View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Washington University St. Louis: Open Scholarship

Washington University in St. Louis

Washington University Open Scholarship

All Computer Science and Engineering

Research Computer Science and Engineering

Report Number: WUCS-94-6

1994-01-01

An Incremental Distributed Algorithm for Computing Biconnected
Components

Bala Swaminathan and Kenneth J. Goldman

This paper describes a distributed algorithm for computing the biconnected components of a
dynamically changing graph. Our algorithm has a worst case communication complexity of O(b
+ ¢) messages for an edge insertion and O(b' + ¢) messages for an edge removal, and a worst
case time complexity of O(c) for both operations, where c is the maximum number of
biconnected components in any of the connected components during the operation, b is the
number of nodes in the biconnected component containing the new edge, and bprime is the
number of nodes in the biconnected component in which the... Read complete abstract on page
2.

Follow this and additional works at: https://openscholarship.wustl.edu/cse_research

6‘ Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation

Swaminathan, Bala and Goldman, Kenneth J., "An Incremental Distributed Algorithm for Computing
Biconnected Components" Report Number: WUCS-94-6 (1994). All Computer Science and Engineering
Research.

https://openscholarship.wustl.edu/cse_research/358

Department of Computer Science & Engineering - Washington University in St. Louis
Campus Box 1045 - St. Louis, MO - 63130 - ph: (314) 935-6160.

https://core.ac.uk/display/233233464?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://openscholarship.wustl.edu/?utm_source=openscholarship.wustl.edu%2Fcse_research%2F358&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F358&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F358&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse?utm_source=openscholarship.wustl.edu%2Fcse_research%2F358&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research?utm_source=openscholarship.wustl.edu%2Fcse_research%2F358&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=openscholarship.wustl.edu%2Fcse_research%2F358&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=openscholarship.wustl.edu%2Fcse_research%2F358&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/358?utm_source=openscholarship.wustl.edu%2Fcse_research%2F358&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cse.wustl.edu/Pages/default.aspx

This technical report is available at Washington University Open Scholarship: https://openscholarship.wustl.edu/
cse_research/358

An Incremental Distributed Algorithm for Computing Biconnected Components

Bala Swaminathan and Kenneth J. Goldman

Complete Abstract:

This paper describes a distributed algorithm for computing the biconnected components of a dynamically
changing graph. Our algorithm has a worst case communication complexity of O(b + c) messages for an
edge insertion and O(b' + ¢c) messages for an edge removal, and a worst case time complexity of O(c) for
both operations, where c is the maximum number of biconnected components in any of the connected
components during the operation, b is the number of nodes in the biconnected component containing the
new edge, and bprime is the number of nodes in the biconnected component in which the update request
is being processed. The algorithm is presented in two stages. First, a serial algorithm is presented in
which topology updates occur one at a time. Then, building on the serial algorithm, an algorithm is
presented in which concurrent update requests are serialized within each connected component. The
problem is motivated by the need to implement casual ordering of messages efifciently in a dynamically
changing communication structure.

https://openscholarship.wustl.edu/cse_research/358?utm_source=openscholarship.wustl.edu%2Fcse_research%2F358&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/cse_research/358?utm_source=openscholarship.wustl.edu%2Fcse_research%2F358&utm_medium=PDF&utm_campaign=PDFCoverPages

An Incremental Distributed Algorithm for

Computing Biconnected Components

Bala Swaminathan

Kenneth J. Goldman

WUCS-94-6

March 1994

Department of Computer Science
Washington University

Campus Box 1045

One Brookings Drive

Saint Louis, MO 63130—4899

An Incremental Distributed Algorithm for

Computing Biconnected Components*

Bala Swaminathan Kenneth J. Goldman
bs@cs.wustl.edu kjg@cs.wustl.edu
Department of Computer Science Department of Computer Science
Washington University Washington University
St. Louis, MO 63130 St. Louis, MO 63130

March 28, 1994

Abstract

This paper describes a distributed algorithm for computing the biconnected components of
a dynamically changing graph. Our algorithm has a worst case communication complexity of
O(b + ¢) messages for an edge insertion and O(V + c) messages for an edge removal, and a
worst case time complexity of O(c) for both operations, where ¢ is the maximum number of
biconnected components in any of the connected components during the operation, & is the
number of nodes in the biconnected component containing the new edge, and & is the number
of nodes in the biconnected component in which the update request is being processed.

The algorithm is presented in two stages. First, a serial algorithm is presented in which
topology updates occur one at a time. Then, building on the serial algorithm, an algorithm is
presented in which concurrent update requests are serialized within each connected component.
The problem is motivated by the need to implement causal ordering of messages efficiently in a

dynamically changing communication structure.

Keywords: biconnected components, distributed graph algorithms, dynamic configuration.

*This research was supported in part by the National Science Foundation under Grant CCR-91-10029.

1 Introduction

We present a distributed algorithm that incrementally computes the biconnected components of a
dynamically changing graph. Although the problem is a general one and is interesting in its own
right, our particular motivation to study this problem arose as part of some work we are doing in
conjunction with the ATM networking project at Washington University [6].

We are developing an abstraction and supporting software designed to simplify the construction
of distributed multimedia applications [7]. In our approach, called I/O abstraction, each module
has a presentation that consists of data structures that may be observed and/or manipulated by its
external environment. An application consists of a collection of independent modules and a config-
uration of logical connections among the data structures in the module presentations. Whenever
published data structures are updated, communication occurs implicitly according to the logical
connections.

Our current run-time support for I/0 abstraction provides no ordering guarantees; when one
module changes a value in its presentation, communication occurs asynchronously according to the
configuration. However, many applications require stronger ordering properties for consistency.
Causal ordering (Lamport’s “happens before” relation [9]), is one of the most useful ordering
restrictions. Informally, it guarantees that if event A directly or indirectly “causes” event B, then
no process will receive information about event B before receiving information about event A.

Causal ordering is supported by the ISIS [3] system. ISIS programmers declare causal broadcast
groups. Within these groups, causal ordering is maintained by an algorithm whose message header
(a timestamp vector) has length proportional to the size of the group. In the case of I/O abstraction,
the programmer does not declare sets of nodes for which messages must be causally ordered. In
fact, the programmer may not know the set of modules with which a given module interacts. Qur
configuration is under user control, and may be changed dynamically during execution. However,
we can exploit the logical configuration information in order to determine the sets of nodes that
could potentially violate causal ordering and then run the causal ordering algorithm within each of
those sets.

Consider the dynamically changing configuration graph of modules (vertices) and logical con-

nections (edges). By causally ordering the messages within the set of modules in each biconnected

component, we can guarantee that causal ordering is respected over the entire system. This is
because there can be no cycle in the graph containing two modules @ and b in different biconnected
components, implying that information from a to b cannot flow over two node-disjoint paths. In
the distributed algorithm presented here, each node maintains the set(s) of nodes corresponding to
the biconnected component(s) of which it is a member, precisely the information required for the
causal ordering algorithm.

The problem of computing biconnected components has been studied extensively. A number of
sequential algorithms exist for dynamic graphs and there are several decentralized algorithms for
static graphs, but the algorithms we present in this paper are, to our knowledge, the first distributed
algorithms for finding biconnected components in dynamic graphs.

A distributed algorithm for finding biconnected components was given by Chang [4]. This
algorithm has a message complexity of 4m — n, where m and n are the number of edges and vertices
in the graph respectively. The distributed algorithm by Ahuja and Zhu [2] has the same message
complexity but improves on the message size bound. Hohberg [8] and Park et al. [10] present
distributed algorithms for finding biconnected components in a graph with a message complexity
of O(m + nlogn). These algorithms require the computation of a depth-first search tree. Hence,
they are appropriate for a static graph, but the cost of recomputation of the depth-first search tree.
(for every change in topology) makes these algorithms impractical for a dynamic setting.

Tarjan and Vishkin proposed an optimal parallel algorithm on CRCW PRAM model [12]. This
algorithm is also not incremental, but instead of using depth-first-search, it reduces the biconnec-
tivity problem to the problem of computing connected components. Westbrook and Tarjan [13]
proposed a sequential algorithm to compute biconnected components in a dynamically changing
graph structure. A block forest of block trees is constructed using the biconnected components
and the vertices in the graph. This block forest is used in maintaining the biconnected components
of the original graph. Rauch [11] presented a sequential algorithm for maintaining biconnected
components. This algorithm involves precomputation and “lazy” updating,.

The algorithms presented in this paper are dynamic as well as distributed, and are designed to
scale up for large systems. Update requests can be issued at any node in the system and in any
order. The nodes have only local knowledge of the system graph and exchange information with

other nodes by sending and receiving messages. Only one copy of the topology is maintained and

it is distributed among the nodes in the system.

The remainder of the paper is organized as follows. Section 2 provides essential definitions and
graph properties. In Section 3, we define the problem. In Section 4, we present a serial algorithm
in which the environment is constrained to wait for each graph update request (edge insertion or
deletion) to be processed before issuing the next request. Then, in Section 5, we build upon the
serial algorithm to construct a concurrent algorithm that serializes update requests within each
connected component. We serialize the update requests such that each node within a connected
component will have the same view of update sequence over that connected component. Because
connected components merge and split dynamically, ordering information is maintained with each
update in order to achieve this consistent view. Qur algorithms have a message complexity of
O(b + ¢) for an insert operation and O(¥ + c) for a delete, and a time complexity of O(c) for
both operations, where b is the number of nodes in the resulting biconnected component, b’ is the
number of nodes in the bee just before the deletion, and ¢ is the maximum number of biconnected

components in any of the connected components during the operation.

2 Preliminaries

We use G = (V, E) to denote an undirected graph, where V is a totally ordered finite set of vertices
and E is a set of unordered pairs of distinct elements of V. We use standard definitions [5] for path,
reachability, cycle, graph union, etc. Recall that an articulation point is a vertex whose removal
would disconnect the connected component containing it. A bridge edge is an edge whose removal
would place its endpoints in different connected components. A biconnected graph is a graph with
no articulation points. A biconnected component (bce) is a maximal biconnected subgraph. A
bridge edge is in a bee by itself. We define the size of ¢ bee to be the number of vertices in the bee.
In a graph G, for each vertex a, we define BCCg(a) to be the number of biconnected components
in which a is a member. We say that two bec’s are neighbors if they have a vertex in common.
(Note that a bec is a neighbor of itself.)

For two vertices ¢ and b, we define common_vertez(a,b) to be the vertex b if a and b lie in
the same bee, to be the vertex shared by the bec’s of @ and b if @ and b lie in neighboring bec’s,

and to be undefined otherwise. For the sequence of vertices a1,...,ays, such that n > 2, we define

traversed_graph(a;,...,a,) to be the union, over all 1 < ¢ < 72, of the bce containing a; and
common_vertez(a;,a;—_1), and the bec containing a; and common_vertez(a;, ai41). For vertices a
and b, traversed_graph(a,b) is defined as the biconnected component containing both a and b, if
a # b, and the null graph otherwise. Therefore, for a sequence S of vertices such that for every
pair of successive vertices ¢ and b in 5, a bee containing a is a neighbor of a bee containing b,
traversed.graph(S) is the union of this chain of neighboring bec’s.

We define the local bee topology of vertex v in graph G to be the subgraph of ¢ containing
exactly the biconnected components containing v. Note that if » is not an articulation point, then
its local bee topology consists of the one biconnected component containing v.

If a and b are vertices in the same connected component of GG, then we define the link vertex
set of (a,b) in G, denoted LVSg(a,b), to be the set of articulation points that appear in every
path from @ and b in G. (We call this the “link vertex set” because it is the set of vertices that
“link” the biconnected components traversed by every path from a to b.) Our algorithms rely on

the following properties that follow from the definitions.

Property 1: For any two vertices ¢ and b in graph G, at most one biconnected component of

graph ¢ contains both « and 5.

Property 2: Vertex a is an articulation point in graph G iff ¢ is a member of at least two bec’s

in G.

Property 8: If nodes a and b are in the same biconnected component G, then every node on a

simple path between a and b is also in G'.

Proof: Let a and b be in the same bee and let # be a node in a simple path p between a and b.
Since ' is a biconnected component, there must be path p’ from a to b such that p and p’ have
only vertices & and b in common. Paths p and p’ form a cycle containing , a, and b; hence = must

belong to the same biconnected component as a and &. |

Corollary 4: Let each biconnected component be represented as a super node. Consider the set
of articulation points and the set of super nodes. Create an edge between a super node and an
articulation point whenever the articulation point belongs to the corresponding bee. The resulting

graph is a tree. (That is, a connected component induces a tree of biconnected components [13].)

5

Lemma 5: Let ¢ be a vertex in graph G = (V, E), let n = BCCg(a), and let b and e be vertices
such that & is reachable from ¢. If G' = (V, EU {(b,¢)}), then n > BCCg (a) > n — 1.

Proof: If b and ¢ are in the same bec in G, then BCCqr(a) = BCCqg(a). If b and ¢ are in different
bec’s, then the value of BCCgr(a) depends on whether or not @ is a link vertex. If a € LVSg(b,¢),
then BCCq(a) = BCCg(a) — 1; otherwise BCCgi(a) = BCCq(a).]

Lemma 6: Let ¢ and b be vertices in different biconnected components of a graph G = (V, E).
Let G' = (V,EU {(a,b)}). Then a node ¢ € LVSg(a,b)\ {a,b} is an articulation point in G’ iff ¢

is a member of at least three biconnected components in G.

Proof: Since ¢ is a link vertex, there is a path p from ¢ to b in G, and p traverses two bee’s By and
By both containing ¢. Suppose ¢ is an articulation point in &', Since p and (a,b), form a cycle in
G', we know that a,d, and ¢ are in the same bcc in G and that this bee contains both B; and Bs.
Since ¢ is an articulation point in G’, there must be a bee B; (different from By and B;) in which ¢
is a member. Therefore, ¢ is a member of bee’s By, Ba, and Bs in G, so we have BCCg(¢) > 3. To
show the reverse implication, suppose BCCg(¢) > 3. From Lemma 5, BCCei(c) > BCCqlc) — 1.

Therefore, BCCqi(c) > 2. From Property 2, it follows that ¢ is an articulation point in G. =

3 Problem Statement

We assume a failure-free distributed system in which each node in the system may send a message
to any other node, messages between each pair of nodes are delivered in the order sent, and
eventual delivery is guaranteed. We are interested in computing the biconnected components of
a dynamically changing logical configuration graph that defines the communication pattern of the
application. Initially, the logical configuration graph has no edges. The environment may cause
changes to the graph by requesting the insertion or deletion of an edge at the node corresponding
to either endpoint of the edge. The node at which the request is made is called the requesting node,
and the node at the other endpoint is called the peer.

We say that an algorithm solves the biconnected component problem if after any sequence of
requests (edge insertions and deletions), each node n in the system knows the set of vertices in

each of the biconnected components containing n. It is important to note that the algorithm is not

constrained to send messages only to neighbors in the logical configuration graph. Instead it is free
to send messages between arbitrary nodes in order to compute the biconnected components of the
logical configuration graph. This is because the logical configuration graph corresponds only to the
communication pattern of the application, and not to the physical topology of the network.

Lower bound: In any solution, an update request must conclude with each node knowing the
sets of nodes in the biconnected components of which it is a member. Since the nodes must be
informed of these new sets, the lower bound on the number of messages for an insert edge operation
is §2(b), where b is the size of the resulting biconnected component. Similarly, the lower bound for a
remove edge operation is Q(b'), where &' is the size of the biconnected component that contained the
deleted edge. This lower bound on message complexity can be achieved by a centralized solution
that maintains all topology information at a leader node and broadcasts changes to affected nodes
in constant time. However, we are inferested in distributed solutions that scale by distributing

topology information among the nodes.

4 The Serial Algorithm

In the serial algorithm, we assume that the environment makes requests (edge insertions and dele-
tions) one at a time, and that the processing of each request completes before the next request is
made. The node v maintains information about its local bee topology. If v is the minimum vertex
in the bec, then it keeps its local bee topology graph. Otherwise, the node v keeps a set, each
element of which is the set of vertices in a biconnected component containing v. In this way, each
node maintains the set(s) of vertices in the biconnected componeni(s) in which it is a member.
The coordinator for node p is defined to be the minimum node in the local bee topology of p.
The coordinator for a bee B is the minimum node in that bee. In addition to its local topology,
the coordinator node for a bce B keeps track of the neighboring coordinator nodes. That is, the
coordinator maintains a mapping C from the set of nodes V' in the system, to the set of all multisets
over the elements of V., The mapping C relates each articulation point ¢ in the bcc B to the set of
coordinators for the bee’s containing ¢, and for all nodes x which are not articulation points C(z)
is defined to be the empty set. In this way, each coordinator knows the set of nodes for which it is

the coordinator and the set of coordinators for neighboring bec’s.

(c)

(b) (d) M

Easy link Component link Path condensation

Asttewlatlon Polm [
Edge tobe inserted sveveransen

Biconnected component ___

Figure 1: Cases for edge insertion.

Overview: There are two incremental operations: insert an edge and delete an edge. When
inserting edge (r, p), we must determine if » and p belong to the same biconnected component. In
this case we have an “easy link” (see Figure 1 a, b), and we simply update the local bec topology
information maintained in the coordinator of this biconnected component. Otherwise, we search
for a path between r and p. If there is no path, then they are in different connected components
and we have a “component link.” In this case, we create a new biconnected component containing
only this new edge (see Figure 1 ¢, d). If there is a simple path between r and p, then the topology
of the new biconnected component, formed by adding this edge, is constructed by taking the union
of the biconnected subgraphs along the path (see Figure 1 e, f). It should be noted that any such
path from 7 to p will have the same subsequence of link vertices. We call this “path condensation”
after [13].

Messages: Nodes participate in the algorithm by message-passing. Each message has a name
(its type) and includes the source and destination nodes, and the requesting node r and peer node
p for the request. Some messages contain additional information. We assume that each request
has a unique identifier carried in each of its messages. A summary of message types is presented

in Figure 2 to aid the reader in understanding the algorithm description. We use ¢ to denote the

coordinator handling the request.

Message type Purpose

Req_Update informs ¢ that an update was requested
Check_For_Easy_Link asks p if it lies in a bee with

Easy_Link informs ¢ that p and r share a bcc

Not_FEasy_Link informs ¢ that p and r do not share a bce
Find_Peer asks receiving coordinator if p lies in its bec subtree

Return_Peer(G,C)

No_Peer

indicatos that p lies in tho connected component, where
(is a subgraph of the resulting bec, and
C is the accumulated cocrdinator mapping
indicates that p is not in the sender’s bee subtree

Add_FEdge
Coord_Update(G,C)

Bee_Update(V')
New_Bce
Adjust_Mapping(V)

Note_Coord(a,c', X)

informs the receiver of an easy link between r and p

informs the receiver that it is the coordinator of a new becc with
topology G and coordinator mapping C

instructs the receiver to update its local bee topology with the set V/

informs the receiver about a new bridge edge (r,p)

informs the receiving coordinator to adjust its mapping because a
new bcc with nodes V' has been formed

informs the receiving coordinator of a new coordinator ¢’ for node a
in the neighboring bec (to replace the coordinator from set X)

Remove_Coord(a,c)

Coord_Set(5)

informs the receiving coordinator that ¢’ is not the coordinator for
some bee containing a because of a bridge deletion
informs the receiver about the set of coordinators for the sender in

the bec’s containing the sender

Check.For_Bridge({r, p})
Is_Bridge({r,p})
Not_Bridge({r, p})
Delete_Edge(r, p)
Delete.Bee({r,p})

requests the peer to check if {r,p} is a bridge

informs the requesting coordinator that {r,p} is a bridge
informs the requesting coordinator that {r,p} is not a bridge
informs the receiver to delete an edge that is not a bridge
informs the receiver that an incident bridge {r, p} is deleted

Figure 2: Message types.

Stages: For edge insertion, the algorithm proceeds in three stages: In the coordinator notification
stage, the requesting node notifies the coordinator node that will coordinate the operation. In
the classification stage, the graph is searched for the peer node in a broadcast over a tree of
coordinators rooted at the coordinator for the requesting node. Relevant topology and coordinator
mapping information are collected in a convergecast. The classification stage determines whether
the insertion is an easy link, component link, or path condensation. In the update stage, the
local bee information is updated at each affected node, according to the information collected in
the search stage and the mapping of the (possibly new) coordinator is updated and neighboring
coordinators are notified. Edge deletion is similar, but the classification stage determines whether
the edge to be deleted is a bridge edge or not. The next two subsections explain the stages of the
algorithm for insert and delete,

Remarks: The algorithm we describe takes advantage of the structure of the logical configura-
tion graph by conducting the search along the coordinators of the biconnected components. An
alternative approach would be to assign fixed coordinators to arbitrary sets of nodes regardless of
the logical configuration (for example, in a centralized algorithm all nodes would be assigned to
the same coordinator). This avoids the problem of maintaining the coordinator mapping, but does
not take advantage of the structure of the problem. The search in that algorithm would require
communication among all coordinators in the worst case, even if only one biconnected component

(containing one node assigned to each coordinator) is affected by the operation.

4.1 Edge Insert

4.1.1 Coordinator notification stage

procedure Insert(r, p)

begin
(link_type, graph, mapping) = Insert_Classify(r, p)
Insert_Update(r, p, link_type, graph, mapping)
send done message to the requesting node

end Insert

Figure 3: Insert procedure.

10

In the coordinator notification stage, the requesting node simply sends a Req.Update message
to its coordinator node. This instructs the coordinator to process the update on behalf of the

requesting node (see Figure 3). In the concurrent algorithm, the coordinator is used to help

serialize the requests.

4.1.2 Classification stage

The coordinator first checks if both the requesting node and the peer node lie in the same bcc
as itself. If so, it then proceeds to the update stage for a “very easy link.” Otherwise, if r is
an articulation point, edge (r,p) may be an easy link in another of r’s bec’s. Therefore, it sends
a Check_For_Easy.Link message to the peer!. If the coordinator receives an Easy_Link message
from the peer, it proceeds to the update stage. On the other hand, if r is not an articulation point
or if the coordinator receives a Not_Fasy_Link message from the peer, the coordinator sends a
Find.Peer message to itself, initiating a broadcast over the bec’s in its connected component. This
broadcast continues until either the peer node is found or all bee’s in the connected component
have been searched (see Figures 4 and 5).

When a node n receives a Find_Peer message, it remembers the node from which it received the
message as its parent and checks if the peer and n lie in the same bec. If so0, it sends a Find_Peer
message to the peer and the peer responds with a Return.Peer(0,®). If n and the peer do not lie in
the same bee, n continues the broadcast by sending a Find_Peer message to each of the coordinators
in the neighboring bce’s except those nodes that are also neighbors of parent. It remembers this
(possibly empty) set of nodes as its children.

The convergecast of the classification stage begins at a node when it has received a No_Peer
response from all of its children or a Refurn_Peer response from a child or the peer. If the node
n has received a Return_Peer(G1,C;) message from another node b, then it computes the graph G
as the union of Gy and traversed_graph(parent,n,b), defined in Section 2. This traversed graph is

the union of those bec’s that are on the path from r to b for which n is the coordinator. The graph

'In the serial algorithm, we could have the requesting node make the easy link determination before sending the
request to the coordinator. However, in the concurrent algorithm, the topology may change between the time the
request is made and the time it is processed. Therefore, for ease of explanation, we have the coordinator ask the peer
for this information. The peer, rather than the requesting node, is chosen because the concurrent algorithm must

communicate with the peer anyway for serialization purposes.

11

procedure Insert_Classify(r, p) returns (link_type, graph, coordinator mapping)

begin
if r and p lie in a bce for which ¢ is the coordinator then
return (“very easy link”, @, 0)
else if r is an articulation point
send Check_For_Fasy.Link(r,p) to the peer p, and wait for a response
if an Fasy_Link message is received from the peer
then return (“easy link”, 0, @)
start the broadcast by sending a Find_Peer to self, and wait for a response
if response from self is Return_Peer(G,C) then
return (“path condensation”, G, C)
else (response is No_Peer)
return (“component link”, 9, @)
end Insert. Classify

Figure 4: Classification procedure for coordinator c.

G, computed in this manner, is a subgraph of the resulting bce. It then sends a Return_Peer(G,C)
message to its parent, where the accumulated mapping C is the union of C; (the mapping received),
and the current mapping of the coordinator. Thus, we accumulate the topology and the coordinator
mapping for each bee along a simple path from the peer to the requesting node in order to build the
topology and the mapping of the new bec. Otherwise (if the node has not received a Return_Peer
message), it sends a No_Peer message to its parent.

When the coordinator receives a Return.Peer(G,C) message from itself, the Insert.Classify
procedure returns “path condensation” along with the graph & and mapping C. If the coordinator
receives a No._Peer message from itself, the classification procedure returns “component link,” and

the algorithm proceeds to the update stage.

4.1.3 Update stage

The update stage begins when the coordinator has received responses from all of its children

(see Figures 6 and 7). There are three cases:

12

o On receiving Check_For_Easy_Link(r,n):

if n and r are in the same bcc
then send Fasy_Link message to the sender
else send Noi_Fasy_Link message to the sender

e On receiving Find_Peer from node b:

parent « b
if » = p then send Return_Peer(B, mapping) to parent
else if peer is in the local bec then
send Find_Peer top
children — {p}
else continue the broadcast:
children « set of all neighboring coordinators a such that a ¢ C(common.vertez(n, parent))

if children # 0 then
send Find.Peer to each node in the set children
else send No_Peer to parent

parent « nil

¢ On receiving Return_Peer(G1 = (V4, F1),(1) from another node b:

remove the sender from children
send Return_Peer(G,(C) to parent, where
G = Gy U traversed_graph(parent, n, b)
C(a) = C'(a) U C1(a) such that ' is the current mapping, for each node a in G

parent — nil

¢ On receiving No_Peer from another node:

remove the sender from children
if children = 0 and a Return_Peer has not been sent to parent then
send No_Peer to parent

parent « nil

Figure 5: Message handlers for classification procedure for the node =.

13

procedure Insert_Update(r, p, link_type, G = (V, E),C)

begin
if link_type = “very easy link” then
add edge (r,p) to the local bee topology
else if link_type = “easy link” then
send Add_Edge((r,p)}) to p, and wait for acknowledgement
else if type = “path condensation” then
let X = U,ev(C(a)NV) (i.e. X is the multiset of minimum vertices from each bec in G)
send Adjust_Mapping(V) message to each element in X once
compute Gpew t0 be the same as G with the addition of the new edge (r,p)
for each a € V, Chew(a) « C(a) \ X U {min(X)}
if [Chew(e)| = 1 then Chew(a) « 0
send Coord_Update(Gpew;Cnew, X) to the coordinator (minimum vertex in V)
wait for acknowledgement
else if type = “component link” then
send New_Bcee({r,p}) to both r and p, and wait for acknowledgements
end Insert_Update

Figure 6: Update procedure for edge insert.

14

o On receiving Add_Fdge((r,p)):
Let z be the coordinator of the bee containing both » and p
if (n=2z)
then update local bee topology with the edge (7, p)
else send Add_Edge((r,p)) to 2, and wait for an acknowledgement
send acknowledgement to the sender

¢ On receiving Bee_Update(G = (V, E)):
if there is a set W in the local bee topology such that W C V or V C W then
replace W by V (or the graph corresponding to W by G)

else
add G as a new bcc in the local bee topology
send acknowledgement to the sender

* On receiving Coord_Update(G = (V, E),C,X):
adopt G and C as the new local bce topology and the coordinator mapping
send Bee.Update(G) to all other nodes v in V, and wait for acknowledgements
for each articulation point @ in &
send Note_Coord(a,n,X) to the coordinators for other bcc’s containing a
wait for an acknowledgement
send acknowledgement to the sender

¢ On receiving New_Bee({r,p}):

add {7, p} to the local bcc topology
let 4 = min(r, p) and j = max(r, p)
if n = j then
send Coord_Set(S;) to ¢, where S; = set of minimum vertices of bec’s containing j
if j is the coordinator for some bee then C(7) « 55
else {n = 1)
C(n) « 5;, where S5; = set of minimum vertices of bee’s containing ¢
wait for Cooord_Set(S;) message from j
C(7) « S5
for each bcc B containing n
send Note.Coord(n,t,8) to the coordinator of B, and wait for acknowledgement
send acknowledgement to the sender

¢ On receiving Adjust_Mapping(V):
if » is coordinator for some bee B = (Vp, Eg) such that Vg € V then
Cla) « B for all a € V' \ {n}

else
Cla)—QforallaecV

¢ On receiving Note_Coord(a,c, W):

Let C be the coordinator mapping of n
Ca) — (C(a)\ W)U {c}
if n & C(e) then C(a) — C{a) VU {n}

15

Figure 7: Message handlers for the Insert_Update procedure for the node n.

1. In the case of a very easy link, the coordinator updates its local bee topology and sends a
done message to the requesting node informing it that the update is complete. In case of an
Easy_Link message from the peer, the coordinator sends an Add_Edge message to the peer.
The peer forwards this message to the coordinator node of the bee that contains both the
requesting node and the peer node. The local bee topology of that coordinator is updated
and the message is acknowledged. When the coordinator of the requesting node receives an

acknowledgement from the peer, it sends a done message to the requesting node.

2. When the Insert_Classify procedure returns “component link,” the coordinator sends a New_Bce(G)
message to both the requesting node and the peer, where (G is the new bcc containing just the

requesting node and the peer node. Both nodes update their local bee topology to include G.

Let 7 and 7 be the minimum and maximum nodes, respectively, in the new 2-node bce. The
minimum node ¢ becomes the coordinator for the new bec. Node j sends a Coord_Sei(S)
message to ¢, where S is the set of minimum vertices of the bce’s containing j. Further, the
node j sets the mapping for j to Sj, if j is the coordinator for some bec. Node ¢ modifies its
coordinator mapping by setting C(7) to the set of minimum vertices of the bee’s containing 4,
and letting C(4) be the set .S received from node j. Both nodes then inform their neighboring
coordinators that ¢ has become the coordinator of the new bee G (the Note_Coord message).
All messages are acknowledged. When the coordinator of the requesting node receives an
acknowledgement from the peer and the requesting node, it sends a done message to the

requesting node.

3. In case of path condensation, the coordinator receives the graph G4 and the accumulated map-
ping C; from the classification procedure. The coordinator sends an Adjust_Mapping(V') mes-
sage to the coordinators of each bec that are being “merged”, where V is the set of nodes in the
new bee. The node receiving this message nullifies the coordinator mapping if it is no longer
the coordinator for any bee. On the other hand, if the node receiving Adjust_Mapping(V') is
a coordinator for some other bce, then it nullifies the mapping for all articulation points in V
except itself, because the mapping for this node would contain minimum vertices from other
bec’s containing this node. The coordinator then sends a Coord_Update(G = (V, E),C) to

the coordinator ¢’ of the newly formed bec (¢’ is the minimum vertex in V'), where G is the

16

local bec topology of the new bee computed from Gy by adding the new edge (r,p), and C is
the new coordinator mapping computed as follows. For an articulation point @ in G, C{a) is
obtained by adding ¢’ to the set given by C;(a) after removal of minimum vertices from each
of the bee’s in GY. The coordinator ¢/, on receiving the Coord._Update message, replaces its
local bee topology and the coordinator mapping with G and C respectively. It also sends a
Bec_Update(G) message to all other nodes in the newly formed bcc and sends a Note.Coord
message to all the neighboring coordinators informing those nodes that it has become the
coordinator of the new bce G. Each message is acknowledged by the receiver, after which the
coordinator for G sends an acknowledgement to the requesting node’s original coordinator

which informs the requesting node that the update is complete.

Handling topology update messages: While inserting an edge in the path condensation case,
a Bee_Update(G = (V, I)) message is sent to nodes in the new (larger) bee to update their bee set,
that is a subset of V', with the (larger) set V. Similarly, we will see that when such an edge is deleted
resulting in many smaller bec’s, the nodes in these smaller bee’s receive Bee_Update(G = (V, E))
message and they replace a superset of V with V. Thus, whenever a node receives a Bec_Update(V)
message, it removes any subsets or supersets of V' from its local bee topology and adds the set V'
to its local bee topology.

Remark: After the update stage, every node knows the set of vertices that are in the same bce
as its vertex and coordinator nodes know their local bee topology and the set of coordinators for

neighboring bee’s (through the mapping).

4.2 Edge Delete
4.2.1 Coordinator notification stage

The requesting node sends a Req.Update message to its coordinator, which calls the delete proce-

dure (see Figure 8).

4.2.2 Classification stage

The purpose of the classification stage is to determine whether the edge to be deleted is a bridge

edge or not. The classification procedure is invoked from the delete procedure by the requesting

17

procedure Delete(r, p), where 7 is the requesting node and p is the peer
begin
link_type = Delete.Classify(r,p)
Delete_Update(r,p, link_type)
send done message to the requesting node
end Delete

Figure 8: Procedure for edge delete.

node’s coordinator. In the classification procedure (see Figure 9), the coordinator checks if {r,p}
is a bec in its local bee topology. In this case, it returns “bridge edge.” If » and p are in some bce
of the coordinator, since {r,p} is not a bcc by itself, the classification procedure returns “internal
edge.” Otherwise, the edge is outside of the requesting coordinator’s local bee topology. So the
coordinator sends a Check_For_Bridge({r,p}) message to p. The procedure returns “bridge edge”

if the coordinator receives Is_Bridge from p, and returns “external edge” if it receives Noi_Bridge

from p.

procedure Delete.Classify(r, p) returns link. type
begin
if {r,p} is a bec in the coordinator’s local bee topology then return “bridge edge”
if r and p are in a same bee in the coordinator’s local bee topology then return “internal edge”
send Check_For_Bridge({r,p}) message to p, and wait for acknowledgement
if an Is_Bridge message is received then return “bridge edge”
if a Not_Bridge message is received then return “external edge”

end Delete_Classify

¢ On receiving Check_For_Bridge(G) from b

if G is a member of the local bece topology
then send Is_Bridge(G) to b
else send Not_Bridge(G) to b

Figure 9: Classification procedure for delete and its message handler.

18

procedure Delete_Update(r, p, link_type), where r is the requesting node and p is the peer
begin
if link_type = “bridge edge” then
send Delete.Bce({r,p}) message to the requesting node and the peer
if link_type = “internal edge” then send Delete_Fdge(r,p) to self
if link.type = “external edge” then send Delete_Edge(r,p) to p
wait for acknowledgements
end Delete_Update

¢ On receiving Delete_Bee({r, p}):

remove {r, p} from the local bce topology
let ¢ = min(r, p) and § = maz(r,p)
if (n = i) then C(j) « 0
if ('n = j) then C('i) =10
for each bee B containing »
send Remove_Coord(n,1) to coordinator of B
wait for acknowledgements

send acknowledgement to the sender

o On receiving Delete_Edge(r, p):

let z be the coordinator of the bee containing both r and p
if (n = z) then
remove edge (7, p) from the local bce topology
locally compute the bec’s in the modified graph
if new bce’s are formed then
for each new bee G = (V, E), send Coord_Update(G,C,V) to coordinator of G,
where C, the mapping for G is computed by
(1) projecting the old mapping on V
(2) adding the coordinators for the newly formed neighboring bece’s, and
(3) removing the old coordinator where it is no longer a neighbor
wait for acknowledgements
else send Delete.Edge(r,p) to @, and wait for an acknowledgement
send acknowledgement to the sender

On receiving Remove.Coord(a,z):

Let C be the coordinator mapping of n

Ca) = C(a)\ {=}
if |C(a)| = 1 then C(a) « 0

Figure 10: Update procedure for edge delete and its message handlers for node =,
19

4.2.3 Update stage

The procedure for the update stage of edge deletion and associated message handlers are shown in
Figure 10. If the edge to be deleted is a bridge, then the coordinator sends a Delete_Bec(G) message
to both the requesting node (which may be itself) and the peer node, where G is the bec to be
deleted. On receipt of the Delete_Bec message, a node removes the bee from its local bee topology
information, removes the entry for the other node from its mapping, and sends a Remove_Coord
to the coordinators in each bee containing itself. The node receiving this message adjusts its
coordinator mapping by removing the minimum node from the set of coordinators for the sender
and if its mapping becomes a singleton set, then it is no longer an articulation point and hence sets
its mapping to empty, and sends an acknowledgement to the sender. The sender then acknowledges
the requesting coordinator. When the requesting coordinator receives acknowledgements from both
the requesting node and the peer node, it informs the requesting node that the update is complete.

If the edge being deleted is not a bridge, the coordinator sends a Delete_Edge(r, p) message to
itself in case of an “internal edge,” and to the peer node in case of an “external edge.” The peer
forwards this message to the coordinator of the bee that contains both the requesting node and
the peer node. The coordinator node (that receives the Delete_Edge(r,p) message) removes the
edge from the local bee topology, locally runs a sequential bee algorithm over this subgraph and
computes the local bec topologies corresponding to this bee (containing the requesting node and
the peer node), and sends the Coord.Update messages to the coordinators of each new bce that is
formed. On receipt, each Coord_Update of these messages is handled as described for edge insertion.
After receiving acknowledgements of these messages, the coordinator informs the requesting node

that the update is complete.

4.3 Correctness

Let .5 be a sequence of graph update requests for a graph containing vertex set ¥V such that for each
pair of vertices (u,v), the subsequent requests involving (u,v) in S is a (possibly empty) prefix of
an alternating sequence of insert and delete beginning with insert. Let G be the result of applying
S to an initial graph containing vertex set V' and no edges. Consider a distributed system of nodes,
one for each vertex in V, executing the serial algorithm. Suppose that the environment issues the

sequence S of requests, and that each request is made at one of the two endpoints of the affected

20

edge. We say that the system is in a consistent global state after S if for each node n in the system
(1) the coordinator ¢ of n knows ¢’s local bec topology in G, (2) the coordinator of n knows the set
of neighboring coordinators v in G, and (3) n knows the set of vertices in each of the biconnected
components containing n in G.

The proof that the system is always in a consistent global state proceeds by induction on the
length of S. The base case (no requests) is trivial since each node is in a connected component by
itself. Initially each node has as its local topology the graph consisting of just itself, and each node
in the coordinator mapping is mapped to the empty set.

The inductive step is by case analysis, showing that for each possible insert or delete request,
the algorithm leaves the system in a new consistent global state. For insert requests, the cases are
easy link, component link, and path condensation. For delete requests, the cases are a bridge edge
and a non-bridge edge. For each case, we argue directly from the algorithm that if the request is
processed starting from a global consistent state, then it will result in a global consistent state. The
argument for termination is straightforward and is based on the acknowledgements of messages.

We now present the arguments in more detail.
Lemma 7: The algorithm starts in a consistent global state for the empty sequence of requests.

Proof: Initially, all the nodes are in a component by themselves, their local bee topologies contain a
graph with just the vertex corresponding to that node, and each node in the coordinator mapping

is mapped to an empty set. u

Lemma 8: If the system is in a consistent global state for a sequence 5, then the coordinator map-

pings in each connected component define a tree spanning all bec’s in that connected component.

Proof: Using the coordinator mapping of a bee we can determine the set of coordinators of the

neighboring bee’s. Thus, the Lemma follows immediately from Corollary 4. =

Lemma 9: If the system is in a consistent global state for §”, then processing an insert request p

for edge (r, p) leaves the system in a consistent global state for S = §'p.

Proof: Let the node r be the requesting node. There are three cases. In each case, we identify how

the consistent global state must change as a result of the operation, and then identify the messages

that are used to achieve those changes.

21

1. Easy link (and very easy link): When » and p lie in the same bcc, then the coordinator of
this bee updates its local bee topology and other state information does not change. So the

system is in a consistent global state for 5.

2. Path condensation: When the search for the peer, in the classification stage, returns a
Return_Peer message to the requesting coordinator, we have the path condensation case.
In this case, after inserting the edge (7, p), the nodes r and p will be in the same bcc as that
of all the nodes in the path between them (Property 3). If r,qay,...,a,,2 was the search
path from r to p, then the resulting bcc is computed by traversed_graph(r,ai,...,an,p) and
adding in the new edge (7,p). This traversed graph is the union of all the bec’s along the
search path. The mapping and local bce topology information of the coordinators of these
bee’s change due to the update, and the new coordinator of the new bec gets a new mapping
and new local bee topology. Further, the neighboring coordinators must be notified about

the new neighbor and each node in the new bce must also update its local bee topology.

In the algorithm, the requesting coordinator sends a Coord_Update(G,C, X) message to the
new coordinator, where GG is the new local topology, C is the new coordinator mapping, and
X is the multiset of coordinators of the old bee’s. From Return_Peer messages, we see that if
¥ = 7,81,...,0,,p was the search path from r to p, then the graph G is the result of adding
the edge (7, p) to the union of the graphs iraversed_graph(z,y, z), for every three consecutive
vertices z,y and z in ¥. Thus, G is same as the graph traversed.graph(r,a1,...,an,p) with
the addition of the new edge (r,p), the resulting bee, by definition (see Section 2). The
mapping C is computed for each node in the new bcc by removing the old coordinators and
adding the new coordinator {the minimum node in the bec). If a link vertex ceases to be an
articulation point (see Lemma 6), its mapping reduces to a singleton set. The coordinator
mapping is adjusted so that the non articulation points are mapped to empty sets in the
mapping. When a Coord_Update(G,C, X) message arrives at the new coordinator, it informs
the neighboring coordinators of the possible change in the coordinator (Note_Coord message),
and sends Bce_Update messages to all the nodes in the new bce. Since all nodes receiving
Bee_Update messages update their local bee topologies, the insert operation leaves the system

in a consistent global state.

22

3. Component link: When the search returns a No_Peer to the coordinator for r, Lemma 8
ensures that the peer does not lie in the connected component of ». Hence, the local topologies
of 7 and p, the data structures of the coordinator for the new bcc being created, and the

mappings of the neighboring coordinators of the new bcc are modified.

In the update stage, when a component link is detected, the requesting coordinator sends
a New_Bcc message to both » and p. Nodes r and p add the new bec to their local bee
topology, and the maximum of these nodes sends the set of minimum vertices of the bee’s
containing itself to the other node and updates its mapping if it is the coordinator for some
bee . The minimum node, the coordinator of the new bcec, simply updates its mapping for
the maximum node using the set received and the mapping for itself as the set of minimum
vertices of the bce’s containing itself. Then the maximum and the minimum nodes send
Note_Coord messages to the neighboring coordinators, informing them about the new bee

and its coordinator. Hence, the system is in a consistent global state after the operation.

Lemma 10: If the system is in a consistent global state for 5/, then processing a delete request p

for edge (7, p) leaves the system in a consistent global state for § = 5/p.

Proof: Let the node r be the requesting node. There are three cases. In each case, we identify how
the consistent global state must change as a result of the operation, and then identify the messages

that are used to achieve those changes.

1. Edge (r,p) is not a bridge and new bcc’s are not formed as a result of deleting this edge. The
coordinator of the requesting and the peer nodes updates its local bee topology and other

state information does not change. So the system is in a consistent global state for 5.

2. Edge (r,p) is not a bridge and new bec’s are formed as a result of deleting this edge. This
has the reverse effect of path condensation for an insert operation. The mappings of the
neighboring coordinators and both the mappings and the local bee topologies of each new

bee formed are to be recomputed to maintain the global consistent state.

In the algorithm, the coordinator node for both r and p runs a standard sequential al-

gorithm [1] to compute the local bee topologies of all nodes within this bee, and sends a

23

Coord_Update message to all coordinators of the new bee’s formed as a result of the deletion.
Since the Coord.Update message to the coordinator for a bee updates the local bee topologies
of all nodes in its bee and since the neighboring coordinator information is also updated as
a result of receiving this message, the system is left in a consistent global state after the

operation.

3. Edge (r,p)is a bridge. The local bce topologies and the mappings (if any) of both » and p and

the mappings of the neighboring coordinators of » and p change as a result of the operation.

In the update stage, the requesting coordinator sends a Delete_Bcc message to r and p. A
node recciving & Delete-Bce megsage removes the bee corresponding to this bec from its
local topology and sends a Remove_Coord message to the coordinator nodes of other bec’s
containing itself. Further, the mapping for the other node is set to empty, as the other node
is no longer in the same bce. Since the coordinator mappings are also updated, the system is

left in a consistent global state after the operation.

Theorem 11: The serial algorithm solves the biconnected component problem.

Proof: Consider a sequence of update requests, beginning in the initial state. We show by induction
on the length of the sequence of requests that the system is left in a consistent global state. The
base case of an empty sequence of requests is given by Lemma 7. From Lemma 9 and Lemma 10,
we have the inductive step. Since after any sequence of requests, each node knows the set(s) of

nodes in its bee(s), the serial algorithm solves the biconnected component problem. -

4.4 Complexity

Messages: While inserting an edge, the connected component of the requesting node is searched
for the peer in order to classify the new edge. Hence, the classification stage takes O(¢) messages,
where ¢ is number of bee’s in the connected component. Also, during the update stage, each node
in the new bec is sent a Bee. Update message informing it about its new local bee topology, and the
neighboring coordinators are informed about any changes in coordinator information (Note.Coord

message) as a result of an operation. Since the number of neighboring bee’s is bounded by O(e),

24

the update stage takes O(b+ ¢) messages, where b the number of nodes in the resulting biconnected
component. Thus, insert edge operation takes O(b+ ¢) messages.

While deleting an edge, the classification stage takes ((1) messages. During the update stage,
if new bcee’s are formed, then every node in the new bee is sent 2 Coord._Update message and the
neighbors of each bec are informed about the new coordinators formed. Hence, the update stage
takes O(b' + ¢) messages, where &’ is the number of nodes in the biconnected component in which
the update request is being processed. Thus, an edge removal takes O(b’ + ¢) messages.

Time: We measure the time complexity in terms of units of message transmission time. Since
the new coordinator notification messages to the neighboring coordinators take O(1) time and
since the search is carried out through out the connected component, an insert operation takes
O(c) time, where ¢ is the number of biconnected components in the connected component. Since
the classification stage of the delete need not search for the peer, a delete operation takes O(1)

time. Note that the update stage of an operation takes constant time because the messages can be

processed concurrently.

5 Concurrent Algorithm

In the concurrent algorithm, we allow the environment to issue multiple simultaneous requests.
The algorithm serializes these requests within each connected component using a timestamping
technique that uses logical clocks [9]. In order to allow at most one update request to proceed
within a connected component at any one time, we maintain a queue of requests (along with their
timestamps) at all coordinator nodes. As connected components merge and split, these queues are
updated to achieve a consistent view of the order at all coordinators in a connected component.
For each request, we collect timestamps from all the nodes in its connected component and use the
maximum value as the priority value of the request. This final timestamp is then communicated to
all the other nodes in the connected component. This ensures that all nodes see the same sequence
of requests.

Building on the serial algorithm, we add a fimestamp collection stage, that immediately follows
the coordinator notification stage and serves to serialize the requests within a connected component.

We use logical clocks [9] to assign a time to each request, and requests are processed in timestamp

25

Message type Purpose

Request_Timestamp requests maximum timestamp from the subtree of the receiver

Return_Timestamp returns to the parent, the maximum of all timestamps collected

Final_Timestamp informs coordinators of the final timestamp for a request

Request_Peer_Timestamp | a request to timestamp the current update request at the peer’s
component

Peer_Ready the peer coordinator informs the requesting coordinator to start the
search

New_Queue the receiver is informed of the modified Greq as a result of the previous
operation

Figure 11: Serialization message summary.

order. As in the serial algorithm, each request is initially handed over to the coordinator by the
requesting node. The coordinator collects timestamps from all the coordinators in its connected
component and uses the maximum as the timestamp for this request. The coordinator then sends
messages to other coordinators about the new timestamp for its request. Once a request becomes
the oldest unprocessed request in a connected component, the corresponding coordinator runs the
serial algorithm to complete the operation. However, if the request is for an insert operation and the
peer is in a different biconnected component from the requesting node during timestamp collection,
then timestamps are collected in both components and the maximum is used. The summary of
message types is given in Figure 11.

Each coordinator ¢ maintains the following additional state variables: clock is an integer vari-
able with the semantics of Lamport’s logical clock, (Jreq is a timestamp ordered priority queue
of requests. For each request p, coordinator ¢ maintains parent.ts(p) as the parent of ¢ during
the timestamp collection stage for request p, children_ts(p) as the set of children of ¢ during the
timestamp collection stage for p, and a timestamp maz_time(p). The priority queue Qreq is used
to order the concurrent requests made by the environment, parent.fs and children._ts are used in
constructing broadcast trees during timestamp collection, and maz_time(p) contains the timestamp
value to be assigned for the request p.

Note that we use the value of the clock variable at each node to determine the final timestamp
of a request. Since the timestamps are collected from all coordinators in a connected component,

it is guaranteed that a later request will have a larger timestamp, and since the final timestamps

26

are broadcast to all coordinators, all the coordinators will have the same sets of requests pending

in the connected component.

As connected components merge and split, the queues of the coordinators must be updated so
that they have, at all times, the same set of requests pending in the connected component. (In fact,
it is possible that the coordinator that was originally notified about the request is not ultimately
the coordinator that processes the request, due to intervening topology updates.) This bookkeeping
requires an extension to the update stage of the algorithm. We begin by describing the timestamp

collection stage and then describe the extension to the update stage.

5.1 Timestamp collection stoge

procedure Timestamp(R), where R is a request

begin
insert (R, clock) in Qreq
send Regquest_Timestamp(R) to all neighboring coordinators
receive Return_Timestamp(R,t) from all neighbors
change the key for R in Qreq to maz_time(R), the maximum of all ¢ values received
send Final_Timestamp(R, maztime(R)) message to all neighboring coordinators

end Timestamp

Figure 12: Timestamp procedure.

In describing the timestamp collection stage, we assume that no update is in progress in the
connected component during timestamp collection, and so the topology of the connected component
is stable (does not change). Later we explain how we ensure that this is indeed the case. Timestamp
collection is carried out in three phases: the request phase, the return phase, and the report phase.

The timestamp collection procedure and the associated message handlers are given in Figures 12

and 13 respectively.

1. In the request phase, the requesting coordinator for request r sends a Request_Timestamp(r)
message to all the coordinators in its set of neighboring coordinators. A coordinator receiving
its first Request_Timestamp(r) message for r enqueues the request r along with a timestamp

greater than its current logical clock. It remembers the sender of the message as its parent

27

for that request. It then forwards this message away from its parent, creating a broadcast

tree of all the coordinators in the connected component.

2. When a coordinator node receives Return_Timestamp(r,t) messages from all of its children,
it enters the return phase of the algorithm and sends a Return_Timestamp(r,t’) message
to its parent, where ¢’ is the maximum of all the timestamps received from its children and

the timestamp assigned by itself to request r.

3. The report phase begins when the requesting coordinator receives a Return_Timestamp(r,t)
from each of its children. It computes the maximum ¢’ of all the timestamps and its own
loglcal clock. It then enqueues (r,¢) in its priorlty queue, sets its logical clock to ¢/, and broad-
casts the timestamp value by sending the message Final_Timestamp(r,t’) to the neighboring
coordinators. Any coordinator receiving Final Timestamp(r,1'} adjusts its clock forward to
a value greater than #’, replaces the corresponding entry for r in its priority queue, and con-
tinues the broadcast by forwarding the message to all neighboring coordinators away from its

parent.

When an entry (r,t)is at the front of the queue, the coordinator for » sends a Request_Timestamp(r,t)

to the peer. The peer forwards the request to its coordinator. If the coordinator for the peer does

not already have an entry for this request operation in its queue, it must run the above three phase

algorithm to assign a timestamp for this request in its connected component using, as its final value

¢/, the maximum of ¢ and the timestamps collected. It then sends a message Return_Timestamp(r,t’)

to the requesting node’s coordinator. The requesting node’s coordinator then updates this entry

in its queue. If request » is no longer at the front of the queue, the requesting node’s coordinator

repeats the “Report phase” of the timestamping step of the serialization stage with the new final

time so that other nodes in the connected component can update their priority queues.

When the entry for a request reaches the front of the queue at the peer coordinator, the

coordinator sends a Peer.Ready message to the requesting node’s coordinator. When the entry for

a request reaches the front of the requesting coordinator’s queue and the requesting coordinator

has received a Peer_Ready message for that request, then the current coordinator for the requesting

node can begin processing the actual request.

28

¢ On receiving Request_Timestamp(R) from b:

parent_ts(R) « b
maz_time(R) « clock
insert (R, maz_time(R)) in Qreq
children_ts(R) + set of neighboring coordinators that are not neighbors of parent
if children_ts(R) # 0
then send Reguest.Timestarnp(R) to each node in children_ts(R)
else send Return_Timestamp(R, maz_time(R)} to parent_ts(R)

¢ On receiving Return_Timestamp(R,t) from node b:

children_ts(R) « children_ts(R)\ {b}
maz_time(R) « max(maz_time(R),1)
if children_ts(R) = 0 then
send Return. Timestamp(R, maz_time(R)) to parent_ts(R)

o On receiving Final_Timestamp(R,t) from node b:

change key for request R in Qreq to ¢
send Final.Timestamp({R,t) to all neighboring coordinators except sender

e On receiving Request.Peer_Timestamp(R, c) from b:

if self is the coordinator for the peer then
if entry for R is in the front of (Jreq then
send Peer.Ready to ¢
else
Timestamp(R)
wait for R to reach the front of Qreq, and then send Peer_Ready to ¢

else
send Request.Peer_Timestamp(R,c) to the coordinator for self

¢ On receiving New_Queue(q) from b:

Qreq — ¢
send New_Queue(q) to all neighboring coordinators except b, and wait for acknowledgements

send acknowledgement to the sender

Figure 13: Message handlers for timestamp collection.

29

5.2 Extended Update

A coordinator receiving an update message forwards any “new” requests to the new coordinator if
that has changed and waits for an acknowledgement before acknowledging the update. Note that
a coordinator ¢’ receiving an update can determine the new coordinator of a node for which it was
the coordinator. In case of a path condensation insert case or a delete edge where new bec’s are
created, ¢’ the new coordinator for a node is determined from the graph in the message. In case
of a component link insert case or a delete bridge, the new coordinator is determined from the
coordinator mapping.

After the classification and update stages of the serial algorithm are completed, the entries in
the queues must be updated if two connected components have merged (due to a component link
insertion) or if a connected component has split (due to a bridge delete).

In the case of a component link, the coordinator for the requesting node gets the priority queue
from its old coordinator of the peer, merges it with its own priority queue, and broadcasts this
combined queue ¢ in a New_Queue(g) message to all the coordinators of the connected component.
Acknowledgements are collected with the usual convergecast mechanism.

In the case of a bridge delete, the requesting node and the peer node inform their respective
(new) coordinators that a bridge edge has been deleted. FEach coordinator then collects, in a
broadcast/convergecast over the tree of coordinators, the set of pending requests in the connected
component {(with their timestamps). Each coordinator reports the requests for which it is either
the requesting coordinator or the peer coordinator. These are collected in the convergecast into
a new queue that is broadcast in a New_(Queue message to all the coordinators in each respective

connected component.

5.3 Stable Intervals

In order to ensure that a timestamp was collected from every coordinator in the connected compo-
nent, we made the assumption earlier that timestamp collection is performed only while no update
is in progress. In order to achieve this, we add to the end of the update stage a stable message that
is broadcast to all the coordinators after all the other messages from the update stage have been

acknowledged.

When receiving a stable message, a coordinator can initiate timestamp collection, knowing that

30

no further updates will proceed in the component until it has completed its timestamp collection
and acknowledged the stable message. However, when the queue is empty, a coordinator cannot
wait for a stable message before collecting timestamps, because there is no update in progress that
can result in such a message. Therefore, in case of an empty queue, a coordinator may immediately
begin timestamp collection without receiving a stable message. If more than one coordinator does
this, then the one with the lowest timestamp “wins” and it may start its update, while the others
discard the results from that collection and wait for the sfable message at the end of the winning
coordinator’s update.

If a coordinator p is waiting for a stable message, it may send a stable_request message to the
requesting node for the first request in the queue, and the requesting node will forward that message
to its coordinator. If the coordinator has not yet begun the update stage, then it will send a stable
message to p, and wait for p to acknowledge the message before proceeding to the update stage.
During that stable interval, p may carry out timestamp collection. (This provision is needed to
prevent a deadlock situation that could otherwise occur due to a cyclic waiting chain for timestamp
collection by peer coordinators. For example, two bridge edges may be added between a pair of
components with their requesting nodes in different components. Without this provision, if both
requests reach the tops of the queues in the two components, then the peer nodes would never
receive a stable message and so would be unable to carry out timestamp collection.)

When a coordinator receives acknowledgements for all of the stable messages (through a con-
vergecast), it then broadcasts to all the coordinators to inform them that the update is complete,

and they remove the request from their queues.

5.4 Correctness

Since each request has one final timestamp and that timestamp is known to all coordinators, at
most one update request is in progress at a time in each connected component. Therefore, the
correctness of the serial algorithm implies the correctness of the concurrent algorithm.

Liveness (no starvation) is argued by showing that (1) every request is eventunally assigned a
timestamp, (2) once a request has been assigned a time in both the requesting and peer components,
no later request will be assigned a smaller timestamp in either component, and (3) once a request

reaches the top of the queue in the components of both the peer and the requesting node, then it

31

cannot be blocked.

5.5 Complexity

Messages: The serialization of a request involves a broadcast and convergecast over the connected
components in which the endpoints are members. The actual search for the peer may take place
in a modified connected component, so the message complexity is proportional to the maximum
number of bee’s in any of these instances. Thus, the algorithm takes O(b + ¢) messages for an
insert and O(} + ¢) for a delete, where ¢ is the maximum number of bee’s in any of the connected
components during the operation, b is the number of nodes in the resulting bec, and ¥ is the number
of nodes in the bee before the deletion.

Time: The serialization stage of the algorithm takes O(c) time, where ¢ is the maximum of the
number of bee’s in either the requesting node’s connected component or the peer’s connected
component. Since the coordinator that timestamped the request need not be the coordinator
that actually performs the request, the algorithm takes O{c) time for both an insert and a delete
operation, where ¢ is the maximum number of bece’s in any of the connected components during

the operation.

5.6 Optimizations

Some simple optimizations on the concurrent algorithm are possible. In particular, there are some
kinds of update requests for which timestamp collection can be avoided. Since the coordinator
contains the local bee topology, it can immediately detect the easy link case. Since the easy link
insert case does not change the set of articulations points or coordinators, the coordinator can
update the topology during the stable interval safely. Similarly, the coordinator can detect when
deleting an edge will not change the set of articulation points or coordinators. In practice, for the
causal ordering application, we could be lazy about the delete requests, processing them only when

bec’s grow large.

32

6 Conclusion and Future Work

We have presented two incremental distributed algorithms for computing biconnected components
in a dynamically changing graph. The serial algorithm requires that the environment issue only
one update request at a time. The concurrent algorithm allows the environment to make multiple
concurrent update requests. The algorithm serializes the requests within each connected component
with each node in a connected component having the same view of the update sequence, while
allowing requests in different connected components to proceed in parallel. The algorithm uses
logical clocks and collects timestamps from nodes in a connected component in order to achieve
identical view of the update sequence across nodes. As the graph changes dynamically, ordering
information is propagated to ensure consistency.

We are working on a new concurrent algorithm in which multiple updates may proceed con-
currently within a cornected component. The requesting nodes unilaterally assign timestamps to
the requests and the nodes prioritize the requests according to these times. Whenever messages
belonging to two requests “collide” at a node, either the younger request may be deferred or the
requests may be combined into one update. For an example of the latter, if two or more insert
requests find their peers within a connected component and collide, then these requests may merge

to form one large biconnected component.

Acknowledgements

We thank George Varghese for his careful reading of an earlier draft.

References

[1] Alfred V. Aho, John E. Hopcroft, and Jeffery D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading, MA, 1974.

[2] Mohan Ahuja and Yahui Zhu. An efficient distributed algorithm for finding articulation points,
bridges, and biconnected components in asynchronous networks. In Proceedings of the 9th Con-
ference on Foundations of Software Technology and Theoretical Computer Science, Bangalore,

India. LNCS 405, pages 99-108. Springer—Verlag, December 1989.

33

[3] Kenneth Birman, Andre Schiper, and Pat Stephenson. Lightweight causal and atomic group
multicast, ACM Transactions on Computer Systems, 9(3):272-314, August 1991.

[4]) E. J. H. Chang. Echo algorithms: Depth parallel operations on general graphs. IEEFE Trans-
actions on Software Engineering, 8(4):391-401, 1982.

[5] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to Algorithms.
The MIT Press, Cambridge, MA, 1990.

[6] Jerome R. Cox, Jr., Mike Gaddis, and Jonathan S. Turner. Project Zeus: Design of a broad-
band network and its application on a university campus. IFFE Network, pages 20-30, March
1993.

[7] Kenneth J. Goldman, Michael D. Anderson, and Bala Swaminathan. The Programmers’ Play-
ground: I/0 abstraction for heterogencous distributed systems. In 27th Hawaii International

Conference on System Sciences (HICSS), pages 363—-372, January 1994.

[8] Walter Hohberg. How to find biconnected components in distributed networks. Journal of
Parallel and Distributed Computing, 9(4):374-386, August 1990.

[9] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Communi-

cations of the ACM, 27(7):558-565, July 1978.

[10] Jungho Park, Nobuki Tokura, Toshimitsu Masuzawa, and Kenichi Hagihara. Efficient dis-
tributed algorithms solving problems about the connectivity of network. Systems and Com-

puters in Japan, 22(8):1-16, May 1991.

[11] Monika Rauch. Fully dynamic biconnectivity in graphs. In Proceedings of the 33rd Annual

Symposium on Foundations of Compuier Science, pages 50-59, October 1992.

[12] Robert E. Tarjan and Uzi Vishikin. An efficient parallel biconnectivity algorithm. SIAM
Journal of Computing, 14(4):862-874, 1985.

[13] Jeffery Westbrook and Robert E. Tarjan. Maintaining bridge-connected and biconnected com-
ponents on-line. Algorithmica, 7:433—-464, 1992.

34

	An Incremental Distributed Algorithm for Computing Biconnected Components
	Recommended Citation
	An Incremental Distributed Algorithm for Computing Biconnected Components

	tmp.1439928365.pdf.RR167

