; apply H; apply eqpos_empty; try prefix_tac

| |- ~ eqpos _ _ -> prefix _ _ -> _ => intro; intro; try prefix_tac

| H: (?p = empty) |- _ => subst p; try prefix_tac

| H: prefix empty _ |- _ => clear H; try prefix_tac

| H: (_ = _) |- _ => clear H; try prefix_tac

| |- (?p = empty) =>

apply (prefix_p_empty p); assumption; try prefix_tac

| H: prefix ?p empty |- _ =>

assert (p = empty); try prefix_tac

| H: prefix (P1 _) (P0 _) |- _ =>
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elimtype Logic.False; inversion H; try prefix_tac

| H: prefix (P0 _) (P1 _) |- _ =>

elimtype Logic.False; inversion H; try prefix_tac

| H: prefix (P1 ?p1) (P1 ?p2), H2: ~ eqpos (P1 ?p1) (P1 ?p2) |- _ =>

inversion H; clear H; assert (~eqpos p1 p2);

[intro; apply H2; apply eqpos_1; assumption | idtac];

clear H2; try prefix_tac

| H: prefix (P0 ?p1) (P0 ?p2), H2: ~ eqpos (P0 ?p1) (P0 ?p2) |- _ =>

inversion H; clear H; assert (~eqpos p1 p2);

[intro; apply H2; apply eqpos_0; assumption | idtac];

clear H2; try prefix_tac

| H: prefix ?p _, H2: ~ eqpos ?p _ |- _ =>

generalize H; generalize H2; case p; clear H H2; try prefix_tac

end.

Ltac R’_var_cond_tac :=

match goal with

| p : Pos |- _ => clear p; try R’_var_cond_tac

| |- R’_var_condition _ _ _ _ _ =>

unfold R’_var_condition; unfold diffpos; try R’_var_cond_tac

| |- forall p: Pos, prefix _ _ /\ _ _ -> _ =>

intros _p [_H1 _H2]; try prefix_tac; try R’_var_cond_tac

| |- forall p: Pos, ~eqpos _ _ -> prefix _ _ -> _ =>

intros _p _H1 _H2; try prefix_tac; try R’_var_cond_tac

| |- forall _ _ _ _, ~ subtrm _ _ empty \/ _ =>

repeat intro; left; intro _H; inversion _H; try R’_var_cond_tac

| |- forall _ _ _ _, ~ subtrm _ _ (P1 ?p) \/ _ =>

repeat intro; left; intro _H; try R’_var_cond_tac

| |- forall _ _ _ _, ~ subtrm _ _ (P0 ?p) \/ _ =>

repeat intro; left; intro _H; try R’_var_cond_tac

| H1: existS _ _ ?A = existS _ _ ?T1,

H2: existS _ _ ?A = existS _ _ ?T2 |- _ =>

rewrite H1 in H2; discriminate

| H: subtrm (Lambda _ _) (Apply _ _) empty |- Logic.False =>

inversion H; try R’_var_cond_tac
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| H:subtrm ?A (Apply ?B _) (P0 ?p) |- Logic.False =>

assert (subtrm A B p); inversion H; simpl; try R’_var_cond_tac

| H:subtrm ?A (Apply _ ?B) (P1 ?p) |- Logic.False =>

assert (subtrm A B p); inversion H; simpl; try R’_var_cond_tac

| H: existS _ _ _ = existS _ _ _ |- _ =>

rm_existS_tac; assumption

end.
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The Meta-Theorems of Q0

(* Reflexivity of Equality *)

Theorem Thm5200 :

forall a, forall A : Trm a, Pf (Equals A A).

Proof.

intros.

assert (Pf (Equals (Apply (Lambda (x_a a) (_v (x_a a))) A) A)).

apply axiom_42.

refine (Rule_R (P0 (P1 empty)) H H _ _); unfold Equals.

replace_tac.

pos_non_binding_tac.

Qed.

Implicit Arguments Thm5200.

(* Other basic properties of Equality *)

Theorem Thm5201b :

forall H, forall a, forall A B : Trm a,

HypPf H (Equals A B) ->

HypPf H (Equals B A).

Proof.

intros.

assert (HypPf H (Equals A A)).

apply (weaken H (Thm5200 A)).

refine (Rule_R’ (P0 (P1 empty)) H0 H1 _ _ _); unfold Equals.

replace_tac.

pos_non_binding_tac.

R’_var_cond_tac.

Qed.

Theorem Thm5201c :

forall H, forall a, forall A B C : Trm a,

HypPf H (Equals A B) ->

HypPf H (Equals B C) ->

HypPf H (Equals A C).

Proof.
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intros.

refine (Rule_R’ (P1 empty) H1 H0 _ _ _); unfold Equals.

replace_tac.

pos_non_binding_tac.

R’_var_cond_tac.

Qed.

Theorem Thm5201d :

forall H, forall a b, forall A B : Trm (Fun a b), forall C D : Trm b,

HypPf H (Equals A B) ->

HypPf H (Equals C D) ->

HypPf H (Equals (Apply A C) (Apply B D)).

Proof.

intros.

assert (HypPf H (Equals (Apply A C) (Apply A C))).

apply (weaken H (Thm5200 (Apply A C))).

assert (HypPf H (Equals (Apply A C) (Apply B C))).

refine (Rule_R’ (P1 (P0 empty)) H0 H2 _ _ _); unfold Equals.

replace_tac.

pos_non_binding_tac.

R’_var_cond_tac.

refine (Rule_R’ (P1 (P1 empty)) H1 H3 _ _ _); unfold Equals.

replace_tac.

pos_non_binding_tac.

R’_var_cond_tac.

Qed.

Theorem Thm5201e :

forall H, forall a b, forall A B : Trm (Fun a b), forall C : Trm b,

HypPf H (Equals A B) ->

HypPf H (Equals (Apply A C) (Apply B C)).

Proof.

intros.

assert (HypPf H (Equals (Apply A C) (Apply A C))).

apply (weaken H (Thm5200 (Apply A C))).
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refine (Rule_R’ (P1 (P0 empty)) H0 H1 _ _ _); unfold Equals.

replace_tac.

pos_non_binding_tac.

R’_var_cond_tac.

Qed.

Theorem Thm5201f :

forall H, forall a b, forall A : Trm(Fun a b), forall C D : Trm b,

HypPf H (Equals C D) ->

HypPf H (Equals (Apply A C) (Apply A D)).

Proof.

intros.

assert (HypPf H (Equals (Apply A C) (Apply A C))).

apply (weaken H (Thm5200 (Apply A C))).

refine (Rule_R’ (P1 (P1 empty)) H0 H1 _ _ _); unfold Equals.

replace_tac.

pos_non_binding_tac.

R’_var_cond_tac.

Qed.

Theorem Rule_RR :

forall H, forall a, forall A B : Trm a, forall C D p,

Pf (Equals A B) ->

HypPf H C ->

replace A B p C D ->

~ pos_binding p C ->

HypPf H D.

Proof.

intros.

assert (Pf (Equals C C)).

apply (Thm5200 C).

assert (Pf (Equals C D)).

refine (Rule_R (P1 p) H4 H0 _ _); unfold Equals.

apply replace_apply1; assumption.

apply pos_non_binding_apply1; assumption.
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assert (HypPf H (Equals C D)).

apply (weaken H H5).

refine (Rule_R’ empty H6 H1 _ _ _).

replace_tac.

pos_non_binding_tac.

R’_var_cond_tac.

Qed.

Theorem Thm5203 :

forall a: q0_type, forall x: Var a, forall A: Trm a,

forall b: q0_type, forall B B’: Trm b,

replace_all x A B B’ ->

(forall t:q0_type, forall v: Var t, var_in v A -> ~bound_in v B) ->

Pf (Equals (Apply (Lambda x B) A) B’).

Proof.

Admitted.

Implicit Arguments Thm5203.

Theorem Thm5204 :

forall a: q0_type, forall x : Var a, forall A : Trm a,

forall b: q0_type, forall B B’ C C’: Trm b,

Pf (Equals B C) ->

replace_all x A B B’ ->

replace_all x A C C’ ->

(forall t : q0_type, forall v : Var t, var_in v A ->

~bound_in v B /\ ~bound_in v C) ->

Pf (Equals B’ C’).

Proof.

repeat intro.

assert (Pf (Equals (Apply (Lambda x B) A) (Apply (Lambda x B) A))).

exact (Thm5200 (Apply (Lambda x B) A)).

assert (Pf (Equals (Apply (Lambda x B) A) (Apply (Lambda x C) A))).

refine (Rule_R (P1 (P0 (P1 empty))) H3 H _ _); unfold Equals.

replace_tac.

pos_non_binding_tac.
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assert (Pf (Equals (Apply (Lambda x B) A) B’)).

intros.

apply Thm5203.

assumption.

intros.

assert (~bound_in v B /\ ~ bound_in v C).

exact (H2 t v H5).

elim H6.

intros; assumption.

assert (Pf (Equals (Apply (Lambda x C) A) C’)).

intros.

apply Thm5203.

assumption.

intros.

assert (~bound_in v B /\ ~ bound_in v C).

exact (H2 t v H6).

elim H7.

intros; assumption.

assert (Pf (Equals B’ (Apply (Lambda x C) A))).

refine (Rule_R (P0 (P1 empty)) H4 H5 _ _); unfold Equals.

replace_tac.

pos_non_binding_tac.

refine (Rule_R (P1 empty) H7 H6 _ _); unfold Equals.

replace_tac.

pos_non_binding_tac.

Qed.

Implicit Arguments Thm5204 [a b].
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