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Heap Defragmentation in Bounded Time∗(Extended Abstract)

Sharath R. Cholleti, Delvin Defoe and Ron K. Cytron

Department of Computer Science and Engineering

Washington University

Saint Louis, MO 63130

Abstract

Knuth’s buddy system is an attractive algorithm
for managing storage allocation, and it can be
made to operate in real time. However, the is-
sue of defragmentation for heaps that are man-
aged by the buddy system has not been studied.
In this paper, we present strong bounds on the
amount of storage necessary to avoid defragmen-
tation. We then present an algorithm for defrag-
menting buddy heaps and present experiments
from applying that algorithm to real and syn-
thetic benchmarks. Our algorithm is within a
factor of two of optimal in terms of the time re-
quired to defragment the heap so as to respond
to a single allocation request. Our experiments
show our algorithm to be much more efficient
than extant defragmentation algorithms.

1 Introduction

When an application starts, the storage alloca-
tor usually obtains a large block of storage, called
the heap, from the operating system, which the
allocator uses to satisfy the application’s alloca-
tion requests. In real-time or embedded systems
the heap size is usually fixed a priori, as the ap-
plication’s needs are known. Storage allocators
are characterized by how they allocate and keep
track of free storage blocks. There are various
types of allocators including unstructured lists,
segragated lists and buddy allocators [9]. In this

∗Sponsored by DARPA under contract F3333333; con-

tact author cytron@cs.wustl.edu

paper we study defragmentation of the buddy al-
locator, whose allocation time is otherwise rea-
sonably bounded [5] and thus suitable for real-
time applications.

Over time, the heap becomes fragmented so
that the allocator might fail to satisfy an al-
location request for lack of sufficient, contigu-
ous storage. As a remedy, one can either start
with a sufficiently large heap so as to avoid frag-
mentation problems, or devise an algorithm that
can rearrange storage in bounded time to sat-
isfy the allocationrequest. We consider both of
those options in this paper, presenting the first
tight bounds on the necessary storage and the
first algorithm that defragments a buddy heap
in reasonably bounded time.

Our paper is organized as follows. Sec-
tion 1.1 explains the buddy allocator and de-
fragmentation; Section 2 shows how much stor-
age is necessary for an application-agnostic,
defragmentation-free buddy allocator; Section 3
gives the worst-case storage relocation necessary
for defragmetnation; and Section 4 presents an
algorithm that performs within twice the cost of
an optimal defragmentation algorithm. Section 5
presents various experimental results of our de-
fragmentation algorithm and compares its effi-
ciency with extant defragmentation approaches.

1.1 Buddy Allocator

In the binary buddy system [7], separate lists are
maintained for available blocks of size 2k bytes,
0 ≤ k ≤ m, where 2m bytes is the heap size.
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Figure 1: Buddy Example

Initially the entire block of 2m bytes is available.
When a block of 2k bytes is requested, and if no
blocks of that size are available, then a larger
block is split into two equal parts repeatedly un-
til a block of 2k bytes is obtained.

When a block is split into two equal sized
blocks, these blocks are called buddies (of each
other). If these buddies become free at a later
time, then they can be coalesced into a larger
block. The most useful feature of this method is
that given the address and size of a block, the
address of its buddy can be computed very eas-
ily, with just a bit flip. For example, the buddy
of the block of size 16 beginning in binary loca-
tion xx . . . x10000 is xx . . . x00000 (where the x’s
represent either 0 or 1).

Address-Ordered Buddy Allocator The
address-ordered policy selects a block of re-
quested or greater size with the lowest address.
If there are no free blocks of the requested size
then the allocator searches for a larger free block,
starting from the lowest address, and continuing
until it finds a sufficiently large block to divide
to get a required-size block. For example, if a
1-byte block is requested in Figure 1(c), block b2

(of 4 bytes) is split to obtain a 1-byte block even
though there is a 1-byte block available in the
heap. Using this policy the lower addresses of the
heap tend to get preference leaving the other end
unused unless the heap gets full or fragmented a

lot. Our analysis of the binary-buddy heap re-
quirement is based on an allocator that uses this
policy, which we call an Address-Ordered Binary
Buddy Allocator (AOBBA).

Address-Ordered Best-Fit Buddy Alloca-

tor In this policy a block of smallest possible
size equal to or greater than the required size
is selected with preference to the lowest address
block. When a block of required size is not avail-
able then a block of higher size is selected and
split repeatedly until a block of required size is
obtained. For example, if a 1-byte block is re-
quested in Figure 1(c), block b7 is chosen. If a
2-byte block is requested then block b2 is cho-
sen. Our implementation of the binary-buddy is
based on this policy.

1.2 Defragmentation

Defragmentation can be defined as moving al-
ready allocated storage blocks to some other ad-
dress so as to create contiguous free blocks that
can be coalesced to form a larger free block. Gen-
erally, defragmentation is performed when the al-
locator cannot satisfy a request for a block. This
can be performed by garbage collection [9]. A
garbage collector tries to separate the live and
deallocated or unused blocks, and by combining
the unused blocks, if possible, usually a larger
block is formed, which the allocator can use to
satisfy the allocation requests. Some program-
ming languages like C and C++ need the pro-
gram to specify when to deallocate an object,
whereas the programming languages, like Java,
find which objects are live and which are not by
using some garbage collection technique. Gen-
erally garbage collection is done by either iden-
tifying all the live objects and assuming all the
unreachable objects to be dead as in mark and
sweep collectors [9] or by tracking the objects
when they die as in reference counting [9] and
contaminated garbage collection techniques [1].

In our study, we assume we are given both the
allocation and deallocation requests. For this
study it does not matter how the deallocated
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blocks are found – whether it is by explicit deal-
location request using free() for C programs or
by using some garbage collection technique for
Java programs. For real-time purposes we get
the traces for Java programs using contaminated
garbage collection [1], which keeps track objects
when they die, instead of mark and sweep collec-
tors which might take unreasonably long time.
Our work makes use of the following definitions:

1. Maxlive, M , is defined as the maximum
number of bytes alice at any instant during
the program’s execution.

2. Max-blocksize, n, is the size of the largest
block the program can allocate.

2 Defragmentation-Free Buddy

Allocator

We examine the storage requirements for a
binary-buddy allocator so that heap defragmen-
tation is never necessary to satisfy an allocation
request. If the amount of storage a program can
use at any instant is known, assuming worst-case
fragmentation, then a system with that much
storage suffices.

Some previous work on bounding the storage
requirement is found in [8]. Even though the
bound given in that paper is for a system in
which blocks allocated are always a power of 2,
the allocator assumed is not a buddy allocator.

Theorem 2.1 M(log M + 1)/2 bytes of
storage are necessary and sufficient for a
defragmentation-free buddy allocator, where M
is the maxlive and the max-blocksize.

Proof: See [2] for a detailed proof. The neces-
sary part is proven by constructing a program
that requires that number of bytes to avoid de-
fragmentation. The sufficiency part is proven by
observing that if each buddy list has M bytes to-
tal, then sufficient storage of any size is available
without defragmentation.

Theorem 2.2 The tight bound of M(log M +
1)/2 bytes holds for any buddy-style storage man-
anger (i.e., not just those that are address-
ordered).

Proof: There is insufficient room to present the
proof in this paper; see [4]. The proof shows
that however an allocator picks the next block
to allocate, there is a program that can force
the allocator to behave like an address-ordered
allocator.

Discussion While a bound of O(M log M) is
usually quite satisfactory for most problems,
consider its ramifications for embedded, real-
time systems. For a system that has at most
M bytes of live storage at any time, the bound
implies that a factor of log M extra storage is
required to avoid defragmentation. Even if M is
only the Kilobytes, log M is a factor of 10, mean-
ing that the system needs 10x as much storage
as it really uses to avoid defragmentation. In-
flating the RAM or other storage requirements of
an embedded system by that amount could make
the resulting product noncompetitive in terms of
cost.

3 Worst case relocation with

heap of M bytes

Given that it is unlikely that suffient storage
would be deployed to avoid defragmentation, we
next attack this problem from the opposite side.
We find the amount of storage that has to be re-
located in the worst case, if the allocator has M
bytes and the maxlive of the program is also ex-
actly M bytes. By defintion, a program can run
in its maxlive storage; however, having only that
much storage places as much pressure as possible
on a defragmentor. The work that must be done
is stated in the theorems below, with the proofs
found in [2].

Theorem 3.1 With heap of M bytes and
maxlive M bytes, to allocate a s-byte block, where

3



s < M , s

2
log s bytes must be relocated, in worst

case.

Theorem 3.2 With heap of M bytes and
maxlive M bytes, to allocate a s-byte block, s−1
blocks must be relocated, in worst case.

Discussion With the smallest possible heap,
defragmentation may have to move O(s log s)
bytes by moving O(s) blocks to satisfy an al-
location of size s. If an application reasonably
bounds its maximum storage request, then the
minimum work required to satisfy an allocation
is also reasonably bounded in s. Unfortunately,
finding the “right” blocks to move in this man-
ner is not easy, and has been shown to be NP-
hard [8]. Thus, a heap of just M bytes is not suit-
able for real-time, embedded applications, and a
heap of M log M bytes, while avoiding defrag-
mentation, is too costly for embedded applica-
tions.

4 Greedy Heuristic with 2M

Heap

In this section we consider a practical solution to
the above problems. We consider a heap slightly
bigger than optimal—twice maxlive—and con-
sider a heuristic for defragmentation that is lin-
ear in the amount of work required to relocate
storage. Here, we use the terms chunk and block
(of storage). A 2k-byte chunk is a contiguous
storage in the heap which consists of either free
or occupied blocks (objects). Our heuristic de-
fragmentation algorithm is based on the follow-
ing lemma [2]:

Lemma 4.1 With 2M -byte heap, when alloca-
tion for a block of 2k bytes is requested, there
is a 2k-byte chunk with less than 2k−1 bytes live
storage.

If there is an allocation request for a 2k-byte
block and there is no free block of 2k bytes then,
from the Lemma 4.1, less than 2k−1 bytes have
to be relocated to create a free 2k-byte block.
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Figure 2: Data Structure

But to relocate these blocks we might have to
empty some other blocks by repeated relocations
if there are no appropriate free blocks.

How much storage must these recursive reloca-
tions move? For example, consider an allocation
request for a 256-byte block but there is no such
free block. According Lemma 4.1, there is a 256-
byte chunk in which less than 128 bytes are live.
Assume there is a 64-byte live block that has to
be moved out of 256-byte chunk. But now sup-
pose there is no free block of 64 bytes. Now,
a 64-byte chunk has to be emptied. Let that
contain a block of 16 bytes. This 16-byte block
cannot be moved in to either the 256 or the 64-
byte chunk, as it is being relocated in the first
place to empty those chunks. The result of ac-
counting for the above work is captured by the
follwoing [2]:

Theorem 4.2 With 2M -byte heap, the greedy
approach of selecting a chunk with minimum
amount of live storage for relocation, relocates
less than twice the amount of storage relocated
by an optimal strategy.

Corollary 4.3 With a 2M -byte heap, the
amount of storage relocated to allocate a s-byte
block is less than s bytes.

Heap Manager Algorithm A naive method
for finding the minimally occupied chunk in-
volves processing the entire storage pool, but
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the complexity of such a search is unacceptable
at O(M). We therefore use the data structure
shown in Figure 2 to speed our search. Each level
of the tree has a node associated with a chunks
of storage that could be allocatable at that level.
In each node, an integer shows the number of
live bytes available in the subtree rooted at that
node. In Figure 2, the heap is 16 bytes. The
level labeled with “2 →” keeps track of the num-
ber of live bytes in each 2 − byte chunk. Above
that, each node at the 4 → level is the sum of
its children, showing how many bytes are free at
the 4-byte level, and so on.

When a 2-byte block is allocated, the appro-
priate node at the 2 → level is updated, but that
information must propagate up the tree using
parent-pointers, taking O(log M) time. To find
a minimally occupied block of the required size,
only that particular level is searched in the data
structure, decreasing the time complexity of the
search to O(M/s), where s is the requested block
size (it has to go through 2M/s numbers to find
a minimum). We have used hardware to reduce
this kind of search to near-constant time [5] and
we expect a similar result could obtain here.

The algorithm’s details are straightforward
and appear in [4], wherein proofs can be found
of the following theorems:

Theorem 4.4 With 2M -byte heap, defragmen-
tation according to the Heap Manager Algo-
rithm(Section 4) to satisfy a single allocation re-
quest of a s-byte block takes O(Ms0.695) time.

Theorem 4.5 With M -byte heap, defragmen-
tation according to the Heap Manager Algo-
rithm(Section 4) to satisfy an allocation request
for a s-byte block takes O(Ms) time.

Discussion A constant increase in heap size
(from M to 2M) allows the heuristic to oper-
ate polynomially, but its complexity may be un-
suitable for real-time systems. The work that
must be done is reasonably bounded, in terms of
the allocation-request size s, but more research is
needed to find heuristics that operate in similar
time.

5 Experimental Results

Storage requirements as well allocation and deal-
location patterns vary from one program to an-
other. Hence, storage fragmentation and the
need for defragmentation vary as well. To fa-
cilitate experimentation, we implemented a sim-
ulator that takes the allocation and deallocation
information from a program trace and simulates
the effects of allocation, deallocation, and de-
fragmentation using buddy algorithm and our
heuristic described in Section 4.

For benchmarks, we used the Java SPEC
benchmarks [3]. To illustrate the efficiency of
our defragmentation algorithm, we compare our
results with the following approaches currently
in common practice.

Left-First Compaction This approach com-
pacts all the storage to the lower end, based
on address, by filling up the holes with the
closest block (to the right) of less than or
equal size.

Right-First Compaction This is similar to
left-first compaction in moving all the stor-
age to the left end of the heap, but it picks
the blocks by scanning from the right end,
where we expect storage is less congested
due to our address-ordered policy for allo-
cation.

Compaction Without Using Buddy Properties

This method has been implemented to com-
pare our defragmentation algorithm to a
naive compaction method of sliding the
blocks to one end of the heap, without
following the buddy block properties similar
to the general non-buddy allocators.

5.1 Defragmentation with 2M-byte

Heap

We explored the defragmentation in various
benchmarks with 2M -byte heap using the algo-
rithm described in Section 4, which is based on
the theorem 4.2. To our surprise we found that

5



none of the benchmarks needed any defragmen-
tation when the heap size is 2M bytes! So having
twice the maxlive storage, the address-ordered
best-fit buddy allocator is able to avoid any re-
location of the storage. Even some randomly
generated program traces did not need any relo-
cation with a heap of size 2M bytes. These re-
sults actually confirm what is known in practice:
most allocation algorithms do not need defrag-
mentation [6].

However, our theoretical results show that
there are some programs for which defragmenta-
tion will be problematic, and real-time systems
must be concerned with accomodating worst-
case behavior.

5.2 Defragmentation with M-byte

Heap

A 2M -byte heap induced no defragmentation for
our benchmarks, so we next experiment wtih an
exact-sized heap of M bytes. Note that with an
M -byte heap, there is no guarantee about how
much storage is relocated when compared to the
optimal. From Figure 3 we see that very few
programs required defragmentation. Among the
programs that needed defragmentation, except
for Jess of size 1 and Javac of size 10, the amount
of storage relocated by our defragmentation al-
gorithm for other programs is very insignificant.
But compared to our algorithm which relocates
storage only to satisfy a particular request with-
out defragmenting the whole heap, all other com-
paction methods perform badly. The amount of
storage relocated by our defragmentation algo-
rithm is summed over all the relocations neces-
sary, whereas for the compaction methods the
amount is only for one compaction which is
done when the allocator fails to satisfy an al-
location request for the first time. Among all
the compaction methods, only right-first com-
paction performed reasonably well. The other
two methods—left-first compaction and naive
compaction—relocated significantly more stor-
age, sometimes close to M bytes.

The above results, which showed the weak-

ness of the compaction methods when compared
to our defragmentation algorithm, indicate the
value of localized defragmentation to satisfy a
single allocation request instead of defragment-
ing the whole heap. If the defragmentation is
needed for very few allocations (according to the
amount of storage relocated as shown in Fig-
ure 3, and given the number of relocations as
shown in Figure 5), there is no point in doing
extra work by compacting the whole heap, ei-
ther in anticipation of satisfying the future allo-
cation requests without any defragmentation or
for some other reason.

5.3 Minimally Occupied vs Random

Block Selection

Our heuristic selects the minimally occupied
block for relocation. In this section we compare
that strategy against what happens when the re-
located block is chose at random and the heap
is sufficiently small so as to cause defragmenta-
tion (M bytes). We report results only for those
benchmarks that needed defragmentation under
those conditions.

From Figure 4 we see that out of the 6
Java SPEC benchmark programs which needed
some defragmentation, for 3 programs (check(1),
db(1) and jess(100)) the same amount of reloca-
tion is required. For 2 programs (jess(1) and
jess(10)), selecting the minimally occupied block
is better and for 1 program (javac(10)), selecting
a random block is better.

From Figure 5, 2 Java SPEC benchmark pro-
grams (check(1) and db(1)) needed the same
number of relocations while 4 others (jess(1),
javac(10), jess(10) and jess(100)) needed a dif-
ferent number of relocations. For all those pro-
grams, selecting the minimally occupied block
is better. Note that even though random selec-
tion needed more relocations for javac(10), the
amount of storage relocated is less.

The above results indicate that using the ran-
dom block selection might be a good alternative,
and it avoids searching for the minimaly occu-
pied block. We have not as yet determined the
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theoretical time bound when random blocks are
chosen for relocation.

6 Conclusions and Future

Work

We presented a tight bound for the storage re-
quired for a defragmentation-free buddy alloca-
tor. While the bound could be appropriate for
desktop computers, for embedded systems there
is an inflationary factor of log M for the stor-
age required to avoid defragmentation. While a
factor of 2 might be tolerable, a factor of log M
is most likely prohibative for embedded applica-
tions.

We presnted a greedy algorithm that allocates
an s-byte block using less than twice the optimal
relocation, on a 2M -byte (twice maxlive) heap.
Even though our benchmark programs did not
need any relocation with 2M , there is some re-
location involved when heap size is M . The re-
sults show better performance of a localized de-
fragmentation algorithm, which defragments just
a small portion of the heap to satisfy a single
request, over the conventional compaction algo-
rithms.

We compared our greedy algorithm with ran-
dom selection heuristic to find that our greedy
algorithm performed better, as expected. But
since the overall fragmentation is low, the ran-
dom heuristic takes less time and might work
well in practice; a theoretical bound on its time
complexity is needed.

As the effectiveness of the localized defragmen-
tation, by relocation, is established in this paper,
it is a good idea to concentrate on studying such
algorithms instead of defragmenting the entire
heap. We proposed only one algorithm based on
a heap-like data structure, so further study could
involve designing and implementing better data
structures and algorithms to improve on the cur-
rent ones.
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