Metadata, citation and similar papers at core.ac.uk

Provided by Washington University St. Louis: Open Scholarship

Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-87-12

1987-06-01

PRODB: An Experimental Generalized Database System User's
Manual

Guillermo R. Simari

The following notes document in a succinct manner the use of the system PRODB. The system
is still evolving and several new features are in the process of being added. PRODB is a
prototype system that is being used as an exploration vehicle of the possible extensions to the
relational model through logic programming. The system consists of a relational database
system having a relational algebra type language as a query language. It is written in Prolog and
it extends the capabilities of Prolog predicates with the relational algebra operators for handling
the database structure. The database system currently... Read complete abstract on page 2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

b‘ Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

Simari, Guillermo R., "PRODB: An Experimental Generalized Database System User's Manual" Report
Number: WUCS-87-12 (1987). All Computer Science and Engineering Research.
https://openscholarship.wustl.edu/cse_research/797

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://core.ac.uk/display/233233488?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F797&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F797&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F797&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F797&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F797&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F797&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F797&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/797?utm_source=openscholarship.wustl.edu%2Fcse_research%2F797&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/797

PRODB: An Experimental Generalized Database System User's Manual

Guillermo R. Simari

Complete Abstract:

The following notes document in a succinct manner the use of the system PRODB. The system is still
evolving and several new features are in the process of being added. PRODB is a prototype system that is
being used as an exploration vehicle of the possible extensions to the relational model through logic
programming. The system consists of a relational database system having a relational algebra type
language as a query language. It is written in Prolog and it extends the capabilities of Prolog predicates
with the relational algebra operators for handling the database structure. The database system currently
provides the set theoretic operations (union, intersection, difference and product), join, project and select.
The relations can be defined over any domain that can be defined using a Prolog predicate. Primary keys
for the relations should be defined and their uniqueness is maintained. Facilities exist for defining
assertions over the contents of the relations. Those assertions are predicates that constrain the set of
legal tuples that can be part of a relation. The consistency of the database is checked and maintained
with respect to the set of assertions and domains. Actions are daemons associated with the update
operations and can be defined by the user as Prolog predicates that will be triggered by those operations.
Actions can involve any Prolog (or PRODB) predicate and allow the definition of side effect behavior when
an update operation is performed. A transaction can be started and all the operations executed inside of
it can be started and all the operations executed inside of it can be rolled-back to the point when the
transaction was started. Time is associated with the creation of the relations and with the insertion of
tuples in the form of a time-stamp. That time-stamp is shown in the printouts of schemas and, by using
the appropriate predicate, also in the printouts of relations. A predicate for selecting tuples according with
their time of insertion is defined. There are several predefined comparison operators and predicates. The
usual aggregate predicates are available including some handling time. A built-in help facility is available
(see the Miscellaneous paragraph) and appropriate error messages are issues whenever an error
condition is reached. The system is capable of handling several databases at the same time and all the
relational operations can take arguments from different databases. Also the referential integrity can be
enforced across databases. Different scenarios can be developed in that way and, in conjunction with the
transaction facility, the seed for an exploration capability is in place. First the operation handling complete
databases as objects are presented. Then, the relative level operations for handling tuples and the syntax
of the implemented relational algebra operations for handing tuples and the syntax of the implemented
relational algebra operators is introduced. After that, there is a brief discussion over how to define
assertions and actions for the database. Finally the time related predicates, transaction facility and some
miscellaneous predicates are described.

https://openscholarship.wustl.edu/cse_research/797?utm_source=openscholarship.wustl.edu%2Fcse_research%2F797&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/797?utm_source=openscholarship.wustl.edu%2Fcse_research%2F797&utm_medium=PDF&utm_campaign=PDFCoverPages

PRODB: AN EXPERIMENTAL GENERALIZED
DATABASE SYSTEM USER’S MANUAL

Guillermo R. Simari

WUCS-87-12

June 1987

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

Saint Louis, MO 63130-4899

Table

1. Overviewccccuenneenn, ST

2.1.
2.2,
2.3.
2.4.
2.5.
2.6.
LT
2.8,
2.9
2.10.

3. Relation Handlingc.ooovvvvevenmnnnen.
Notationcccoveveervieerrennene

3.1.
3.2,
3.3.
3.4.
3.5.
3.6.
3.7.
3.8.
3.9.
3.10.
3.11.
3.12.
3.13.
3.14.
3.15.

Listidbs ooccaaimian BN O
create_db i e
T |
loadodb nnnamia e
copy_db ... g A
destroy_dbcou........ ceereeaenennas
print_db A SR S
print_schemas_dbcceueuun...e

print_tel ..o P—
70 1 1ren) e
print:sehemns i
rendame tel.. ..o S ST
reformat_rel e
Bork bRl i e
copy_rel SR s
count_relcccceevveeeiieecinnnns
copy_rel_tuples ...
count_rel_tuplesccvuceana.
modify_format —
rename_attributeccceeeoes

of Contents

aaaaaaa A R R R R T N R AL RS SRR RN R RN EEER S
aaaaaaa T
SesssssdsddtrATITITONER AL LRaaS LI T T LR T PP T T T T FHEEE

------------------ D L L L T T T T T T T PR

------------ B R R TR PR RN AN RRE bR RAAa R bbb R R n
---------- TR LT Y T T T T TR T
------------------------- B B R A T PR R R AR R bR
------------- L R
BEEFEFEEEE RS S dAddn i r s s B R T T LT T T R TP
--------------------- R T T Ay
AAEdEEEb bR AR R R d s s s L LI L LT T T T T TP PR P +
aaaaaaa B
----------- D L T L L R e
-------------------- 4 A R e A RN R RN E A AR R R R a S R R

aaaaaaaaaaaaaa B T T T T T T AR,
----------------------- B T
nnnnnnn L
nnnnnnnnnnnn D LT T T T T R,
-------------------- D T LT T T T T T T P,
------------------------------ B LT T PP
DT T T TP T PR LR P —
------------ R R e AT AT N RN AL L RS A AR a i n g
.................................. S T T T T T T TT
nnnnnnnnnnnnnnnn raanns HAdbEEsatdtrrrEr R R TT R R ARG Aa AR
TR A e eamsserEEATEETEEEETIAAL L LERAAddasasEnREsaaan PO
.................................... R T T L T I L L T T
.................................... D T T T T AR ——

NN OO R WW N NN et

L=l (=]

10
11
12
13
14
15
15
16
17
18
18
19
19
20

June 1987 Table of Contents (cont.)

4. Tuple Handlingcoccoevecvennnnee. A —— B 22
4.1 ciosertaasiasnsi R R A ST e e T modamnpmmmarns aryapen 22
42. get_tuple AN T e AR G e R ST 23
4.3. modify vt T A s N B S AN, 23
44. remove ... R e ST A A 4 Ve s amn T R - 24
4.5. match_tuplec...... SR R TR e A T R e 25
4.6, do_insertcceereiiieiiennne e T R R 26
47. doimodilyonis S i mamammanas s rertret e e e naeerneeaeen AN A AR 26

5. Relational Algebra Operators st en et ne crere st enaanes 28
5.1. Notation R A e TR s h e S 28
5.2. Union, Intersection, Difference and Productocoovvveverrvevreereeiennn 29
5.3. Select R e e ene s A RO A e S VTR B AT LA e 6 e 30
5.4. doin viasini s e R Ul e e eeenmmn e nanars T 31
20, PTOIBLE e swsineins e G T SR e TR R R 32

6. Actions R S e e T e R R AT R TR 34
6.1. define_action Crrerte e s s saaas N O P PU T R 34
6.2. remove_actioncceceiieneennens Frhi s erreaeser e e neras 35
8.3. modily Rethon o it i T R R 36

7. Assertions and Consistency i e s R iR 37
7.1. define_assertccceerueen. Y A RS R i S i R O 37
7.2 remove_assert ... R R Sl e emnnnmm e mammmmnenrenss 38
7.3. consistency O R T A SO T S R A T S e T R T i 38

8. Referential Integrityccooovevecernnnn. R A R SN 40
81. define_fkeyivvevercrerrrnnen, eeebreneteaeeterennsraaee e atanaeessanans T — 41
8.2, delete_fkey R R e R A R R O IR B 42

9. Appregate Prediohbes i i i i L R R R R i 43
9.1. time_select AP s R i e N T T T . 44
0.2. get_newest, get_oldestccccooeereeverieiiiiciec s et eeteeaba e ane e 46
9.3. older, newer and same_date e T I T L R B B T 46

10. Transactions P o BT L K ek s g 48

June 1987 Table of Contents (cont.)

10.1. open_transactionoecoeeennene, o T S e PR e A 48
10.2. close_transactionccoeu.... rererene e nnaaeans e bbtar et e st e et s et e earaanneeraes 48
103, ‘rolliback:...aasi oA e e e WS ot Al mmmmam zas s samnsmmen S 48

11. Miscellaneous R TR e N 49
11.1. loud and mute ..ooooveeeeereereeeeeeee et et S T AL e e 49
11.2,. help.iag T S cresentn e eanaaeaeas . PR Rt 49

+ &)

1. Overview

The following notes document in a succinct manner the use of the system PRODB.
The system is still evolving and several new features are in the process of being added.

PRODB is a prototype system that is being used as an exploration vehicle of the
possible extensions to the relational model through logic programming. The system
consists of a relational database system having a relational algebra type language as a
query language. It is written in Prolog and it extends the capabilities of Prolog
predicates with the relational algebra operators for handling the database structure.

The database system currently provides the set theoretic operations (union,
intersection, difference and product), join, project and select. The relations can be
defined over any domain that can be defined using a Prolog predicate. Primary keys for
the relations should be defined and their uniqueness is maintained.

Facilities exist for defining assertions over the contents of the relations. Those
assertions are predicates that constrain the set of legal tuples that can be part of a
relation. The consistency of the database is checked and maintained with respect to
the set of assertions and domains.

Actions are daemons associated with the update operations and can be defined by
the user as Prolog predicates that will be triggered by those operations. Actions can
involve any Prolog (or PRODB) predicate and allow the definition of side effect
behaviour when an update operation is performed.

A transaction can be started and all the operations executed inside of it can be
rolled-back to the point when the transaction was started. Time is associated with the
creation of the relations and with the insertion of tuples in the form of a time-stamp.
That time-stamp is shown in the printouts of schemas and, by using the appropriate
predicate, also in the printouts of relations. A predicate for selecting tuples according
with their time of insertion is defined. There are several predefined comparison
operators and predicates. The usual aggreagate predicates are available including some
handling time. A built-in help facility is available (see the Miscellaneous paragraph)
and appropriate error messages are issued whenever an error condition is reached.

The system is capable of handling several databases at the same time and all the
relational operations can take arguments from different databases. Also the referential
integrity can be enforced across databases. Different scenarios can be developed in that
way and, in conjunction with the transaction facility, the seed for an exploration
capability is in place.

First the operations handling complete databases as objects are presented. Then,
the relation level operations for handling tuples and the syntax of the implemented
relational algebra operators is introduced. After that, there is a brief discussion over
how to define assertions and actions for the database. Finally the time related
predicates, transaction facility and some miscellaneous predicates are described.

Overview

2. Database Handling

The system works over one or more databases loaded in memory. These databases
are saved to and restored from secondary storage. A database is considered to be a set
of relations together with their schemas, actions, assertions and foreign-key definitions.
A relation is a set of tuples and this set is a subset of the Cartesian product of a finite
number of domains. The schema, defined when the relation is created, gives the
definition of the relation in terms of which domains are involved and in which order.
This section also describes the subset of that set of domains that form the primary key.
Schemas, actions, assertions and foreign-keys will be described later. Databases can be
created, saved and restored from files. A brief description of the related commands
follows.

2.1. default_db

Given that commands handling relations should specify to which database that relation
belongs there is a way of implicitly refer to one database when no database name in
mentioned. That implicit database name can be obtained using the predicate
default_db with a variable as argument. For example,

default_db (Db_name) .

the variable Db_name will be instantiated to the name of the default database. If
there is no default database set the command will fail.

2.2, set_default_db
This command can be used for setting the default database. The command is

set_default_db (db_name) .

where db_name is the desired new default database. The default database name will be
set automatically to the name of the first database loaded, see the command load_db.

Database Handling

2.3. list_dbs

Prints a list of the currently loaded databases and the name of the default database. If
given a parameter will return the list of loaded databases. The format is

list_dbs.

and the output will be,

Default Database : spj

Databases Loaded

spj
new_spj
parts_suppliers

and with a parameter,

list_dbs (Db_List).

will return the list of loaded databases in the variable Db_List, the first element of the
list will be the default database if there is one set. For example,

list_dbs (Db_List).

will instantiate Db_list with the list [spj, new_spj, parts_suppliers].

2.4. create_db
It will create a new database. The format is

create_db (db_name) .

Database Handling

where db_name is the name of the database (and of the main file associated with it).
Also if there is no other database loaded db_name become the default database name.
For example,

create_db (my_db) .

will create two files, my_db and my_db.pred where the database and the related
assertions will be stored. If the database was already loaded or another database with
the same name exists in the current directory the command will fail and an error
message will be displayed.

2.5. save_db

This command saves the contents of a database loaded in memory to a file. The
format is

save_db (db_name) .

where db_name is the name of the database. If the database to be saved is the default
database is not necessary to specify it, and it will suffice to use the command save_db
without any parameter. For example, if the default database is my_db then

save_db.

will write the contents of the default database in the file my_db, if the file already
exists will be renamed to my_db~, producing a backup copy of the previous state.
Alternatively, if the file my_db~ exists it will be deleted first.

The argument to the command can be a list of databases currently loaded in memory,
and the effect will be the same as to apply the command save_db to each database
sequentially. For example,

save_db ({dbl, db2, db3]).

will save dbl, db2 and db3 provided those databases where loaded in memory.

Database Handling

A different alternative for save_db is

save_db (dbl, db2).

This command will save the database dbl to the database db2 as a file. The name db2
must be a new database name.

2.6. load_db

This predicate is used for loading a database from a file to memory. If the same
database was loaded in memory it will first delete that database, and then will load the
new one from the corresponding file. Predicates in the predicate file will not be deleted.
If there is a collision, two predicates with the same name, it will be a redefinition. The
format is,

load_db (db_name) .

where db_name is the name of an existing database stored as a file in the current
directory. For example,

load_db (my_db) .

The system will check if my_db was previously loaded in memory and if that is the case
will first delete it from memory and then will load my_db to memory. If no other
database is loaded in memory my_db will become the default database.

The argument to the command can be a list containing databases names currently
loaded in memory, and the effect will be the same as to apply the command load_db to
each database sequentially. For example,

load_db([dbl, db2, db3]).

will restore dbl, db2 and db3.

Database Handling

2.7. copy_db

Copy_db is used for creating a duplicate, in memory, of an existing database. The
format is,

copy_db (db_namel, db_name2).

where db_namel is the source database and db_name2 is the target, i.e. the new
database. If the user wants to save the newly created database he /she must save it
using a save_db command.

2.8. destroy_db

Destroy_db will delete from memory the content of a given database. The file will
remain as it was saved before issuing the command. The format is,

destroy_db (db_name) .

where db_name is the name of the database to be removed from memory.

The argument to the command can be a list containing databases names currently
loaded in memory, and the effect will be the same as to apply the command destroy_db
to each database sequentially. For example,

destroy_db ([dbl, db2, db3]).

will destroy dbl, db2 and db3.

The argument to the command can be a list containing databases names currently
loaded in memory, and the effect will be the same as to apply the command destroy_db
to each database sequentially. For example,

destroy_db ([dbl, db2, db3]).

will destroy dbl, db2 and db3.

Database Handling

2.9. print_db

A complete print out of a database can be obtained using print_db. This command
prints the relations as tables using the format information contained in the schema of
the relations. The schemas can be printed using the command print_schemas_db, see
bellow. The format is,

print_db (db_name) .

Where db_name is the name of a database loaded in memory. The argument to the
command can be a list of databases currently loaded in memory, and the effect will be
the same as to apply the command print_db to each database sequentially. For
example,

print_db ([dbl, db2, db3]).

will print the content of dbl, db2 and db3. Any of the previous commands can be used
with a second parameter representing the name of file where the output will be
redirected, as

print_db (db_name, output).

E

2.10. print_schemas_db

This command prints the schema information of each relation in the requested
database. The information includes the description of attribute names and domains,
format, assertions, actions and foreign keys. The format is,

print_schemas_db (Db) .

Where Db is the name of a database loaded in memory. For example, the command

print_schemas_db(spj).

Database Handling

will produce the following output,

Relation Schemas for spj

spj:suppliers (created : 07/09/86 22:50:16)
[[s.nr.string]]
[[sname, string], [status, int], [city, string]]
[8.8.8,8]

spj:projects (created : 07/09/86 22:50:16)
[[Jonr.string]]
[[jname, string], [city, string]]
[4.10,7]

spjtequip (created : 07/25/86 14:20:55)
[[eq_nr,string]]
[([egname, string], [part_nr,string]]
[6.10,8]

spji:parts (created : 07/09/86 22:50:16)
[[p-nr,string]]
[[pname, string], [color, string], [Wweight, int], [city, string]]
{4.8,.7.6,7]
weight>=10

see the paragraph covering print_schema for the description of the information printed.

The argument to the command can be a list of databases currently loaded in
memory, and the effect will be the same as to apply the command print_schemas_db to
each database sequentially. For example,

print_schemas_db([dbl, db2, db3]).

will print the schema information for dbl, db2 and db3. The command
print_schemas_db will print the schema information for the default database.

3. Relation Handling

Relations are subsets of the Cartesian product of certain domains. These domains
are arbitrary and the only restriction is that their definition can be associated with a
Prolog predicate. That is, a domain is a set and a Prolog predicate must be defined for
testing if a given value is a member of this domain.

A relation schema (or schema simply) is the device used to describe the relation
characteristics and is a finite, ordered, set of attribute names. In correspondence with
every attribute name there is a domain. The system provides a predicate for changing
the attribute names, see the rename_attribute predicate, but the associated domains
should remain the same. The order in which the attribute names appear is fixed at
creation time, and cannot be changed, but see the reformat_rel operation ahead.

In PRODB, the set of attribute names is separated in two subsets. One, appearing
first, includes the attribute names that form the key. This subset cannot be empty.
The second includes the attribute names for the non-key attributes, and can be empty.

Several relation handling predicates are defined. The commands create_rel,
delete_rel, print_rel, reformat_rel and rename_rel are provided. The commands
print_schema, sort_rel, copy_rel_tuples, count_rel, count_rel_tuples, tprint_rel are also
availables. A detailed explanation of them follows.

3.1. Notation

The name relation_name in the following commands must include the reference to the
database which it is referring to, i.e. is a pair db_name : relation_name where the
character ™" is mandatory. For example, to refer to the relation "parts” in the
database "spj” the notation must be "spj : parts”. If the reference is related to a
relation in the default database, (see previous paragraph), it is enough to use just the

name of the relation without the character ™:".

When the command accepts a list of relations the list can take one of the following
formats.

e [db_name_I:rel_name_I, db_name_2:rel_name_2, ..., db_name_n:rel_name_n]
e db_name:[rel_name_1, rel_name_2, ..., rel_name_n]

In the first case if the name of a database is omitted the name of the relation must
correspond to one in the default database. In the second case all relations are
contained in the database named "db_name".

Relation Handling

3.2. create_rel

Adds a relation to the database. Its function is to give a description of which attribute
names are involved and which domains are associated to them. Also establish the order
in which the attributes should appear. The general form of the command is,

create_rel (relation_name,
Key_attributes_list,
Non-Key_attributes_list,
format_list).

where Key_attributes_list and Non_Key_attributes_list have the form

[[att_name_1, domain_1], ..., [att_name_n, domain_nj]

att_name_i is the name of the attribute (must be unique in the schema) and domain_i is
the name of a data type (predicate) that will be used in checking the values of the
attributes. Some data types are implemented as predicates in the system (string, real,
natural, int, alpha, alpha_num). The format_list is optional and should be a list of
positive integers, it must be of the same length as the sum of the lengths of the
attribute lists. Both characteristics are tested and enforced. If the list is not included,
a default format with eight spaces for each field is created and associated with the
relation.

For example, the following command will create the relation parts in the database spj-

create_rel (spj : parts,
[[p_nr, string]],
[[pname, string], [color, string],
[weight, int], [city, string]]).

Le., creates the schema for the relation named parts in the database spj. If spj is the
default database it would be enough to issue the following command,

= 10 =

Relation Handling

create_rel (parts,

[[p-nr, string]],
[[pname, string], [color, string],
[weight, int], [city, string]]).

This command also creates a default printing format 8,8,8,8,8]. Optionally the
create_rel command can contain information about the format as in

create_rel (spj : parts,
[[p_nr, string]],
[[pname, string], [color, string],
[weight, int], [c¢ity, string]],
[4.8,7,6,7]).

the format can be modified (see the modify_format predicate)

3.3. delete_rel

The command delete_rel eliminates from the current database both the schema and the
values of the relation specified. The format is,

delete_rel (Arg) .

where Arg is a single relation name or a list of them (see the Notation paragraph).

For example,
delete_rel (spj : parts).
or, if spj is the default database

delete_rel (parts).

will eliminate the relation parts from the database. The predicate alternatively can
take a list of relation names as argument.

-11-

Relation Handling

For example,
delete_rel (spj : [parts, suppliers]).
or, if spj is the default database

delete_rel ([parts, suppliers]).

will delete both relations from the database spj.

3.4. print_rel
The print_rel command prints, formatted, the contents of relations. The format is,

print_rel (Arg).

where Arg is a single relation name or a list of them (see the Notation paragraph). For
example,

print_rel (spj : parts).
or, if spj is the default database

print_rel (parts).

will produce the following output.

=12 -

Relation Handling

DB: sp} Relation : parts (created : 07/09/86 22:50:16)

p_nr | pname | color | weight | city
————— e e e s T -
rl | nut | red | 12 | 1london
P2 | bolt | green | 17 | paris
p3 | screw | blue | 17 | athens
r4 | screw | red | 14 | 1london
pS | cam | blue | 12) paris
p6 | cbg | red | 19 | 1london

6 tuples Iin the relation

using the format (4,8,7,6,7] specified before for this relation when was created. Formats
can be changed using the command modify_format.
The command,

print_rel(spj : [parts, suppliers]).

or, if spj is the default database

print_rel ([parts, suppliers]).

will print the contents of the relations parts and suppliers from the database spj. A
related command is print_db. This command will print all the relations in a given
database.

3.5. tprint_rel

This command allows to print the time stamp associated with each tuple at the insert
moment. The format is

tprint_rel (rel_name).

- 13 -

Relation Handling
where Arg is a single relation name or a list of them (see the Notation paragraph). For
example,

tprint_rel (spj : projects).
or, if spj is the default database

tprint_rel (projects).

will print the following information,

DB: spj Relation : projects (created : 07/09/86 22:50:16)

time of insertion | j_nr | jname | city
-------------------- R ittt T (O
07/08/86 21:32:24 | ji | sorter | paris
07/09/86 22:54:33 | ji2 | punch | athens
07/09/86 22:55:21 | i3 | reader | london
07/09/86 22:56:17 | j4 | console | athens
07/09/86 22:56:56 | i5 | collator | 1london
07/09/86 22:56:59 | je | terminal | paris
07/09/86 22:57:19 | 37 tape | london

7 tuples in the relation

3.6. print_schema

This command prints the complete information about a relation, or a list of them. The
information includes the description of attribute names and domains, format,
assertions, actions and foreign keys. The format is,

print_schema (Arg) .

-14 -

Relation Handling

where Arg is the name of a relation in the database, or a list of them, see the
paragraph about notation at the beginning of this section. A related command is
print_schemas_db, see description in the Database Handling section.

3.7. rename_rel

The rename_rel command takes two arguments, the present name of a relation and the
name to which should be changed, and renames the relation in that way. The format is,

rename_rel (01ld, New).

the schema, tuples, actions, assertions and foreign keys are also renamed. In relation
named Old becomes renamed New in every sense. Old and New can be composed of a
pair db_name : relation_name and the relations can be in different databases. Both
names must be homogeneous, i.e. both referring to the default database implicitly or
both specifying the databases explicitly. For example,

rename_rel {(parts, auto_parts).

will rename the relation parts as auto_parts in the default database. The same
command in different databases will be,

rename_rel (spj : parts, auto_spj : auto_parts) .

will rename the relation parts as auto_parts from the spj database to the auto_spj
database. The relation parts is removed from memory in both cases.

3.8. reformat_rel

This predicate is used for changing the distribution of the attributes among the key and
non—key attributes in a relation schema. It can only modify the distribution but not
the order of them.

Note that some of the tuples can now be rejected because of key-attribute value
duplication. This is only possible if the new key—attributes are a subset of the key-

Relation Handling

attributes in the previous definition.

The general form of the command is,

reformat_rel (relation_name,
Key_attributes_list,
Non-Key_attributes_list).

where Key_attributes_list and Non_Key_attributes_list have the same form as in
create_rel. The relation_name is as above in the create_rel predicate. The format will
not be changed. For example,

reformat_rel (spj : parts,
[{p.nr, string]], [pname, string] 1},
[[color, string],
[weight, int], [city. string]]).

assuming the example in the paragraph for create_rel as starting point, the command
will change the schema for the relation parts, including the pname attribute as part of
the key. Again the database reference can be omited if the relation resides in the
default database.

3.9. sort_rel

It produces a sorted relation out of another relation. The ordering is produced
following the criteria given in the list Comp_List (see below). The general format is

sort_rel (rel_namel, rel_name2, Comp_List).

where rel_namel is the relation to be sorted, rel_name2
is the name of a non—existing relation where the result will be stored and Comp_List
has the form

[[att_l, c_opl], ...,[att_n, c_opn]]

=18 -

Relation Handling

where att_i is an attribute name in the schema of rel_namel and c_opi is a order
comparison operator defined over the members in the domain of such attribute. The
order in which the attributes appear is the order in which are considered, i.e., if the
att_1 are equal then the att_2 are compared and so on (lexicographic order). The
schema for rel_name2 will be the same as for rel_namel. The relations names used
must follow the restrictions mentioned before in the Notation paragraph. For example,

sort_rel (spj : parts, auto_spj : parts_ordered,
[[P_nr, >], [p_name, *>]]).

or , if parts reside in the default database and parts_ordered should be stored in the
same database

sort_rel (parts, parts_ordered,
[[p_nr, >], [p_name, *> 1]]).

the command will produce, in parts_ordered, in the specified database, a sorted version
of parts, coming from the requested database, using the attributes p_nr and p_name
and the operators > and *>> (this is the system defined grater than operator for the
system defined string data type).

3.10. copy._rel

The copy_rel command takes two arguments, the name of a relation and a new relation
name, the existing relation will be copied to the new relation. The format is,

copy_rel (01d, New).

only the schema and tuples are copied, actions, assertions and foreign keys are not
copied. Both names must be homogeneous, i.¢. both referring to the default database
implicitly or both specifying the databases explicitly. For example,

copy_rel (parts, auto_parts).

will copy the relation parts to auto_parts in the default database. The same command
in different databases will be,

-17 -

Relation Handling

copy_rel(spj : parts, auto_spj : auto_parts).

will copy the relation parts to auto_parts from the spj database to the auto_spj

database.

3.11. count_rel

It counts the number of tuples in a relation. The format is
count_rel (db_name : rel_name, Tuple_nr).

or if rel_name is the name of a relation in the default database

count_rel (rel_name, Tuple_nr).

where rel_name is the name of an existing relation in the specified database and
Tuple_nr is a variable which will contain the number of tuples.

3.12. copy_rel_tuples

This predicate is used for copying the tuples in a given relation into another. The
second relation can exists previously and can be non empty. Conflicting tuples are not
inserted and in that respect behaves as the insert predicate, see the tuple handling
paragraph. A possible application of this predicate is to change the schema of a given
relation. In such case, the user should create a relation with the schema desired and
then the old one can be copied to it. Then, the old relation can be deleted and the new
renamed. The format is,

copy_rel_tuples(Rell,Rel2).

where Rell is the source and Rel?2 is the target. As in the case of the rename_rel
predicate Rell and Rel2 can be composed of a pair db_name : relation_name and the
relations can be in different databases. Both names must be homogeneous, i.e. both
referring to the default database implicitly or both specifying the databases explicitly.
For example,

- 18 -

Relation Handling

copy_rel (parts, auto_parts).

will copy the relation parts to auto_parts in the default database. Or, if the copy is
across different databases spj and auto_spj,

copy_rel (spj : parts, auto_spj : auto_parts).

3.13. count_rel_tuples

This predicate counts the number of tuples matching a generic tuple. A generic tuple
is one which has some variables included. The format is

count_rel_tuples(db_name : rel_name, Tuple_nr, Generic).
or if rel_name is the name of a relation in the default database

count_rel_tuples(rel_name, Tuple_nr, Generic).

where rel_name is the name of an existing relation in the specified database , Tuple_nr
is a variable which will contain the number of matching tuples and Generic is a generic
tuple. For example, if we apply the predicate to the relation parts

count_rel_tuples(spj : parts,
Red_parts_nr,
[X, ¥, "red", Z, W]).

will return Red_parts_nr instantiated to 3 (see previous example in print_rel).

3.14. modify_format

This command can be used for changing the format information. The general form is

-19 -

Relation Handling

modify_format (db_name:rel_name, new_format).

or, if the relation is in the default database

modify_format (rel_name, new_format).

where “rel_name" is a relation name and "new_format” is a list of positive integers of
the same length as the previous one. For example,

modify_format (spj:parts, [6,8,7,7,7]).

will change the format [4,8,7,6,7], the previous value, to [6,8,7,7,7] for the relation parts.

3.15. rename_attribute

This predicate is used for changing the names of attributes in the schema of a relation.
The format is,

rename_attribute (db_name:rel_name, old, new).

or, if the relation is in the default database

rename_attribute (rel_name, old, new).

where "rel_name" is the name of a relation in the database "db_name", "old" is the
name of an existing attribute in the schema and "new" is the new name for that
attribute. For example, if the following is the schema for the relation parts,

-20-

parts (created : 07/09/86 22:50:16)
[[p_nr, string]]
[[pname, string]., [color, string],
[4.8,7.,6,7]
weight>=10
if _removed : write_del

o+

and the following command is issued,

rename_attribute(parts, pname, part_name).

the schema will be changed to,

parts (created : 07/09/86 22:50:16)
[[(p_nr, string]]

Relation Handling

[weight, int]...]

[[part_name, string], [color, string], [weight,

[4.8,7.6,7]
weight>=10
if removed : write_del

-921 -

int]...]

4. Tuple Handling

After creating a database, and having the relation schema defined, the tuples can
be stored in the relation. Four primitive commands can be used for handling the tuples.
These commands are insert, remove, modify and get_tuple. Assertions, actions and
foreign keys are related concepts described elsewhere.

4.1. insert
The predicate insert_tuple adds tuples to a given relation. The format is,

insert (db_name : rel_name, tuple).

or, if db_name is the default database

insert (rel_name, tuple).

where db_name : rel_name form the pair that indicates the database and the relation
where the tuple will be stored, and "tuple” is the tuple to be inserted. For example,

insert(spj : parts,
[p3, screw, blue, 17, athens]).

or, if spj is the default database

insert (parts,
[p3. screw, blue, 17, athens]).

adds the tuple to the relation parts in the database spj. The uniqueness of the tuples in
the relation is maintained. The components of the tuple are checked using the domain
information provided in the schema i.e. every component of the tuple should belong to
the domain with it associated.

If there are assertions defined, the tuple is tested against them and if any of them is
violated the tuple is rejected.

=22 .

Tuple Handling

If there is an action specified it will be executed after the insertion. Assertions and
actions will be described later.

4.2. get_tuple

The predicate get_tuple will return the value of non-key attributes for a tuple with a
given key. The format is,

get_tuple (db_name : rel_name, key, Tuple).

or, if db_name is the default database

get_tuple(rel_name, key, Tuple).

where rel_name is the name of a relation in the database db_name, "key" is a list
containing the values corresponding to the key-attributes of a tuple stored in that
relation, and "Tuple” is the complete tuple that is identified by Key. For example,

get_tuple(spj : parts, [pl]., Tuple).
or, if spj is the default database
get_tuple(parts, ([pl]., Tuple).

will instantiate Tuple to [pl, nut, red, 12, london] from the relation parts in the spj
database. If there is an action specified it will be executed and can be defined in such a
way that the recovered tuple will contained calculated attributes using the actually
contained in the relation.

4.3. modify

The modify command is used for making changes in a given tuple. The format is,

-23 .

Tuple Handling

modify(db_name : rel_name, key, tuple).

>

or, if db_name is the default database

modify (rel_name, key, tuple).

where rel_name is the name of a relation in the database db_name, "key" is a list
containing the values corresponding to the key-attributes of a tuple stored in that
relation, and "tuple” is the tuple that will replace the identified by "key”. If there is an
action specified it will be executed after the completion of the command. For example,

modify (spj : parts,
[P1]. [pl. nut, black, 12, london]).

or, if spj is the default database

modi fy (parts,
[pP1]. [pl, nut, black, 12, london]).

will replace the tuple [p1, nut, red, 12, london| for the tuple [p1, nut, black, 12, london]|
in the database spj.

The modified tuple is handled as in the insertion case, this implies that all the checking
done at that time is also performed. If the modified tuple is rejected the original one
remains unchanged. Note again that the key-attribute for the tuple being modified is
the only one included.

4.4, remove

The remove command permits to eliminate a tuple from the relation and has the form

remove (db_name : rel_name, key).

or, if db_name is the default database

remove (rel_name, key).

=24 -

Tuple Handling

where rel_name is the name of a relation in the database and "key" is a list containing
the values corresponding to the key-attributes of a tuple stored in that relation. If
there is an action specified it will be executed after the completion of the command.
For example,

remove (spj : parts, [pl]).

or, if spj is the default database

remove (parts, [pl]).

will remove the tuple [p1, nut, red, 12, london] from the database spj. Note that only
the key-attribute is specified.

4.5. match_tuple

This command will instantiate a variables contained in generic tuple with values
coming from tuples stored in a given relation from a given database. (A generic tuple is
a tuple that contains some variables in it, i.e. a pattern). Note that can be multiple
tuples matching the generic tuple. In the first call the command will return the values
corresponding to the first asserted matching tuple. Further values can be obtained by
failing the command using the PROLOG fail predicate. Warning: no error message is
produced when no matching tuple exists, the predicate just fail. The format is,

match_tuple {(db_name : rel_name, Tuple_Patt).

or, if the relation is in the default database

match_tuple (rel_name, Tuple_Patt).

where rel_name is the name of a relation in the database db_name, and Tuple_Patt is
the generic tuple. For example,

match_tuple(spj : parts, [pl, X, red, Y, london}).

=25 =

Tuple Handling

or, if spj is the default database

match_tuple(parts, [pl, X, red, Y, london]).

will instantiate X = nut and Y = 12.

4.6. do_insert

This predicate, is a rudimentary facility provided for helping in the task of loading the
relations saving some typing work. The format is,

do_insert.

The predicate begins asking the name of the database and the relation as a pair
“db_name : rel_name", see the Notation paragraph, and then the tuples to be inserted.
When no more tuples are to be inserted, the word exit ends the insertion in that
relation. Again the pair "db_name : rel_name" is asked. If no more tuples are to be
inserted in any relation the word exit completes the command execution. The following
example should make that interaction more clear.

do_insert.

Database : Relation? : spj : parts.

tuple > [p7, nut, black, 11, buenos aires].
tuple > [p8, bolt, blue, 30, cordobaj.

tuple > exit,.
Database : Relation? ! exit.

the dots ending the lines are mandatory.

4.7. do_modify

This predicate, is a rudimentary facility provided for helping in the task of modifying
the tuples loaded in the relations saving some typing work. The format is,

- 26 -

Tuple Handling

do_modify,

The predicate begins asking the name of the database and the relation as a pair
"db_name : rel_name", see the Notation paragraph, and then key of the tuple that will
be modified. The old tuple, if exists, is printed and a prompt for the new one is printed.
When no more tuples are to be inserted, the word exit ends the modifications in that
relation. Again the pair "db_name : rel_name" is asked. If no more tuples are to be
modified in any relation the word exit completes the command execution. The following
example should make the interaction more clear.

do_modify.

Database : Relation? : spj : parts.

key > [p7].

old tuple > [p7, nut, black, 11, buenos alres].
new tuple > [p7, nut, black, 11, bahia blanca].
key > [p8].

old tuple > [p8, bolt, blue, 30, cordoba].

nev tuple > [p8, bolt, blue, 28, mar del plata].
key > exit.

Database : Relation? : exit.

the dots ending the lines are mandatory.

-27 .

5. Relational Algebra Operators

Given one or more databases composed of relations we are about to introduce
operators which will give us a way of obtaining new relations out of the already existing
relations. Relational Algebra Operators take one or two relations as operands and
produce a new relation as result of the operation, i.e. the closure under these operations
is maintained and the objects in the databases remain of the same type.

The following operators are implemented : union, intersection, difference,
Cartesian product, join, select and project. First the set theoretic operators are
introduced and then the special relational operations are presented. The result of the
operations will be printed or not depending on the state of the system. If the system is
in mute state (see Miscellaneous section) no printing is done. In loud state the resulting
relation will be printed using the same format as in the print_rel predicate.

5.1. Notation

The relations involved as operands can reside in the same or different databases. If all
relations belong to the default database is not necessary to indicate that explicitly and
the command format will be

operator (rel_namel, rel_name2, rel_result).

where operator is one of union, intersection, difference and product, rel_namel,
rel_name2 and rel_result are relations in the default database. If the relations reside in
different databases, all must be explicitly referred in the command, even the default
database, and the command format will be,

cperator (db_namel : rel_namel,
db_name2 : rel_name2,
db_name_result : rel_result).

The syntax extends accordingly for project, select and join.

- 28 -

Relational Algebra Operators

5.2, Union, Intersection, Difference and Product

These are the usual set operations. The union of two relations is a third relation
containing the tuples in both operands. The intersection of two relations is the relation
containing the tuples common to both operands. The difference of two relations is the
relation containing the tuples that appear in the first operand and do not appear in the
second. The product (Cartesian product) is the relation whose tuples are formed by
concatenation of every tuple in the first operand with every tuple in the second. They
have the same syntactic form,

operator(dbl : rl, db2 : r2, db3 : result).

or, if all three relations are in the default database

operator{rl,r2,result).

where operator is one of union, intersection, difference or product (for the Cartesian
product). "r1"” and "r2" are two existing relations and "result" is a new relation to be
created as the result of the operation, i.e., the meaning is,

result := rl operator r2

order is important in the case of the non-commutative operator difference.

Both relations must be compatible (sometimes referred as union-compatible in the
literature) in the sense that they should have the same schema, i.e. the domains should
be the same and should appear in the same order, attribute names can be different.
The resulting relation will have the same attributes names as the first operand, but
now all the attributes are part of the key. This is the most conservative position
possible, but the schema can later be changed using the reformat_rel predicate, see the
Relation Handling paragraph. The format for the result will also be the same as the
format for the first operand, and can be changed afterwards using the modify_format
command.

The schema for the product is discussed below in the paragraph corresponding to
the join operator with which share the definition of the resulting schema.

-29 -

Relational Algebra Operators

5.3. Select

This predicate selects the tuples from one relation such that all the predicates in a
given list evaluate to true. The command has the following syntax,

select(dbl: rel, db2 : result, Selection_list).

or, if both relations are in the default database

select (rel, result, Selection_list).

where "rel" is the relation from where the tuples are selected, "result” is la relation to
be created for storing the tuples selected, and Selection_list has the following general
form,

[Selector_1, Selector_2, ..., Selector_n]

where Selector_i, for i=1,..,n will have the form

[Pred_i, {ail, ..., air], [ecil, ..., cis]]

where Pred_i is a system or user defined predicate, the a’s are attribute names in the
schema for Rel, and the ¢’s are constants involved in the evaluation of Pred_i. The
subscripts r and s are arbitrary for each Pred.

The operator obtains the values of the attributes for a given tuple and perform a
call to Pred_i using them and the constants provided. If Pred_i succeed for all i the
tuple is stored in Result. The schema and format for Result are the same as for Rel.

For example, selecting the red or blue parts from the relation parts in the spj database,
default database in this case, will give in the color_parts relation the following result.

select (parts,
color_parts,
[[member, [color]. [[red, bluel]]]).

will produce,

=30 -

Relational Algebra Operators

DB: spj Relation : color_parts (created : 08/29/86 08:10:50)

p_nr | pname | color | weight | city
----- e il R e L LT T T
pl | nut | red | 12 | london
r3 | screw | blue | 17 | athens
P4 | screw | red | 14 | 1london
pS | cam | blue | 12 | paris
pé6 | cog | red | 19 { 1london
P8 | bolt | blue | 30 | cordoba

6 tuples in the relation

CPU : 0.133335 secs.

5.4. Join

The join of two relations "r1" and "r2" is a selection over the Cartesian product of
them. The schema for the result in the join operator (and for the product operator) is
a schema formed concatenating the schema of "r1" and the schema of "r2". All the
attributes will be considered as forming the Key_attribute_list and the
Non_key_attribute_list will be considered empty ("[|"). The uniqueness of attribute
names in the join operator {and in the product operator) is preserved.

If there are common names, the new schema for the result will contain the
common names renamed to the same names with a "1" and a "2" appended. For
example, if both schemas contain the name part_nr the join schema {and the product
schema) will contain part_nrl and part_nr2 in the corresponding places.

The join operator has the following syntactic form,

join(dbl : rl1, db2 : r2, db3 : result, Selection_list).

or, if all three relations are in th e default database

-381-

Relational Algebra Operators

join(rl, r2, result, Selection_list).

where "r1", "r2" are two existing relations, "result" is the relation where the result will
be stored, and Selection_list has the same general form as for the select operator with
the only difference that the second list is an arbitrary one instead of only constants.
For example,

join(autos : auto_parts,
trucks : truck_parts,
vehicles : parts,
[[==, [part_nr], ([part_nr]],
[approx_eq_weight, [weight], [weight]]]).

the symbol "=="is the Prolog predicate, but approx_eq_weight is user defined, that
could be defined as

approx_eq_weight (X,Y) :-
(X =<Y+ 2, X>Y- 2).

meaning that the value of X cannot execeed the value of Y in more than 2 nor be lower
than Y by more than 2.

The join selects from the Cartesian product of auto_parts, in the autos database
and truck_parts, in the trucks database, those tuples for which both predicates succeed,
that tuples will be stored in the parts relation of the vehicles database.

In the resulting schema the common names part_nr and weight will be renamed to
part_nrl (for part_nr in auto_parts) and part_nr2 (for part_nr in truck_parts),
similarly for weight. That attributes names can be changed using the rename_attribute
predicate.

5.5. Project

The command project select the columns specified in a given list. Redundant tuples will
be eliminated, if necessary. Note that this operator gives the possibility of reordering
of the columns in a relation. The general form is,

project(dbl : rel, db2 : result, Attribute_list).

- 32 -

Relational Algebra Operators

or, if both relations are in the default database

project(rel, result, Attribute_list).

where "rel” is the relation from where the columns will be taken and "result” is the new
relation where the new tuples will be stored. Attribute_list has the form,

[al, a2, ..., an]

where the a’s are attribute names appearing in the schema of "rel”. The new schema
for “result” will have all the attributes specified, and in the specified order, as forming
the Key_attributes and the non_key_attributes list will be empty. The domain
specification will be associated automatically as in the original schema. The ordering
specified in the Attribute_list will be the order in the new schema. For example,

project(parts, s_parts, [p_nr,pname,city]).

DB: spj Relation : s_parts (created : 08/29/86 08:33:34)

p_nr | pname | city
_____ U
rl | nut | london
P2 | bolt | paris
p3 | screw | athens
rp4d | screw | london
P5 | cam | paris
Pré | cog | london
Pp7 | brake | madrid
r8 | bolt | cordoba

8 tuples in the relation

CPU : 0.199997 secs.

-33.

6. Actions

Actions are predicates that are are associated with the relations and are executed
in one of the following situations:

¢ when a tuple is inserted,
e when a tuple is ;-emoved,
e when a tuple is modified,
e when a tuple is requested via get_tuple.

Actions are shown as part of the schema by the predicates print_schema and
print_schemas_db.

The predicate should be predefined and if is not a part of the system, should be in
the database predicate file, i.e. if the database file is named my_db, then the predicate
file is my_db.pred and is created empty by the predicate create_db(db_name) when the
database is created.

When the predicates are defined by the user, he/she should do it taking the tuple
as argument, i.e. only one argument, in the first three cases. In the if_requested case
the predicate should take two arguments, the first is the the tuple stored in the relation
and the second is a place where the tuple modified will be returned. If no modification is
done is not necessary to return the original tuple. This provides a way of returning

values calculated using the values in the original tuple.
6.1. define_action

This command adds an action to be executed in one of the mentioned situations above.
The format is,

define_action(db_name : rel_name, Action, Pred).

or, if the relation is in the default database

define_action(rel_name, Action, Pred).

where "rel_name" is the name of a relation in the database "db_name", Action is one of
the keywords if_inserted, if_removed, if_modified or if_requested, and Pred is the

- 34 -

Actions

predicate that will be executed in the related command, i.e. if_inserted for insert and
do_insert, if_removed for remove, if_modified for modify and do_modify, f_requested for
get_tuple. The predicate must be predefined. For example,

define_action(spj : parts, if_inserted, print_message).

will associate the predicate print_message with the insertion command for the relation
parts in the spj database, and every time a tuple will be inserted that predicate will be
executed. For example, the print_message action (predicate) could be like,

print_message (X) :-
write('Tuple '), write(X),
write(' inserted.'), nl.

where X is a tuple inserted in the relation parts in the spj database.
6.2. remove_action

This predicate is intended for removing the relationship between an action and a
predicate. The predicate is no removed. The format is,

remove_action(db_name : rel_name, Action).

or, if the relation is in the default database

remove_action (rel_name, Action).

where "rel_name" is the hame of a relation in the database "db_name" and Action is
one of the keywords if_inserted, if_removed, if_modified or if_requested. For example,

remove_action(spj : parts, if_inserted).

will remove the association between the insertion action and the predicate
print_message, assuming that the command in the previous example for define_action

was in fact performed.

- 25 -

Actions

6.3. modify_action

This predicate can be used for changing the predicate associate with an action. The
format is,

modify_ action(db_name : rel_name, Action, Pred).

or, if the relation is in the default database

modify_action(rel_name, Action, Pred).

where “rel_name" is the name of a relation in the database "db_name", Action is one of
the keywords if_inserted, if_removed, if_modified or if_requested, and Pred is the new
predicate associated with the action. For example,

modify action(spj : parts, if_inserted, emit_signal).

in the context of the previous example in define_action, will terminate the association
between insert and print_message and will associate it with emit_signal.

- 36 -

7. Assertions and Consistency

In the present version, assertions are specified as Prolog predicates that every
tuple in a relation should conform to. These predicates can be system or user defined.
User defined predicates should be included in the predicate file before the assertion is
defined. The relevant assertions are checked every time a tuple is inserted in a relation
and can be also checked using the consistency predicates (see below).

The file containing the predicates can be modified using the command
modify_predicates. The command invokes the editor "vi" over the assertions file
allowing its modification.

Clearly, after modifying an assertion or adding a new one to the file, some tuples
may no longer conform to all of them. The consistency is automatically checked upon
exiting the editor and the offending tuples printed out if the system is in the "loud"
state (see the Miscellaneous section). In any case the command fails if the consistency is
not maintained. The printing is done using the same format as the one specified in the
corresponding relation.

Assertions are printed along with the schema by the predicates print_schema and
print_schemas_db. The following predicates are provided for handling assertions.

7.1. define_assert
This predicate permits the association of assertions and relations. The format is,

define_assert (db_name : rel_name, Selector).

or, if the relation is in the default database

define_assert (rel_name, Selector).

where "rel_name" is the name of a relation in the database "db_name", Selector has the
same for as described in the select operation, i.e.,

[Pred, Att, Cons]

- 87 -

Assertions and Consistency

where Pred is a user or system predifined predicate, Att is a list of attribute names
occurring in the relation schema and Cons is a list of constants.

The testing of the assertions is done in the following way. The values of the
attributes in Att are extracted from the tuples and a list is formed appending the
constants in Cons. Then Pred is executed taking the elements in that list as arguments.
For example,

define_assert(spj : parts,[>=, [weight], [10]).

define an assertion telling that the weight attribute in every tuple of the relation parts
in the database spj should be greater than or equal to 10.

7.2. remove_assert

This command allows the elimination of an assertion. The predicate involved is not
deleted from memory nor from the predicate file. If the user wants to eliminate the
assertion from the database, the assertion must be removed from the predicate file.
The format is,

remove_assert (db_name : rel_name, Selector).
e

or, if db_name is the default database

remove_assert (rel_name, Selector).

with the same meaning assigned to the arguments as in define_assert.

7.3. consistency

Its function is to check the consistency of the relations against the set of defined
assertions. The consistency check is performed without the user intervention when a
database is restored using the command load_db(db_name), and when the predicate file
is modified via the modify_predicates command. Also is performed, over the tuple
involved, each time a tuple is added in a relation or an existing tuple is modified.

-asg-

Assertions and Consistency

It has three general forms,

consistency (db_name) .
consistency (Arg).

consistency (db_name : rel_name, Offending_list).

in the first case the whole database named "db_name" is checked out, in the second Arg
can be the name of a relation in a database or a list of them, with the format db_name
: [r1,r2, ...,rn]. In the third "rel_name” is the name of a relation in the database
"db_name" and Offending_list is the list of the tuples which do not conform the
assertions for the given relation, "db_name" can be omitted if the database involved is
the default database. With proper handling this list can be used for eliminating, or
modifying, those tuples from the relation. If the system is in loud state (see
Miscellaneous paragraph) the inconsistent tuples are printed and the predicate fails, in
the mute state it just fails.

-30 .

8. Referential Integrity

The term referential integrity in relational databases refers to the problem of
ensuring that a certain set of referential constraints among the relations are satisfied.
A referential constraint is defined whenever a subset of the attributes in a relation are
considered as equivalent to the set of attributes forming the key attributes in another
relation. That is, the values stored in a tuple of a given relation are used as the values
of the key in another relation. In PRODB is possible to define these referential
constraints among relations contained in the same or different databases. For example,
consider the part_nr attribute in the relation equip.

spj:equip (created : 07/25/86 14:20:55)
[[eq_nr,string]]
[[eqname, string], [part_nr, string]]j
[6.10,8)]
[part_nr] -> [p_nr] in spj:parts
Daemon : warning_daemon

spj:parts (created : 07/09/86 22:50:16)
[[p_nr,string]]
[[pname, string], [color, string],
[weight, int], [city.string]]
[4.8,7,6,7]
welght>=10
parts_assertion (pname, color,city)

This attribute must have a corresponding value in the relation parts, otherwise there
will be a dangling reference. A part of the attributes in a relation that form the key
attributes of another relation are referred as a foreign key. In the example above the
attribute part_nr in the relation equip form a foreign key pointing to the relation parts
as shown in the schema for equip.

In updating relations involved in the definition of referential constraints two
different problems can arise. Lets assume the existence of two relations R1 and R2, and
that an attribute Att in the schema of R1 form a foreign key pointing to R2. When
inserting a new tuple in the relation R1, the value of the attribute Att in the new tuple
can contain a foreign key value without a counterpart in the relation R2. When
deleting a tuple from the relation R2 which is pointed to by a tuple in the relation R1,
it is possible to produce a dangling reference, that is, a tuple in R1 can now contain a
value without a counterpart in the pointed to relation R2. The modification of a tuple
in either relation can produce any one, or both of the anomalies mentioned.

= 40 =

Referential Integrity

The approach taken in PRODB to handle this problem is to provided a way to
express a referential constraint and to associate with it a daemon that gets fired when
the constraint is violated in any of the cases mentioned above. The daemon is an user
defined Prolog predicate. A postcondition for it should be that the referential integrity
is reestablished. The deamon will be called with the following parameters:

daemon (Dbl:Rell, Db2:Rel2, Tuple, Foreign_Key).

where DbI:Rell is the relation pointing to Db2:Rel2, Tuple is a tuple in Db1:Rell and
Foreign_Key is the value of the foreign key contained in Tuple pointing to Db2:Rel2.

In the example above the schema of the relation equip in the database spj shows a
referential constraint, and the deamon, named warning_deamon, associated with it,

[part_nr] -> [p_nr] in spj:parts
Daemon : warning_daemon

There are two other commands related to foreign keys, define_fkey and
delete_fkey. The first for establishing a referential constraint and the second to remove
it.

8.1, define_fkey

The purpose of this command is to establish a referential constraint through foreign key
definition. The command has the following format,

define_fkey (Dbl:Rel_Base, Db2:Rel_Target, Corr_List, Daemon)

The pair Dbl:Rel_Base determines the relation that contains the attributes involved in
the referential constraint with the relation determined by the pair Db2:Rel_Target.
The correlation list (Corr_List) is a list composed by pairs of attribute names
([21,b1],[a2,b2],...,[an,bn]], where ai belongs to the relation Dbl:Rel_Base and bi belongs
to the target relation Db2:Rel_Target and uniquely determines the referential
constraint defined. Daemon is a user defined predicate (see above). For example,

define_fkey (spj:equip, spj:parts,
[{[part_nr.p._nr]], warning_deamon).

will define an referential integrity constraint between the relation equip and the
relation parts of the database spj through the association of the attribute part_nr in
spj:equip with the key attribute p_nr in the relation spj:parts. If that constraint is

sl -

Referential Integrity

violated the deamon warning_deamon will be fired, with the following parameters,

warning_deamon (spj:equip, spj:parts, Tuple, FK).

where Tuple must be instantiated to a tuple in spj:equip and FK is instantiated to the
foreign key pointing to spj:parts.

8.2. delete_fkey

The purpose of this command is to eliminate an existing referential constraint. The
command has the following format,

delete_fkey (Dbl:Rel_Base, Db2:Rel_Target, Corr_List)

The pair Db1:Rel_Base determines the relation that contains the attributes involved in
the referential constraint with the relation determined by the pair Db2:Rel_Target.
The correlation list (Corr_List) is as defined in define_fkey, and uniquely determines the
referential constraint being eliminated. For example,

delete_fkey (spj:equip, spj:parts, [[part_nr, p_nr]]).

will delete the referential constraint between the relation equip and the relation parts
of the database spj defined by [[part_nr,p_nr]].

- 42 -

9. Aggregate Predicates
Several built-in aggregates are defined:

® max

® min

e sum

®avg

e count_rel

& count_rel_tuples
e get_oldest

e get_newest

Max (Min) returns the maximum (minimum) value of an attribute in a relation.
Sum returns the total sum of the values corresponding to an attribute in a relation.
Avg returns the average value corresponding to a set of values of an attribute in a
relation. Count_rel and count_rel_tuples are described in the Tuple Handling
paragraph. Get_oldest and get_newest are described in the Time Handling paragraph.

Max, min, sum and avg work over a single attribute of numeric type, and the
value returned is also numeric. The general syntax for max, min, sum and avg is the
following,

op(db_name: rel_name, Attribute, Value).

-

or, if rel_name is the name of a relation in the default database

op (rel_name, Attribute, Value).

where op is one of max, min, sum or avg, rel_name is the name of an existing relation in
the database named db_name, Attribute is the name of an attribute in the schema, and
Value is the resulting value.

Given the following relation, shown by the output of tprint_rel,

=43 -

Aggregate Predicates

DB: spj Relation : parts (created : 07/09/86 22:50:16)

time of insertion | p_nr | pname | color | weight | city
———————————————————— i it R T P
07/09/86 22:50:17 | Pl | nut | red | 12 | london
07/09/86 22:50:19 | P2 | bolt | green | 17 | paris
07/09/86 22:50:23 | P3 | screw | blue | 17 | athens
07/09/86 22:50:37 | P4 | screw | red | 14 | 1london
07/09/86 22:50:51 | PS5 | cam | blue | 12 | paris
07/09/86 22:50:56 | Pe | cog | red | 19 | 1london
08/26/86 20:59:59 | P7 | brake | black | 30 | madrid
06/27/87 08:00:39 | P8 | bolt | blue | 30 | cordoba

The following queries will produce the results indicated by Value.

avg (spj:parts, weight, Value).
Value = 18,875

max (spj:parts, weight, Value).
Value = 30

sum(spj:parts, weight, Value).

Value = 151

9.1. time_select

This predicate selects tuples based in a date provided by the user and the date when
the tuples were inserted

time_select(dbl : rel_name, db2 : result, Date, Comp).

- dd =

Aggregate Predicates

or, if both relations belong to the default database

time_select(rel_name, result, Date, Comp).

where "rel_name" is the name of a relation, in the database "dbl", over which operate,
result is the name of a new relation, to be created in the database "db2" where to
deposit the tuples selected. Date has the form MM/DD/YY hh:mm:ss or MM/DD/YY
bh:mm or MM/DD/YY hh or MM/DD/YY (should be quoted, see example). Comp is
one of: *> (after), *>= (in or after), *< (before), *=< (in or before), *== (in the
date), *<> (in a different date). For example,

time_select(spj : parts,
auto_parts : new_parts,
'07/11/86 10:30', *>),

selects all the tuples from parts in the database spj inserted after the date given and
stores them in the newly created relation new_parts in the database auto_parts. The
result will be,

DB: auto_parts Relation : new_parts (created : 07/02/87 09:02:12)

p_nr | pname | color | weight | city
————— i e e e LR
r4 | screw | red | 14 | 1london
PS5 | cam | blue | 12 | paris
ré | cog | red | 19 § 1london
r7 | brake | black | 30 | madrid
P8 | bolt | blue | 30 | cordoba

5 tuples in the relation
CPU : 0.0999908 secs.

Tuples inserted after 07/11/86 10:30

- 46 =

Aggregate Predicates

9.2. get_newest, get_oldest

These two predicates return the newest and oldest tuple in a relation respectively. The
formats are,

get_newest (db_name : rel_name, Tuple).

get_oldest (db_name : rel_name, Tuple).

where rel_name is the name of a relation in the database db_name and Tuple is the
place where the tuple will be returned. As always if the relation is in the default
database the db_name can be omitted. For example, the query

get_oldest (spj : parts, Tuple).

will instantiate Tuple = [p1,nut,red,12,london].

K

9.3. older, newer and same_date

This set of predicates provide a way of comparing the time of insertion of two tuples.
The formats are,

older (db_name : rel_name, tuplel, tuple2).
never (db_name : rel_name, tuplel, tuple2).

same_date (db_name : rel_name, tuplel, tuple2).

where rel_name is the name of a relation in the database db_name and Tuplel and
Tuple2 are tuples in that relation. For example, the query

older (spj : parts,
[P7.brake,black, 30, madrid],
[p4,screw,red, 14, london]) .

- 46 -

Aggregate Predicates

will succed.

A second format is possible and it is used for comparing tuples stored in different
relations from different databases. The formats are,

older (dbl : rel. namel, tuplel, db2 : rel_name2, tuple2).

newer (dbl : rel_namel, tuplel, db2 : rel_name2, tuple2) .

same_date (dbl : rel_namel, tuplel, db2 : rel_name2, tuple2).,

where rel_namel is the name of the relation in the database dbl where the tuple tuplel
is stored and rel_name?2 is the name of the relation in the database db2 where the tuple
tuple2 is stored. For example, the query

newer (auto_parts:new_parts,
[p7.brake, black, 30, madrid],
spj:parts,
[p3,screw,blue, 17, athens]).

will succed.

- 47 -

10. Transactions

A transaction is considered as one operation. Inside a transaction the referential
integrity checking is suspended. At present time this capability is useful in connection
with the roll_back predicate. Transactions cannot be nested. The following predicates
are implemented.

10.1. open_transaction
This predicate starts a transaction. The format is,

open_transaction.

10.2. close_transaction
This command ends a transaction. The format is,

close_transaction.

10.3. roll_back

This predicate cancels the effect of the commands issued since the open_transaction
command. The transaction remains open. The format is,

roll_back.

- 48 -

11, Miscellaneous

11.1. loud

The system can operate in one of two states : loud and mute. If the system is in loud
state the result of some operations (all the relational algebra operators and the
consistency command), will be printed. In the mute state no printing occurs.

Also the emission of error messages depends on the state of the system. In the
mute state no error messages are printed. The user can switch from one to the other
using the commands:

loud.

mute.

with the obvious meanings.
11.2. help

PRODB provides an on-line help facility, which is basically an on-line version of this
manual. The starting page of the manual gives the topics over which help can be
obtained by,

??help.

That command will display the following text,

- 49 =

Miscellaneous

PRODB User Manual

Help Available in the following subjects

introduction
databases
relations
tuples
operations
actions
aggregate
assertions
time
transactions

0O 0O0O0O0O0OOOOO

use ??topic. to get more help

For example,

??operations.

will give the help for the operations item.

- 50 =

Miscellaneous

?~ ??operations.

PRODB User Manuazal

Relational Algebra Operators

Given one or more databases composed of relations we are about to
introduce operators which will give us a way of obtaining new
relations out of the already existing relations. Relational Algebra
Operators take one or two relations as operands and produce a new
relation as result of the operation, i.e. the closure under these
operations 1s maintained and the objects in the databases remain of
the same type.

The following operators are implemented : union, intersection,
difference, Cartesian product, join, select and project. First the
set theoretic operators are introduced and then the special
relational operations are presented. The result of the operations
will be printed or not depending in the state of the system. If the
system is in mute state (see Miscellaneous section) no printing is
done. 1In loud state the resulting relation will be printed using the
same format as in the print_rel predicate.

Mcre Help on Level : cperations
© notation
o set
o join
o select
0 project
yes

| 2-

= 51 =

	PRODB: An Experimental Generalized Database System User's Manual
	Recommended Citation
	PRODB: An Experimental Generalized Database System User's Manual

	tmp.1462913377.pdf.yffTt

